Mostrar el registro sencillo

dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.authorVía Rodríguez, Javier 
dc.contributor.authorKirby, Michael
dc.contributor.authorMarrinan, Tim
dc.contributor.authorPeterson, Chris
dc.contributor.authorScharf, Louis L. 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-02-07T18:40:46Z
dc.date.available2018-02-07T18:40:46Z
dc.date.issued2017
dc.identifier.isbn978-0-9928626-7-1
dc.identifier.isbn978-1-5386-0751-0
dc.identifier.otherTEC2013-47141-C4-Res_ES
dc.identifier.otherTEC2016-75067-C4-4-Res_ES
dc.identifier.otherTEC2016-81900-REDTes_ES
dc.identifier.urihttp://hdl.handle.net/10902/13017
dc.description.abstractGiven a collection of M experimentally measured subspaces, and a model-based subspace, this paper addresses the problem of finding a subspace that approximates the collection, under the constraint that it intersects the model-based subspace in a predetermined number of dimensions. This constrained subspace estimation (CSE) problem arises in applications such as beamforming, where the model-based subspace encodes prior information about the direction-of-arrival of some sources impinging on the array. In this paper, we formulate the constrained subspace estimation (CSE) problem, and present an approximation based on a semidefinite relaxation (SDR) of this non-convex problem. The performance of the proposed CSE algorithm is demonstrated via numerical simulation, and its application to beamforming is also discussed.es_ES
dc.description.sponsorshipThis work has been supported by the Ministerio de Economía, Industria y Competitividad (MINECO) of Spain, and AEI/FEDER funds of the E.U., under grants TEC2013-47141-C4-R (RACHEL), TEC2016-75067-C4-4-R (CARMEN) and TEC2016-81900-REDT (KERMES), and by the National Science Foundation under Grant No. IIS-1633830.es_ES
dc.format.extent5 p.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rights© EURASIP. First published in the Proceedings of the 25th European Signal Processing Conference (EUSIPCO-2017) in 2017, published by EURASIP. IEEE is granted the nonexclusive, irrevocable, royalty-free worldwide rights to publish, sell and distribute the copyrighted work in any format or media without restriction.es_ES
dc.source25th European Signal Processing Conference (EUSIPCO), Kos island, Greece, 2017, 1200-1204es_ES
dc.subject.otherSubspace averaginges_ES
dc.subject.otherGrassmann manifoldes_ES
dc.subject.otherConvex optimizationes_ES
dc.subject.otherSemidefinite relaxationes_ES
dc.titleConstrained subspace estimation via convex optimizationes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.23919/EUSIPCO.2017.8081398es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.23919/EUSIPCO.2017.8081398
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo