Mostrar el registro sencillo

dc.contributor.authorTirnauca, Cristina 
dc.contributor.authorMontaña Arnaiz, José Luis 
dc.contributor.authorOntañón, Santiago
dc.contributor.authorGonzález, Avelino J.
dc.contributor.authorPardo Vasallo, Luis Miguel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-07-05T11:16:47Z
dc.date.available2017-07-05T11:16:47Z
dc.date.issued2016-06
dc.identifier.issn1424-8220
dc.identifier.otherMTM2014-55262-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/11341
dc.description.abstractImagine an agent that performs tasks according to different strategies. The goal of Behavioral Recognition (BR) is to identify which of the available strategies is the one being used by the agent, by simply observing the agent?s actions and the environmental conditions during a certain period of time. The goal of Behavioral Cloning (BC) is more ambitious. In this last case, the learner must be able to build a model of the behavior of the agent. In both settings, the only assumption is that the learner has access to a training set that contains instances of observed behavioral traces for each available strategy. This paper studies a machine learning approach based on Probabilistic Finite Automata (PFAs), capable of achieving both the recognition and cloning tasks. We evaluate the performance of PFAs in the context of a simulated learning environment (in this case, a virtual Roomba vacuum cleaner robot), and compare it with a collection of other machine learning approaches.es_ES
dc.description.sponsorshipThis work was partially supported by project PAC::LFO (MTM2014-55262-P) of Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia, Ministerio de Ciencia e Innovación (MICINN), Spain, and by the National Science Foundation (NSF) project SCH-1521943, USA.es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subject.otherLearning from observationes_ES
dc.subject.otherBehavioral recognitiones_ES
dc.subject.otherBehavioral cloninges_ES
dc.subject.otherProbabilistic finite automatones_ES
dc.subject.otherAmbient intelligencees_ES
dc.subject.otherVirtual agentses_ES
dc.titleBehavioral Modeling Based on Probabilistic Finite Automata: An Empirical Studyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/s16070958es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/s16070958
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España