Mostrar el registro sencillo

dc.contributor.authorAbejón Elías, Ricardo 
dc.contributor.authorAbejón Elias, Azucena
dc.contributor.authorPuthai, Waravut
dc.contributor.authorIbrahim, S.B.
dc.contributor.authorNagasawa, Hiroki
dc.contributor.authorTsuru, Toshinori
dc.contributor.authorGarea Vázquez, Aurora 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-08-25T14:42:10Z
dc.date.available2019-09-30T02:45:08Z
dc.date.issued2017-09
dc.identifier.issn0263-8762
dc.identifier.issn1744-3563
dc.identifier.otherCTQ2014-56820-JINes_ES
dc.identifier.urihttp://hdl.handle.net/10902/11584
dc.description.abstractPolymeric membrane cascades have demonstrated their technical and economic viability for hydrogen peroxide ultrapurification. Nevertheless, these membranes suffer from fast degradation under such oxidative conditions. Alternative membranes with higher chemical resistance could improve the ultrapurification process. Therefore, this work presents the preliminary techno-economic analysis of two non-commercial membranes (a ceramic one and a hybrid organosilica one). This analysis is complemented with further research regarding the competitiveness of these alternative membranes compared to polymeric ones. The results confirm the technical viability for both membranes, but the ceramic membrane is not appropriate when Na is considered as the limiting impurity (because it has too low rejection coefficient). The economic viability of the proposed ultrapurification processes is also probed, but not under competitive conditions, as the polyamide membrane appears to be the optimal choice. Nonetheless, improvements in the permeability of the hybrid membrane (an increase in the membrane permeability by a factor of 10) or the rejection performance of the ceramic membrane (an increase in the reflection coefficient above 0.85) could transform these non-commercial membranes into the most profitable alternative.es_ES
dc.description.sponsorshipThis research has been financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) through CTQ2014-56820-JIN Project, co-financed by FEDER funds. R. Abejón acknowledges the assistance of the Japan Society for Promotion of Science (JSPS) for the award of a Post-Doctoral Fellowship (Short-Term) for North American and European Researchers (PE14057).es_ES
dc.format.extent33 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitution of Chemical Engineerses_ES
dc.rights© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceChemical Engineering Research and Design, 2017, 125, 385-397es_ES
dc.subject.otherOrganosilica membranees_ES
dc.subject.otherCeramic membranees_ES
dc.subject.otherUltrapurificationes_ES
dc.subject.otherHydrogen peroxidees_ES
dc.subject.otherMembrane cascadees_ES
dc.titlePreliminary techno-economic analysis of non-commercial ceramic and organosilica membranes for hydrogen peroxide ultrapurificationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.cherd.2017.07.018es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.cherd.2017.07.018
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaExcepto si se señala otra cosa, la licencia del ítem se describe como © 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivada