Mostrar el registro sencillo

dc.contributor.authorRueda Zamora, Ana Cristina 
dc.contributor.authorHegermiller, Christie A.
dc.contributor.authorÁlvarez Antolínez, José Antonio
dc.contributor.authorCamus Braña, Paula
dc.contributor.authorVitousek, Sean
dc.contributor.authorRuggiero, Peter
dc.contributor.authorBarnard, Patrick L.
dc.contributor.authorErikson, Li H.
dc.contributor.authorTomás Sampedro, Antonio
dc.contributor.authorMéndez Incera, Fernando Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-12-15T15:12:51Z
dc.date.available2017-12-15T15:12:51Z
dc.date.issued2017-02
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.issn0148-0227
dc.identifier.otherBIA2014-59643-Res_ES
dc.identifier.otherBIA2015-70644-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/12627
dc.description.abstractCharacterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.es_ES
dc.description.sponsorshipWe thank Jorge Perez for the ESTELA code. A.R., J.A.A.A., and F.J.M. acknowledge the support of the Spanish ‘‘Ministerio de Economia y Competitividad’’ under grant BIA2014-59643-R. P.C. acknowledges the support of the Spanish ‘‘Ministerio de Economia y Competitividad’’ under grant BIA2015-70644-R. J.A.A.A. is indebted to the MEC (Ministerio de Educacion, Cultura y Deporte, Spain) for the funding provided in the FPU (Formacion del ProfesoradoUniversitario) studentship (BOE-A-2013-12235). This material is based upon work supported by the U.S. Geological Survey under grant/cooperative agreement G15AC00426. P.R. acknowledges the support of the National Oceanic and Atmospheric Administration Climate Program Office via award NA15OAR4310145. Support was provided from the US DOD Strategic Environmental Research and Development Program (SERDP Project RC-2644) through the NOAA National Centers for Environmental Information (NCEI). Atmospheric data from CFSR are available online at https://climatedataguide.ucar.edu/climatedata/climate-forecast-system-reanalysis-cfsr. Marine data from global reanalysis are lodge with the IHData center from IHCantabria and are available for research purposes upon request (contact: ihdata@ihcantabria.com).es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherJohn Wiley & Sonses_ES
dc.rights©American Geophysical Union. Rueda, A., Hegermiller, C. A., Antolinez, J. A., Camus, P., Vitousek, S., Ruggiero, P., ... & Mendez, F. J. (2017). Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra. Journal of Geophysical Research (Oceans), 122, 1400-1415. DOI:10.1002/2016JC011957.es_ES
dc.sourceJournal of Geophysical Research. Oceans Volume 122, Issue 2 February 2017 Pages 1400-1415es_ES
dc.titleMultiscale climate emulator of multimodal wave spectra: MUSCLE-spectraes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://onlinelibrary.wiley.com/doi/10.1002/2016JC011957/abstractes_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1002/2016JC011957
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo