• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Future trends of snowfall days in northern Spain from ENSEMBLES regional climate projections

    Ver/Abrir
    FutureTrendsOf.pdf (14.29Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/11267
    DOI: 10.1007/s00382-015-2793-9
    ISSN: 0930-7575
    ISSN: 1432-0894
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Pons, M. R.; Herrera García, SixtoAutoridad Unican; Gutiérrez Llorente, José Manuel
    Fecha
    2016-01
    Derechos
    © Springer. The final publication is available at Springer via http://dx.doi.org/10.1007/s00382-015-2793-9
    Publicado en
    Climate Dynamics, June 2016, Volume 46, Issue 11, pp 3645-3655
    Editorial
    Springer
    Enlace a la publicación
    https://link.springer.com/article/10.1007/s00382-015-2793-9
    Resumen/Abstract
    In a previous study Pons et al. (Clim Res 54(3):197-207, 2010. doi:10.3354/cr01117g) reported a significant decreasing trend of snowfall occurrence in the Northern Iberian Peninsula since the mid 70s. The study was based on observations of annual snowfall frequency (measured as the annual number of snowfall days NSD) from a network of 33 stations ranging from 60 to 1350 m. In the present work we analyze the skill of Regional Climate Models (RCMs) to reproduce this trend for the period 1961-2000 (using both reanalysis- and historical GCM-driven boundary conditions) and the trend and the associated uncertainty of the regional future projections obtained under the A1B scenario for the first half of the twenty-first century. In particular, we consider the regional simulation dataset from the EU-funded ENSEMBLES project, consisting of thirteen state-of-the-art RCMs run at 25 km resolution over Europe. While ERA40 severely underestimates both the mean NSD and its observed trend (-2.2 days/decade), the corresponding RCM simulations driven by the reanalysis appropriately capture the interannual variability and trends of the observed NSD (trends ranging from -3.4 to -0.7, -2.1 days/decade for the ensemble mean). The results driven by the GCM historical runs are quite variable, with trends ranging from -8.5 to 0.2 days/decade (-1.5 days/decade for the ensemble mean), and the greatest uncertainty by far being associated with the particular GCM used. Finally, the trends for the future 2011-2050 A1B runs are more consistent and significant, ranging in this case from -3.7 to -0.5 days/decade (-2.0 days/decade for the ensemble mean), indicating a future significant decreasing trend. These trends are mainly determined by the increasing temperatures, as indicated by the interannual correlation between temperature and NSD (-0.63 in the observations), which is preserved in both ERA40- and GCM-driven simulations.
    Colecciones a las que pertenece
    • D20 Artículos [474]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España