dc.contributor.author | Santamaría Caballero, Luis Ignacio | |
dc.contributor.author | Vía Rodríguez, Javier | |
dc.contributor.author | Kirby, Michael | |
dc.contributor.author | Marrinan, Tim | |
dc.contributor.author | Peterson, Chris | |
dc.contributor.author | Scharf, Louis L. | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2018-02-07T18:40:46Z | |
dc.date.available | 2018-02-07T18:40:46Z | |
dc.date.issued | 2017 | |
dc.identifier.isbn | 978-0-9928626-7-1 | |
dc.identifier.isbn | 978-1-5386-0751-0 | |
dc.identifier.other | TEC2013-47141-C4-R | es_ES |
dc.identifier.other | TEC2016-75067-C4-4-R | es_ES |
dc.identifier.other | TEC2016-81900-REDT | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/13017 | |
dc.description.abstract | Given a collection of M experimentally measured subspaces, and a model-based subspace, this paper addresses the problem of finding a subspace that approximates the collection, under the constraint that it intersects the model-based subspace in a predetermined number of dimensions. This constrained subspace estimation (CSE) problem arises in applications such as beamforming, where the model-based subspace encodes prior information about the direction-of-arrival of some sources impinging on the array. In this paper, we formulate the constrained subspace estimation (CSE) problem, and present an approximation based on a semidefinite relaxation (SDR) of this non-convex problem. The performance of the proposed CSE algorithm is demonstrated via numerical simulation, and its application to beamforming is also discussed. | es_ES |
dc.description.sponsorship | This work has been supported by the Ministerio de Economía, Industria y Competitividad (MINECO) of Spain, and AEI/FEDER funds of the E.U., under grants TEC2013-47141-C4-R (RACHEL), TEC2016-75067-C4-4-R (CARMEN) and TEC2016-81900-REDT (KERMES), and by the National Science Foundation under Grant No. IIS-1633830. | es_ES |
dc.format.extent | 5 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | IEEE | es_ES |
dc.rights | © EURASIP. First published in the Proceedings of the 25th European Signal Processing Conference (EUSIPCO-2017) in 2017, published by EURASIP. IEEE is granted the nonexclusive, irrevocable, royalty-free worldwide rights to publish, sell and distribute the copyrighted work in any format or media without restriction. | es_ES |
dc.source | 25th European Signal Processing Conference (EUSIPCO), Kos island, Greece, 2017, 1200-1204 | es_ES |
dc.subject.other | Subspace averaging | es_ES |
dc.subject.other | Grassmann manifold | es_ES |
dc.subject.other | Convex optimization | es_ES |
dc.subject.other | Semidefinite relaxation | es_ES |
dc.title | Constrained subspace estimation via convex optimization | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.relation.publisherVersion | https://doi.org/10.23919/EUSIPCO.2017.8081398 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.23919/EUSIPCO.2017.8081398 | |
dc.type.version | publishedVersion | es_ES |