Error estimates for the approximation of the velocity tracking problem with Bang-Bang controls
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/12096DOI: 10.1051/cocv/2016054
ISSN: 1292-8119
ISSN: 1262-3377
Registro completo
Mostrar el registro completo DCFecha
2017-10Derechos
© EDP Sciences, SMAI, 2017. The original publication is available at www.esaim-cocv.org
Publicado en
ESAIM: Control, Optimisation and Calculus of Variations, 2017, 23(4), 1267-1291
Editorial
EDP Sciences
Enlace a la publicación
Palabras clave
Evolution Navier–Stokes equations
Optimal control
Bang-bang controls
A priori error estimates
Resumen/Abstract
The velocity tracking problem for the evolutionary Navier–Stokes equations in 2d is studied. The controls are of distributed type but the cost functional does not involve the usual quadratic term for the control. As a consequence the resulting controls can be of bang-bang type. First and second order necessary and sufficient conditions are proved. A fully-discrete scheme based on discontinuous (in time) Galerkin approach combined with conforming finite element subspaces in space, is proposed and analyzed. Provided that the time and space discretization parameters, τ and h respectively, satisfy τ ≤ Ch2 , then L2 error estimates are proved for the difference between the states corresponding to locally optimal controls and their discrete approximations.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]