• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An order fitting rule for optimal subspace averaging

    Ver/Abrir
    AnOrderFittingRule.pdf (159.0Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/11090
    DOI: 10.1109/SSP.2016.7551843
    ISBN: 978-1-4673-7802-4
    ISBN: 978-1-4673-7804-8
    ISBN: 978-1-4673-7803-1
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Santamaría Caballero, Luis IgnacioAutoridad Unican; Scharf, Louis L.Autoridad Unican; Peterson, Chris; Kirby, Michael; Francos, Joseph M.
    Fecha
    2016
    Derechos
    2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE Workshop on Statistical Signal Processing (SSP), Palma de Mallorca, 2016, 675-678
    Editorial
    IEEE
    Enlace a la publicación
    https://doi.org/10.1109/SSP.2016.7551843
    Palabras clave
    Subspace signal processing
    Subspace averaging
    Order-fitting
    Extrinsic mean
    Grassmann manifold
    Flag manifold
    Resumen/Abstract
    The problem of estimating a low-dimensional subspace from a collection of experimentally measured subspaces arises in many applications of statistical signal processing. In this paper we address this problem, and give a solution for the average subspace that minimizes an extrinsic mean-squared error, defined by the squared Frobenius norm between projection matrices. The solution automatically returns the dimension of the optimal average subspace, which is the novel result of the paper. The proposed order fitting rule is based on thresholding the eigenvalues of the average projection matrix, and thus it is free of penalty terms or other tuning parameters commonly used by other rank estimation techniques. Several numerical examples demonstrate the usefulness and applicability of the proposed criterion, showing how the dimension of the average subspace captures the variability of the measured subspaces.
    Colecciones a las que pertenece
    • D12 Congresos [593]
    • D12 Proyectos de Investigación [517]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España