Nonmaximal ideals and the Berkovich space of the algebra of bounded analytic functions
Ver/ Abrir
Registro completo
Mostrar el registro completo DCAutoría
Araujo Gómez, Jesús
Fecha
2017Derechos
Atribución-NoComercial-SinDerivadas 3.0 España
Publicado en
Journal of Mathematical Analysis and Applications, Volume 455, Issue 1, 1 November 2017, Pages 221-245
Editorial
Academic Press Inc.
Enlace a la publicación
Resumen/Abstract
We prove that the Berkovich space (or multiplicative spectrum) of the algebra of bounded analytic functions on the open unit disk of an algebraically closed nonarchimedean field contains multiplicative seminorms that are not norms and whose kernel is not a maximal ideal. We also prove that in general these seminorms are not univocally determined by their kernels, and provide a method for obtaining families of different seminorms sharing the same kernel. The relation with the Berkovich space of the Tate algebra is also given.
Colecciones a las que pertenece
- D21 Artículos [419]
- D21 Proyectos de Investigación [327]