• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Economía
    • D10 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Economía
    • D10 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonparametric and semi-parametric panel data models: recent developments

    Ver/Abrir
    NonparametricSemiPar ... (412.4Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/11327
    DOI: 10.1111/joes.12177
    ISSN: 0950-0804
    ISSN: 1467-6419
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Rodríguez-Poo, Juan M.Autoridad Unican; Soberón Velez, Alexandra PilarAutoridad Unican
    Fecha
    2017-09
    Derechos
    © Wiley "This is the peer reviewed version of the following article: [Rodriguez-Poo, J.M. and Soberon, A. (2016) “Nonparametric and semi-parametric panel data models: recent developments”, Journal of Economic Surveys], which has been published in final form at [doi: 10.1111/joes.12177]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
    Publicado en
    Journal of Economic Surveys, 2017, 31(4), 923-960
    Editorial
    Wiley-Blackwell
    Palabras clave
    Nonparametric
    Semi-parametric
    Panel data models
    Random effects
    Fixed effects
    Resumen/Abstract
    In this paper, we provide an intensive review of the recent developments for semiparametric and fully nonparametric panel data models that are linearly separable in the innovation and the individual-specific term. We analyze these developments under two alternative model specifications: fixed and random effects panel data models. More precisely, in the random effects setting, we focus our attention in the analysis of some efficiency issues that have to do with the so-called working independence condition. This assumption is introduced when estimating the asymptotic variance-covariance matrix of nonparametric estimators. In the fixed effects setting, to cope with the so-called incidental parameters problem, we consider two different estimation approaches: profiling techniques and differencing methods. Furthermore, we are also interested in the endogeneity problem and how instrumental variables are used in this context. In Addition, for practitioners, we also show different ways of avoiding the so-called curse of dimensionality problem in pure nonparametric models. In this way, semiparametric and additive models appear as a solution when the number of explanatory variables is large.
    Colecciones a las que pertenece
    • D10 Artículos [661]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España