• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Is Eurasian snow cover in October a reliable statistical predictor for the wintertime climate on the Iberian Peninsula?

    Ver/Abrir
    IsEurasianSnow.pdf (3.097Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/11268
    DOI: 10.1002/joc.3788
    ISSN: 0899-8418
    ISSN: 1097-0088
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Brands, Swen FranzAutoridad Unican; Herrera García, SixtoAutoridad Unican; Gutiérrez Llorente, José Manuel
    Fecha
    2014-04-03
    Derechos
    "This is the peer reviewed version of the following article: Brands, S., Herrera, S. and Gutiérrez, J.M. (2014), Is Eurasian snow cover in October a reliable statistical predictor for the wintertime climate on the Iberian Peninsula?. Int. J. Climatol., 34: 1615-1627 which has been published in final form at doi:10.1002/joc.3788. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
    Publicado en
    International Journal of Climatology Volume 34, Issue 5 April 2014 Pages 1615-1627
    Editorial
    John Wiley and Sons Ltd
    Enlace a la publicación
    http://onlinelibrary.wiley.com/doi/10.1002/joc.3788/epdf
    Resumen/Abstract
    In this study, the recently found lead-lag relationship between Eurasian snow cover increase in October and wintertime precipitation totals on the Iberian Peninsula is re-visited and generalized to a broad range of atmospheric variables on the synoptic and local scale. To this aim, a robust (resistant to outliers) method for calculating the index value for Eurasian snow cover increase in October is proposed. This "Robust Snow Advance Index" (RSAI) is positively correlated with the wintertime (DJF) frequency of cyclonic and westerly flow circulation types over the Iberian Peninsula, while the corresponding relationship with anticyclonic and easterly flow types is negative. For both cases, an explained variance of approximately 60% indicates a strong and highly significant statistical link on the synoptic scale. Consistent with these findings, it is then shown that the lead-lag relationship equally holds for the DJF-mean conditions of (1) precipitation amount, (2) diurnal temperature range, (3) sun hours, (4) cloud cover and (5) wind speed on the local scale. To assess if these target variables can be skillfully hindcast, simple linear regression is applied as a statistical forecasting method, using the October RSAI as the only predictor variable. One-year out cross-validation yields locally significant hindcast correlations of up to approximately 0.8, obtaining field significance for any of the five target variables mentioned above. The validity for a wide range of atmospheric variables and the consistency of the local- and synoptic-scale results affirm the question posed in the title.
    Colecciones a las que pertenece
    • D20 Artículos [468]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España