• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Balanced least squares: estimation in linear systems with noisy inputs and multiple outputs

    Ver/Abrir
    BalancedLeastSquares ... (486.5Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/11091
    DOI: 10.1109/SSP.2016.7551772
    ISBN: 978-1-4673-7802-4
    ISBN: 978-1-4673-7804-8
    ISBN: 978-1-4673-7803-1
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Vía Rodríguez, JavierAutoridad Unican; Santamaría Caballero, Luis IgnacioAutoridad Unican
    Fecha
    2016
    Derechos
    2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE Workshop on Statistical Signal Processing (SSP), Palma de Mallorca, 2016, 328-332
    Editorial
    IEEE
    Enlace a la publicación
    https://doi.org/10.1109/SSP.2016.7551772
    Palabras clave
    Balanced least squares (BLS)
    Errors in variables (EIV)
    Total least squares (TLS)
    Semidefinite programming (SDP)
    Rank constrained optimization
    Resumen/Abstract
    This paper revisits the linear model with noisy inputs, in which the performance of the total least squares (TLS) method is far from acceptable. Under the assumption of Gaussian noises, the maximum likelihood (ML) estimation of the system response is reformulated as a general balanced least squares (BLS) problem. Unlike TLS, which minimizes the trace of the product between the empirical and inverse theoretical covariance matrices, BLS promotes solutions with similar values of both the empirical and theoretical error covariance matrices. The general BLS problem is reformulated as a semidefinite program with a rank constraint, which can be relaxed in order to obtain polynomial time algorithms. Moreover, we provide new theoretical results regarding the scenarios in which the relaxation is tight, as well as additional insights on the performance and interpretation of BLS. Finally, some simulation results illustrate the satisfactory performance of the proposed method.
    Colecciones a las que pertenece
    • D12 Congresos [593]
    • D12 Proyectos de Investigación [517]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España