Mostrar el registro sencillo

dc.contributor.authorYavo, Ziv
dc.contributor.authorFrancos, Joseph M.
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.authorScharf, Louis L. 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-05-26T15:32:08Z
dc.date.available2017-05-26T15:32:08Z
dc.date.issued2016
dc.identifier.isbn978-1-5090-1930-4
dc.identifier.isbn978-1-5090-1929-8
dc.identifier.urihttp://hdl.handle.net/10902/11096
dc.description.abstractAssume we have a set of noisy observations (for example, images) of different objects, each undergoing a different geometric deformation, yet all the deformations belong to the same family. As a result of the action of these deformations, the set of different observations on each object is generally a manifold in the ambient space of observations. It has been shown, [1], that in the absence of noise, in those cases where the set of deformations admits a finite-dimensional representation, the universal manifold embedding (UME) provides a mapping from the space of observations to a low dimensional linear space. The manifold corresponding to each object is mapped to a distinct linear subspace of Euclidean space, and the dimension of the subspace is the same as that of the manifold. In the presence of noise, different observations are mapped to different subspaces. In this paper we derive a method for “averaging” the different subspaces, obtained from different observations made on the same object, in order to estimate the mean representation of the object manifold. The mean manifold representation is then employed to minimize the effects of noise in matched manifold detectors and to improve the separability of data sets in the context of object detection and classification.es_ES
dc.format.extent5 p.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rights© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE 12th Image, Video and Multidimensional Signal Processing Workshop (IVMSP), Bordeaux, 2016, 145-149es_ES
dc.titleEstimating the mean manifold of a deformable object from noisy observationses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/IVMSPW.2016.7528220es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/IVMSPW.2016.7528220
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo