Mostrar el registro sencillo

dc.contributor.authorNavarro-Manso, Antonioes_ES
dc.contributor.authorCoz Díaz, Juan José del es_ES
dc.contributor.authorAlonso-Martínez, Mares_ES
dc.contributor.authorCastro Fresno, Daniel es_ES
dc.contributor.authorÁlvarez Rabanal, Felipe Pedroes_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-04-20T14:16:22Z
dc.date.available2017-04-20T14:16:22Z
dc.date.issued2014-11-22es_ES
dc.identifier.issn0141-0296es_ES
dc.identifier.issn1873-7323es_ES
dc.identifier.otherIPT-380000-2010-12es_ES
dc.identifier.otherBIA-2012-31609es_ES
dc.identifier.urihttp://hdl.handle.net/10902/10862
dc.description.abstractThis paper studies the optimum way to design both type and position of the stiffeners when a steel bridge is assembled by means of the new protect-patented launching method based on a self-supporting deck system. This procedure is able to launch bridge up to a span of 150 m, in an economical and sustainable way. The main objective of this research paper is to numerically analyze the best stiffener combination and distribution along the length of bridge, both longitudinally and transversally, in order to avoid the patch-loading phenomenon in the slender webs. An optimum design of a triangular cell along the lower plate is also presented. Thus the best stiffener distribution along the deck can be achieved to solve the two most important factors during the launching of a steel bridge: the huge forces on the support section – higher than the serviceability limit state – and buckling instability due to the point loads on the bearings. In this way, a three dimensional finite element model (FEM) is built and the design of experiments technique (DOE) is applied to obtain the best stiffener configuration. The numerical simulation allows the exact definition of the response of the structure to be achieved, covering the gaps and limits which are common in some national and international codes. Very good results have been obtained, in terms of deflection, patch loading resistance and vertical load distribution on the support section. Finally, the most important conclusions of this work are given.es_ES
dc.description.sponsorshipThe authors wish to acknowledge the financial support provided by the Spanish Ministry of Science and Innovation with funds from ALCANZA Research Project number IPT-380000-2010-12 and BIA-2012-31609.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Ltdes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceEngineering Structures 83 (2015) 74–85es_ES
dc.titlePatch loading in slender and high depth steel panels: FEM–DOE analyses and bridge launching applicationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1016/j.engstruct.2014.10.051es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.engstruct.2014.10.051es_ES
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución-NoComercial-SinDerivadas 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España