dc.contributor.author | Dunster, T.M. | |
dc.contributor.author | Gil Gómez, Amparo | |
dc.contributor.author | Segura Sala, José Javier | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2017-11-16T16:55:59Z | |
dc.date.available | 2018-04-01T02:45:10Z | |
dc.date.issued | 2017-03 | |
dc.identifier.issn | 0176-4276 | |
dc.identifier.issn | 1432-0940 | |
dc.identifier.other | MTM2015-67142-P | es_ES |
dc.identifier.other | MTM2012-34787 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/12334 | |
dc.description.abstract | Linear second-order differential equations having a large real parameter and turning point in the complex plane are considered. Classical asymptotic expansions for solutions involve the Airy function and its derivative, along with two infinite series, the coefficients of which are usually difficult to compute. By considering the series as
asymptotic expansions for two explicitly defined analytic functions, Cauchy's integral formula is employed to compute the coefficient functions to a high order of accuracy. The method employs a certain exponential form of Liouville´Green expansions for solutions of the differential equation, as well as for the Airy function. We illustrate the use of the method with the high accuracy computation of Airy-type expansions of Bessel functions of complex argument. | es_ES |
dc.description.sponsorship | The authors acknowledge support from Ministerio de Economía y Competitividad, project MTM2015-67142-P (MINECO/FEDER, UE). A.G. and J.S. acknowledge support from Ministerio de Economía y Competitividad, project MTM2012-34787. A.G. acknowledges the Fulbright/MEC Program for support during her stay at SDSU. J.S. acknowledges the Salvador de Madariaga Program for support during his stay at SDSU. | es_ES |
dc.format.extent | 31 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer-Verl. New York. | es_ES |
dc.rights | ©Springer New York. "The final publication is available at Springer via http://dx.doi.org/10.1007/s00365-017-9372-8". | es_ES |
dc.source | Constr Approx (2017) 46:645?675 | es_ES |
dc.title | Computation of Asymptotic Expansions of Turning Point Problems via Cauchy's Integral Formula: Bessel Functions | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | http://dx.doi.org/10.1007/s00365-017-9372-8 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1007/s00365-017-9372-8 | |
dc.type.version | acceptedVersion | es_ES |