Mostrar el registro sencillo

dc.contributor.authorSierra Fernández, Carlos 
dc.contributor.authorFlor Blanco, Germán
dc.contributor.authorOrdoñez Galán, Celestino
dc.contributor.authorFlor Rodríguez, Germán
dc.contributor.authorRodríguez Gallego, José Luis
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-07-25T09:01:02Z
dc.date.available2019-07-15T02:45:08Z
dc.date.issued2017-07-15
dc.identifier.issn0037-0738
dc.identifier.urihttp://hdl.handle.net/10902/11459
dc.description.abstractHere we used Functional Data Analysis (FDA) to examine particle-size distributions (PSDs) in a beach/shallow marine sedimentary environment in Gijón Bay (NW Spain). The work involved both Functional Principal Components Analysis (FPCA) and Functional Cluster Analysis (FCA). The grainsize of the sand samples was characterized by means of laser dispersion spectroscopy. Within this framework, FPCA was used as a dimension reduction technique to explore and uncover patterns in grain-size frequency curves. This procedure proved useful to describe variability in the structure of the data set. Moreover, an alternative approach, FCA, was applied to identify clusters and to interpret their spatial distribution. Results obtained with this latter technique were compared with those obtained by means of two vector approaches that combine PCA with CA (Cluster Analysis). The first method, the point density function (PDF), was employed after adapting a log-normal distribution to each PSD and resuming each of the density functions by its mean, sorting, skewness and kurtosis. The second applied a centered-log-ratio (clr) to the original data. PCA was then applied to the transformed data, and finally CA to the retained principal component scores. The study revealed functional data analysis, specifically FPCA and FCA, as a suitable alternative with considerable advantages over traditional vector analysis techniques in sedimentary geology studies.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObra-Derivadaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceSedimentary geology, 2017, vol. 357, pp.99-108es_ES
dc.subject.otherParticle-size distributiones_ES
dc.subject.otherSand sedimentses_ES
dc.subject.otherFunctional Cluster Analysises_ES
dc.subject.otherFunctional components analysises_ES
dc.subject.otherVector-based clusterses_ES
dc.titleAnalyzing coastal environments by means of functional data analysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.sedgeo.2017.06.008es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.sedgeo.2017.06.008
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObra-DerivadaExcepto si se señala otra cosa, la licencia del ítem se describe como © 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObra-Derivada