• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ciencias Médicas y Quirúrgicas
    • D06 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ciencias Médicas y Quirúrgicas
    • D06 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival

    Ver/Abrir
    TumourHeterogeneity.pdf (783.5Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/11526
    DOI: 10.1259/bjr.20160242
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Molina, David; Pérez Beteta, Julián; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M.; López, Carlos; Martino González, JuanAutoridad Unican; Velásquez Rodríguez, Carlos JoséAutoridad Unican; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Martínez González, Alicia; Pérez Romasanta, Luis; Arana, Estanislao; Pérez García, Víctor M.
    Fecha
    2016-06-16
    Derechos
    © The Authors. Published by the British Institute of Radiology
    Publicado en
    Br J Radiol 2016; 89: 20160242
    Editorial
    British Institute of Radiology
    Resumen/Abstract
    Objective: The main objective of this retrospective work was the study of three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR images acquired with T1 weighted sequences of patients with glioblastoma (GBM) as predictors of clinical outcome. Methods: 79 patients from 3 hospitals were included in the study. 16 3D textural heterogeneity measures were computed including run-length matrix (RLM) features (regional heterogeneity) and co-occurrence matrix (CM) features (local heterogeneity). The significance of the results was studied using Kaplan?Meier curves and Cox proportional hazards analysis. Correlation between the variables of the study was assessed using the Spearman?s correlation coefficient. Results: Kaplan?Meyer survival analysis showed that 4 of the 11 RLM features and 4 of the 5 CM features considered were robust predictors of survival. The median survival differences in the most significant cases were of over 6 months. Conclusion: Heterogeneity measures computed on the post-contrast pre-operative T1 weighted MR images of patients with GBM are predictors of survival. Advances in knowledge: Texture analysis to assess tumour heterogeneity has been widely studied. However, most works develop a two-dimensional analysis, focusing only on one MRI slice to state tumour heterogeneity. The study of fully 3D heterogeneity textural features as predictors of clinical outcome is more robust and is not dependent on the selected slice of the tumour.
    Colecciones a las que pertenece
    • D06 Artículos [576]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España