Mostrar el registro sencillo

dc.contributor.authorVía Rodríguez, Javier 
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-05-26T15:06:48Z
dc.date.available2017-05-26T15:06:48Z
dc.date.issued2016
dc.identifier.isbn978-1-4673-7802-4
dc.identifier.isbn978-1-4673-7804-8
dc.identifier.isbn978-1-4673-7803-1
dc.identifier.otherTEC2013-47141-C4-3-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/11091
dc.description.abstractThis paper revisits the linear model with noisy inputs, in which the performance of the total least squares (TLS) method is far from acceptable. Under the assumption of Gaussian noises, the maximum likelihood (ML) estimation of the system response is reformulated as a general balanced least squares (BLS) problem. Unlike TLS, which minimizes the trace of the product between the empirical and inverse theoretical covariance matrices, BLS promotes solutions with similar values of both the empirical and theoretical error covariance matrices. The general BLS problem is reformulated as a semidefinite program with a rank constraint, which can be relaxed in order to obtain polynomial time algorithms. Moreover, we provide new theoretical results regarding the scenarios in which the relaxation is tight, as well as additional insights on the performance and interpretation of BLS. Finally, some simulation results illustrate the satisfactory performance of the proposed method.es_ES
dc.description.sponsorshipThis work has been supported by the Spanish Government, Ministerio de Ciencia e Innovación, under project RACHEL (TEC2013-47141-C4-3-R)es_ES
dc.format.extent5 p.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rights2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE Workshop on Statistical Signal Processing (SSP), Palma de Mallorca, 2016, 328-332es_ES
dc.subject.otherBalanced least squares (BLS)es_ES
dc.subject.otherErrors in variables (EIV)es_ES
dc.subject.otherTotal least squares (TLS)es_ES
dc.subject.otherSemidefinite programming (SDP)es_ES
dc.subject.otherRank constrained optimizationes_ES
dc.titleBalanced least squares: estimation in linear systems with noisy inputs and multiple outputses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/SSP.2016.7551772es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/SSP.2016.7551772
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo