Mostrar el registro sencillo

dc.contributor.authorCamus Braña, Paula
dc.contributor.authorMenéndez García, Melisa 
dc.contributor.authorMéndez Incera, Fernando Javier 
dc.contributor.authorIzaguirre Lasa, Cristina
dc.contributor.authorEspejo Hermosa, Antonio
dc.contributor.authorCánovas Losada, Verónica
dc.contributor.authorPérez García, Jorge
dc.contributor.authorRueda Zamora, Ana Cristina 
dc.contributor.authorLosada Rodríguez, Iñigo 
dc.contributor.authorMedina Santamaría, Raúl 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-02-10T19:05:55Z
dc.date.available2017-02-10T19:05:55Z
dc.date.issued2014-11-03
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.otherCTM2010-15009es_ES
dc.identifier.urihttp://hdl.handle.net/10902/10283
dc.description.abstractWave climate characterization at different time scales (long-term historical periods, seasonal prediction, and future projections) is required for a broad number of marine activities. Wave reanalysis databases have become a valuable source of information covering time periods of decades. A weather-type approach is proposed to statistically downscale multivariate wave climate over different time scales from the reanalysis long-term period. The model calibration is performed using historical data of predictor (sea level pressure) and predictand (sea-state parameters) from reanalysis databases. The storm activity responsible for the predominant swell composition of the local wave climate is included in the predictor definition. N-days sea level pressure fields are used as predictor. K-means algorithm with a postorganization in a bidimensional lattice is used to obtain weather patterns. Multivariate hourly sea states are associated with each pattern. The model is applied at two locations on the east coast of the North Atlantic Ocean. The validation proves the model skill to reproduce the seasonal and interannual variability of monthly sea-state parameters. Moreover, the projection of wave climate onto weather types provides a multivariate wave climate characterization with a physically interpretable linkage with atmospheric forcings. The statistical model is applied to reconstruct wave climate in the last twentieth century, to hindcast the last winter, and to project wave climate under climate change scenarios. The statistical approach has been demonstrated to be a useful tool to analyze wave climate at different time scales.es_ES
dc.description.sponsorshipThe work was partly funded by the project iMar21 (CTM2010-15009) from the Spanish Government and the FP7 European projects CoCoNet (287844) and Mermaid (288710).es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherJohn Wiley & Sonses_ES
dc.rights©American Geophysical Union. Camus, P., M. Menéndez, F. J. Méndez, C. Izaguirre, A. Espejo, V. Cánovas, J. Pérez, A. Rueda, I. J. Losada, and R. Medina (2014), A weather-type statistical downscaling framework for ocean wave climate, J. Geophys. Res. Oceans, 119, 7389–7405, doi:10.1002/2014JC010141.es_ES
dc.sourceJournal of Geophysical Research. Oceans Volume 119, Issue 11 November 2014 Pages 7389–7405es_ES
dc.titleA weather-type statistical downscaling framework for oceanwave climatees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://onlinelibrary.wiley.com/doi/10.1002/2014JC010141/fulles_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/287844/EU/Towards Coast to Coast NETworks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential/COCONET/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/288710/EU/Innovative Multi-purpose off-shore platforms: planning, Design and operation/MERMAID/es_ES
dc.identifier.DOI10.1002/2014JC010141
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo