Mostrar el registro sencillo

dc.contributor.authorLameiro Gutiérrez, Christian 
dc.contributor.authorUtschick, Wolfgang
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-02-02T19:23:22Z
dc.date.available2019-05-31T02:45:10Z
dc.date.issued2017-05
dc.identifier.issn0165-1684
dc.identifier.issn1872-7557
dc.identifier.otherTEC2013-47141-C4-3-Res_ES
dc.identifier.otherTEC2016-75067-C4-4-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/12989
dc.description.abstractInterference temperature (IT) is a widely-used approach for protecting primary users (PUs) from the secondary users (SUs) in underlay cognitive radio. H owever, when multiple antennas are available at the transmitters and receivers, the spatial structure of the interference comes into play, strongly affecting the performance of the primary network. In this work, we propose interference shaping constraints as an alternative to IT-based approaches. Spatial shaping constraints take account of the structure of interference and exploit it in benefit of the secondary network. Moreover, they can be designed dynamically based on the channel conditions and performance requirements of the PUs. We first show that spatial shaping constraints generalize IT, in that the latter can be expressed as a set of isotropic shaping constraints on each interference dimension. Then, we exemplary consider a PU that has a rate requirement, and propose an algorithm for obtaining suitable shaping matrices, which can be easily modified to include primary transmitter cooperation. This algorithm is performed at the primary receiver using only local channel state information. Afterwards, we address the transceiver optimization of the SU, modeled as a multiple-input multiple-output point-to-point link, and provide optimal and suboptimal transmit covariance designs under the proposed shaping constraints.es_ES
dc.description.sponsorshipC. Lameiro and I. Santamaría have received funding from the Spanish Government (MICINN) under projects TEC2013-47141-C4-3- R (RACHEL), TEC2016-75067-C4-4-R (CARMEN) and FPU Grant AP2010-2189. W. Utschick receives financial support from the Deutsche Forschungsgemeinschaft (DFG) under the grant Ut36/15-1.es_ES
dc.format.extent30 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceSignal Processing, 2017, 134, 174-184es_ES
dc.subject.otherUnderlay cognitive radioes_ES
dc.subject.otherInterference temperaturees_ES
dc.subject.otherSpatial shapinges_ES
dc.subject.otherTransmitter optimizationes_ES
dc.titleSpatial interference shaping for underlay MIMO cognitive networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.sigpro.2016.12.012es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.sigpro.2016.12.012
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaExcepto si se señala otra cosa, la licencia del ítem se describe como © 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivada