A biomimetic escape strategy for cytoplasm invasion by synthetic particles
Ver/ Abrir
Registro completo
Mostrar el registro completo DCAutoría
Iturrioz Rodríguez, Nerea; González Domínguez, E.; González Lavado, Eloisa; Marín Caba, Laura; Vaz, B.; Pérez Lorenzo, M.; Correa Duarte, M.A.; López Fanarraga, Mónica
Fecha
2017-10-23Derechos
© John Wiley & Sons. This is the peer reviewed version of the following article: N. Iturrioz-Rodríguez., E. González-Domínguez, E. González-Lavado, L. Marín-Caba, B. Vaz, M. Pérez-Lorenzo, M. A. Correa-Duarte, M. L. Fanarraga, Angew. Chem. Int. Ed. 2017, 56, 13736, which has been published in final form at DOI 10.1002/anie.201707769. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Publicado en
Angewandte Chemie, 2017, 56(44), 13736-13740
Editorial
Wiley
Enlace a la publicación
Resumen/Abstract
The translocation of nanomaterials or complex delivery systems into the cytosol is a major challenge in nanobiotechnology. After receptor-mediated endocytosis, most nanomaterials are sequestered and undergo degradation, therapy inactivation, or exocytosis. Herein we explore a novel surface particle coating made of adsorbed carbon nanotubes that provides coated materials with new properties that reproduce the viral cell-invasive mechanisms, namely, receptor-mediated endocytosis, endolysosomal escape, and cytosolic particle release preserving cell viability. This novel biomimetic coating design will enable the intracytoplasmic delivery of many different functional materials endowed with therapeutic, magnetic, optical, or catalytic functionalities, thus opening the door to a wide array of chemical and physical processes within the cytosolic or nuclear domains, and supporting new developments in the biotechnological, pharmaceutical, and biomedical industries.
Colecciones a las que pertenece
- D02 Artículos [403]
- IDIVAL Artículos [864]