Mostrar el registro sencillo

dc.contributor.authorSegura Sala, José Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-07-03T11:18:39Z
dc.date.available2017-07-03T11:18:39Z
dc.date.issued2017
dc.identifier.issn0025-5718
dc.identifier.issn1088-6842
dc.identifier.otherMTM2012-34787
dc.identifier.urihttp://hdl.handle.net/10902/11328
dc.description.abstractThe Schwarzian-Newton method can be defined as the minimal method for solving nonlinear equations f(x) = 0 which is exact for any function f with constant Schwarzian derivative; exactness means that the method gives the exact root in one iteration for any starting value in a neighborhood of the root. This is a fourth order method which has Halley?s method as limit when the Schwarzian derivative tends to zero. We obtain conditions for the convergence of the SNM in an interval and show how this methodcan be applied for a reliable and fast solution of some problems, like the inversion of cumulative distribution functions (gamma and beta distributions) and the inversion of elliptic integrals.es_ES
dc.description.sponsorshipThe author acknowledges financial support from Ministerio de Economía y Competitividad (project MTM2012-34787)es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Mathematical Societyes_ES
dc.rights© American Mathematical Society. First published in Mathematics of computation in Volume 86, Number 304, published by the American Mathematical Societyes_ES
dc.sourceMath. Comp. 86 (2017), 865-879es_ES
dc.titleThe Schwarzian-Newton method for solving nonlinear equations, with applicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo