Mostrar el registro sencillo

dc.contributor.authorDunster, T.M.
dc.contributor.authorGil Gómez, Amparo 
dc.contributor.authorSegura Sala, José Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-11-16T16:55:59Z
dc.date.available2018-04-01T02:45:10Z
dc.date.issued2017-03
dc.identifier.issn0176-4276
dc.identifier.issn1432-0940
dc.identifier.otherMTM2015-67142-Pes_ES
dc.identifier.otherMTM2012-34787es_ES
dc.identifier.urihttp://hdl.handle.net/10902/12334
dc.description.abstractLinear second-order differential equations having a large real parameter and turning point in the complex plane are considered. Classical asymptotic expansions for solutions involve the Airy function and its derivative, along with two infinite series, the coefficients of which are usually difficult to compute. By considering the series as asymptotic expansions for two explicitly defined analytic functions, Cauchy's integral formula is employed to compute the coefficient functions to a high order of accuracy. The method employs a certain exponential form of Liouville´Green expansions for solutions of the differential equation, as well as for the Airy function. We illustrate the use of the method with the high accuracy computation of Airy-type expansions of Bessel functions of complex argument.es_ES
dc.description.sponsorshipThe authors acknowledge support from Ministerio de Economía y Competitividad, project MTM2015-67142-P (MINECO/FEDER, UE). A.G. and J.S. acknowledge support from Ministerio de Economía y Competitividad, project MTM2012-34787. A.G. acknowledges the Fulbright/MEC Program for support during her stay at SDSU. J.S. acknowledges the Salvador de Madariaga Program for support during his stay at SDSU.es_ES
dc.format.extent31 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer-Verl. New York.es_ES
dc.rights©Springer New York. "The final publication is available at Springer via http://dx.doi.org/10.1007/s00365-017-9372-8".es_ES
dc.sourceConstr Approx (2017) 46:645?675es_ES
dc.titleComputation of Asymptotic Expansions of Turning Point Problems via Cauchy's Integral Formula: Bessel Functionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1007/s00365-017-9372-8es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s00365-017-9372-8
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo