• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessing and Improving the Local Added Value of WRF for Wind Downscaling

    Ver/Abrir
    AssessingandImproving.pdf (1.694Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/11212
    DOI: 10.1175/JAMC-D-14-0150.1
    ISSN: 1558-8424
    ISSN: 1558-8432
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    García Díez, MarkelAutoridad Unican; Fernández Fernández, Jesús (matemático)Autoridad Unican; San Martín Segura, Daniel; Herrera García, SixtoAutoridad Unican; Gutiérrez Llorente, José Manuel
    Fecha
    2015
    Derechos
    © 2015 American Meteorological Society. AMS´s Full Copyright Notice: https://www.ametsoc.org/ams/index.cfm/publications/authors/journal-and-bams-authors/author-resources/copyright-information/copyright-policy/
    Publicado en
    Journal of Applied Meteorology and Climatology, 2015 (54) 1556-1568
    Editorial
    American Meteorological Society
    Enlace a la publicación
    https://doi.org/10.1175/JAMC-D-14-0150.1
    Palabras clave
    Wind
    Forecast verification/skill
    Numerical weather prediction/forecasting
    Short-range prediction
    Mesoscale models
    Resumen/Abstract
    Limited area models (LAMs) are widely used tools to downscale the wind speed forecasts issued by general circulation models. However, only a few studies have systematically analyzed the value added by the LAMs to the coarser-resolution-model wind. The goal of the present work is to investigate how added value depends on the resolution of the driving global model. With this aim, the Weather Research and Forecasting (WRF) Model was used to downscale three different global datasets (GFS, ERA-Interim, and NCEP?NCAR) to a 9-km-resolution grid for a 1-yr period. Model results were compared with a large set of surface observations, including land station and offshore buoy data. Substantial biases were found at this resolution over mountainous terrain, and a slight modification to the subgrid orographic drag parameterization was introduced to alleviate the problem. It was found that, at this resolution, WRF is able to produce significant added value with respect to the NCEP?NCAR reanalysis and ERA-Interim but only a small amount of added value with respect to GFS forecasts. Results suggest that, as model resolution increases, traditional skill scores tend to saturate. Thus, adding value to high-resolution global models becomes significantly more difficult.
    Colecciones a las que pertenece
    • D20 Artículos [468]
    • D20 Proyectos de Investigación [326]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España