Mostrar el registro sencillo

dc.contributor.authorGil Gómez, Amparo es_ES
dc.contributor.authorSegura Sala, José Javier es_ES
dc.contributor.authorTemme, Nicolaas Maria es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-02-10T13:18:13Z
dc.date.available2017-11-15T03:45:09Z
dc.date.issued2015-11-15es_ES
dc.identifier.issn0096-3003es_ES
dc.identifier.issn1873-5649es_ES
dc.identifier.otherMTM2012-34787es_ES
dc.identifier.urihttp://hdl.handle.net/10902/10277
dc.description.abstractAbstract We describe methods for computing the Kummer function U(a, b, z) for small values of z, with special attention to small values of b. For these values of b the connection formula that represents U(a, b, z) as a linear combination of two 1F1-functions needs a limiting procedure. We use the power series of the 1F1-functions and consider the terms for which this limiting procedure is needed. We give recursion relations for higher terms in the expansion, and we consider the derivative U′(a, b, z) as well. We also discuss the performance for small |z| of an asymptotic approximation of the Kummer function in terms of modified Bessel functions.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Inc.es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceApplied Mathematics and Computation, Volume 271, 15 November 2015, Pages 532–539es_ES
dc.titleComputing the Kummer function U(a, b, z) for small values of the argumentses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.amc.2015.09.047es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.amc.2015.09.047es_ES
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución-NoComercial-SinDerivadas 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España