• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Congresos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Congresos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimating the mean manifold of a deformable object from noisy observations

    Ver/Abrir
    EstimatingtheMeanMan ... (679.8Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/11096
    DOI: 10.1109/IVMSPW.2016.7528220
    ISBN: 978-1-5090-1930-4
    ISBN: 978-1-5090-1929-8
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Yavo, Ziv; Francos, Joseph M.; Santamaría Caballero, Luis IgnacioAutoridad Unican; Scharf, Louis L.Autoridad Unican
    Fecha
    2016
    Derechos
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE 12th Image, Video and Multidimensional Signal Processing Workshop (IVMSP), Bordeaux, 2016, 145-149
    Editorial
    IEEE
    Enlace a la publicación
    https://doi.org/10.1109/IVMSPW.2016.7528220
    Resumen/Abstract
    Assume we have a set of noisy observations (for example, images) of different objects, each undergoing a different geometric deformation, yet all the deformations belong to the same family. As a result of the action of these deformations, the set of different observations on each object is generally a manifold in the ambient space of observations. It has been shown, [1], that in the absence of noise, in those cases where the set of deformations admits a finite-dimensional representation, the universal manifold embedding (UME) provides a mapping from the space of observations to a low dimensional linear space. The manifold corresponding to each object is mapped to a distinct linear subspace of Euclidean space, and the dimension of the subspace is the same as that of the manifold. In the presence of noise, different observations are mapped to different subspaces. In this paper we derive a method for “averaging” the different subspaces, obtained from different observations made on the same object, in order to estimate the mean representation of the object manifold. The mean manifold representation is then employed to minimize the effects of noise in matched manifold detectors and to improve the separability of data sets in the context of object detection and classification.
    Colecciones a las que pertenece
    • D12 Congresos [593]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España