• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Markov chain model for the decoding probability of sparse network coding

    A Markov chain model for the decoding probability of sparse network coding

    Ver/Abrir
    MarkovChainModel.pdf (452.4Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/12932
    DOI: 10.1109/TCOMM.2017.2657621
    ISSN: 0090-6778
    ISSN: 1558-0857
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Garrido Ortiz, Pablo; Lucani, Daniel E.; Agüero Calvo, RamónAutoridad Unican
    Fecha
    2017-04
    Derechos
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE Transactions on Communications, 2017, 65(4), 1675-1685
    Editorial
    Institute of Electrical and Electronics Engineers
    Enlace a la publicación
    https://doi.org/10.1109/TCOMM.2017.2657621
    Palabras clave
    Random codes
    Sparse matrices
    Network coding
    Absorbing Markov chain
    Resumen/Abstract
    Random linear network coding has been shown to offer an efficient communication scheme, leveraging a remarkable robustness against packet losses. However, it suffers from a high-computational complexity, and some novel approaches, which follow the same idea, have been recently proposed. One of such solutions is sparse network coding (SNC), where only few packets are combined with each transmission. The amount of data packets to be combined can be set from a density parameter/distribution, which could be eventually adapted. In this paper, we present a semi-analytical model that captures the performance of SNC on an accurate way. We exploit an absorbing Markov process, where the states are defined by the number of useful packets received by the decoder, i.e., the decoding matrix rank, and the number of non-zero columns at such matrix. The model is validated by the means of a thorough simulation campaign, and the difference between model and simulation is negligible. We also include in the comparison of some more general bounds that have been recently used, showing that their accuracy is rather poor. The proposed model would enable a more precise assessment of the behavior of SNC techniques.
    Colecciones a las que pertenece
    • D12 Artículos [360]
    • D12 Proyectos de Investigación [519]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España