An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2016-07-01Derechos
© 2016, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivada
Publicado en
Water Research, 2016, 98, 84-97
Editorial
Elsevier Limited
Enlace a la publicación
Palabras clave
Mathematical model
Biological treatment
Moving bed biofilm reactor (MBBR)
Hydrolysis
Predation
Pulp and viscose wastewater
Resumen/Abstract
An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions.
Colecciones a las que pertenece
- D51 Artículos [155]