Mostrar el registro sencillo

dc.contributor.authorCastro Alonso, Pablo Bernardo 
dc.contributor.authorArroyo Gutiérrez, Alberto 
dc.contributor.authorMartínez Torre, Raquel 
dc.contributor.authorMañana Canteli, Mario 
dc.contributor.authorDomingo Fernández, Rodrigo 
dc.contributor.authorLaso Pérez, Alberto 
dc.contributor.authorLecuna Tolosa, Ramón 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-06-14T12:38:39Z
dc.date.available2019-01-31T03:45:05Z
dc.date.issued2017-01-25
dc.identifier.issn1359-4311
dc.identifier.issn1873-5606
dc.identifier.otherIPT-2011-1447-920000es_ES
dc.identifier.otherENE2013-42720-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/11239
dc.description.abstractElectricity generation is changing as new, renewable and smaller generation facilities are created, and classic topologies have to accommodate this distributed generation. These changes lead to the creation of smart grids in which advanced generation, information and communication technologies are needed. Information metering is important, and one of the most important grid parameters to be measured and controlled is the temperature of overhead conductors due to their relation to the maximum allowable sag of the line. The temperature and current of an overhead conductor and the weather conditions surrounding the cable are measured every 8 min for more than a year. With these data, the accuracies of the different algorithms presented in the standards (CIGRE TB601 and IEEE 738) are studied by implementing them in MATLAB®. The use of precise measurements of solar radiation and low wind speeds with ultrasonic anemometers, improves the accuracy of the estimated temperature compared with the real measured conductor temperature. Additionally, using dynamic algorithms instead of assuming a steady state analysis increases the accuracy. However, an equilibrium between the accuracy and mathematical complexity should be obtained depending on the specific needs.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Government under the R+D initiative INNPACTO with reference IPT-2011-1447-920000 and Spanish R+D initiative with reference ENE2013-42720-Res_ES
dc.format.extent25 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Ltdes_ES
dc.rights© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceApplied Thermal Engineering, 2017, 111, 95-102es_ES
dc.subject.otherThermal ratinges_ES
dc.subject.otherAmpacityes_ES
dc.subject.otherOverhead line temperaturees_ES
dc.subject.otherWeather parameterses_ES
dc.subject.otherReal-time monitoringes_ES
dc.titleStudy of different mathematical approaches in determining the dynamic rating of overhead power lines and a comparison with real time monitoring dataes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.applthermaleng.2016.09.081es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.applthermaleng.2016.09.081
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaExcepto si se señala otra cosa, la licencia del ítem se describe como © 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivada