Mostrar el registro sencillo

dc.contributor.authorCruz Rodríguez, Marcos 
dc.contributor.authorGómez Pérez, Domingo 
dc.contributor.authorCruz Orive, Luis Manuel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-02-06T09:44:29Z
dc.date.available2017-02-06T09:44:29Z
dc.date.issued2015-11-04
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/10902/10250
dc.description.abstractPopulation sizing from still aerial pictures is of wide applicability in ecological and social sciences. The problem is long standing because current automatic detection and counting algorithms are known to fail in most cases, and exhaustive manual counting is tedious, slow, difficult to verify and unfeasible for large populations. An alternative is to multiply population density with some reference area but, unfortunately, sampling details, handling of edge effects, etc., are seldom described. For the first time we address the problem using principles of geometric sampling. These principles are old and solid, but largely unknown outside the areas of three dimensional microscopy and stereology. Here we adapt them to estimate the size of any population of individuals lying on an essentially planar area, e.g. people, animals, trees on a savanna, etc. The proposed design is unbiased irrespective of population size, pattern, perspective artifacts, etc. The implementation is very simple—it is based on the random superimposition of coarse quadrat grids. Also, an objective error assessment is often lacking. For the latter purpose the quadrat counts are often assumed to be independent. We demonstrate that this approach can perform very poorly, and we propose (and check via Monte Carlo resampling) a new theoretical error prediction formula. As far as efficiency, counting about 50 (100) individuals in 20 quadrats, can yield relative standard errors of about 8% (5%) in typical cases. This fact effectively breaks the barrier hitherto imposed by the current lack of automatic face detection algorithms, because semiautomatic sampling and manual counting becomes an attractive option.es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherPublic Library of Sciencees_ES
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourcePLoS ONE 10(11)es_ES
dc.titleEfficient and Unbiased Estimation of Population Sizees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1371/journal.pone.0141868
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España