Mostrar el registro sencillo

dc.contributor.authorFernández González, Carolina 
dc.contributor.authorKavanagh, John
dc.contributor.authorDomínguez Ramos, Antonio 
dc.contributor.authorIbáñez Mendizábal, Raquel 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.authorChen, Yongsheng
dc.contributor.authorCoster, Hans
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-09-04T14:31:57Z
dc.date.available2019-11-30T03:45:08Z
dc.date.issued2017-11-01
dc.identifier.issn0376-7388
dc.identifier.issn1873-3123
dc.identifier.otherCTM2014-57833-Res_ES
dc.identifier.otherCTQ2013-48280-C3-1-R-Des_ES
dc.identifier.urihttp://hdl.handle.net/10902/11718
dc.description.abstractThis work presents the enhancement of Cl−/SO42− mono-selectivity of layered nanocomposite anion exchange membranes (AEMs) and the mechanism that supports this improvement. These nanocomposite membranes are based on commercial polyethylene AEMs and a nanocomposite negative thin layer composed of sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) and a functionalized nanomaterial, Fe2O3−SO42− nanoparticles or oxidized multi-walled carbon nanotubes CNTs-COO−. The mechanism for monovalent selectivity was confirmed by characterizing nanocomposite membranes and commercial heterogeneous ion exchange membranes (IEMs) using ζ-potential and electrochemical impedance spectroscopy (EIS). ζ-potential measurements confirmed the modification of the charge of surface of the membrane after being coated with the nanocomposite layer. EIS measurements showed a totally different electrical performance between layered nanocomposite membranes and commercial IEMs. The electrical data from EIS was fitted to a Maxwell-Wagner model providing an equivalent electric circuit (EEC) for each membrane. The observed differences in ECC were related to the structural differences of the membranes. A physical explanation of the phenomena that caused these differences is provided. The influence of ion concentration on EIS measurements was also studied. To the best of our knowledge, this is the first time that an ECC related to the structure of advanced layered IEMs is proposed.es_ES
dc.description.sponsorshipFinancial support from MICINN under project CTM2014-57833-R and CTQ2013-48280-C3-1-R-D is gratefully acknowledged. The authors thank the Ministry of Economy, Industry and Competitiveness for the FPI grant BES-2012-053461 and the scholarships EEBB-I-15-10268 and EEBB-I-16-11614. In addition, this research was partially supported by the U.S. National Science Foundation CBET-1235166.es_ES
dc.format.extent29 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceJournal of Membrane Science, 2017, 541, 611-620es_ES
dc.titleElectrochemical impedance spectroscopy of enhanced layered nanocomposite ion exchange membraneses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.memsci.2017.07.046es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.memsci.2017.07.046
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaExcepto si se señala otra cosa, la licencia del ítem se describe como © 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivada