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Frequency-Domain Analysis of the
Periodically-Forced Josephson-Junction Circuit

Sergio Sancho and Almudena Suarez

Abstract—In this paper, a new frequency domain technique
to analyze the Josephson-junction circuit dynamics is presented.
This technique overcomes some of the limitations inherent to
the analytical and time-integration techniques used in previous
works. The technique can be extended to the analysis of this
device when combined with distributed elements in microwave
systems. It allows an efficient analysis of the different types of
steady-state solutions and the bifurcation loci in the presence of
a periodic driving current source. No restriction is imposed to
the driving source amplitude, enabling an accurate analysis of
the influence of this parameter on the device superconducting
properties. The technique has also been applied to analyze the
quasi-periodic states present in this device together with the
synchronized solutions to the driving current source.

Index Terms—Josephson-junction circuit, nonlinear dynamics,
CAD, frequency domain techniques

I. INTRODUCTION

THE Josephson junction circuit model with ac forcing is
used in several applications, such as the superconducting

quantum interference devices (SQUID) [1]–[3]. The dynamics
of this circuit with small forcing has been analyzed in [3]–
[12] with analytical approaches and time-domain techniques.
These techniques predict the junction behavior when driven
by a current source of small amplitude, and the analyses are
carried out in terms of the system steady-state solutions. In
those papers, the range of existence of the superconducting
states and nonlinear phenomena such as the hysteresis and
the synchronization of the system autonomous solution to the
driving current source have been studied.

In those previous works, the used analytical and time-
domain techniques present certain limitations for the efficient
analysis of the bifurcation loci that delimit the super-
conducting region and the synchronized ranges. On one
hand, some analytical techniques are valid for small value
of the driving generator amplitude. On the other hand, when
different steady-state solutions coexist in the phase space,
the time domain integration presents difficulties to converge
to solutions with reduced stable manifolds. In those cases,
the time integration can converge to other solutions that are
undesired for the performing analysis.

In the case of periodic solutions of lumped circuits,
these problems can be overcome by using the time domain
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continuation techniques described in [13]–[18]. These methods
are very powerful, and are applicable to a high number of
nonlinear systems. Some of these techniques are based on
finite differences, discretizing the state variables along the time
interval using a one-dimensional mesh of samples, which are
the unknowns to be solved. Other techniques, like shooting,
reduce the number of unknowns to a set of initial conditions
from which a system ODE is integrated over one period [15],
[18]. In the case of quasi-periodic solutions, time-continuation
techniques like [16], [17] convert the initial ODE in a system
of PDEs. To solve this system, the torus solution is discretized
in a n-dimensional mesh, each dimension corresponding to a
phase variable. The full-discretization method in [17] makes
use of n-dimensional Fourier polynomials in a similar fashion
as the technique presented in this paper.

The mentioned simulation problems also arise in the
simulation of phase-locked loops (PLL) whose dynamics,
in certain topologies, is similar to the Josephson junction
circuit [19]. This similarity suggests that the analysis of the
Josephson junction circuit in the frequency domain could
overcome some of these limitations, in the same way as it
has been useful for PLLs in [20], [21]. In this paper, a new
frequency-domain technique to analyze the junction dynamics
is presented. This technique makes use of the harmonic
balance method to express the system equations. It can be
extended to simulate this device when embedded in microwave
circuits and systems. Some examples of these systems are the
combination of Josephson junctions with transmission lines
[22], [23], their application to produce microwave mixers
[24], [25] and RF nanoelectronic devices, such as oscillators,
detectors and frequency converters [26]. These systems are
usually simulated in the frequency domain due to several
reasons. On one hand, in this domain the linear distributed
components with arbitrary frequency responses can be easily,
yet quickly, modeled. Lumped element approximations are
no longer required and time domain convolution is replaced
with simple frequency domain multiplication. Simulating such
elements in the time domain by means of convolution can
result in problems related to accuracy, causality, or stability.
This is especially important for RF, microwave and millimeter
frequencies, which are often characterized with measured
frequency data. Linear component measures are also made
using phasors by network analyzers and are compatible with
harmonic balance [18], [27], [28].

By using the frequency domain technique the circuit steady
states can be accurately approached by a very small number
of harmonic components. As stated in [18], when the circuit
contains signals representable by Fourier series with few
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terms, the harmonic balance deals with a smaller number of
unknowns than finite differences. This is more evidenced in
the case of quasi-periodic solutions, where finite differences
techniques use a two-dimensional mesh of samples. On the
other hand, this economy in the stored amount of data for
each solution is also achieved by the shooting techniques
[15]. Then, when compared with the shooting techniques, the
frequency domain analysis does not represent an improvement
in terms of economy of data.

The frequency domain analysis allows to analyze the whole
space of stable and unstable steady-state solutions, providing
a global understanding of the circuit dynamics in terms of the
system parameters. In contrast to the previous analyses, this
technique does not impose any restriction to the driving source
amplitude. This will allow to perform a complete analysis of
the influence of this amplitude on the superconducting region
of the space of parameters. The harmonic balance method is
enhanced by using additional equations to directly converge to
the bifurcation locus that delimits the super-conducting region.
The presented technique allows the efficient simulation of the
hysteresis ranges and the boundaries between different ranges
of behavior. The frequency domain formulation also enables
an efficient stability analysis of the obtained solutions.

For certain values of the circuit parameters, the circuit
presents an autonomous oscillating solution which, when
mixing with the driving source signal, becomes quasi-periodic.
The oscillating solution can also get synchronized to the
driving current source [4], [5], [7]. In that case, the resulting
synchronization ranges give rise to flat regions in the circuit
I-V characteristic [5], [6], [8]. Here, the presented frequency
domain technique has been modified using a special set
of state variables to obtain the quasi-periodic regimes and
the synchronization ranges through a simple parametric
analysis. This analysis avoids the convergence to the coexisting
superconducting states. The use of additional constraints
assures convergence to the two-torus solutions and, in the case
of synchronized states, enables the direct calculation of the so-
called Arnold tongues.

The paper is organized as follows: in Section II, the
new technique is applied to analyze the ranges of existence
of the junction superconducting states. In Section III, the
quasi-periodic states and the hysteresis phenomenon are
analyzed. In this Section, a modification of the technique
using a special set of state variables to efficiently simulate
the synchronization regimes is also presented. Along the
paper, the simulation results have been compared with time
domain techniques, obtaining a similar accuracy. In the case
of periodic solutions, the results have been validated with time
continuation techniques by making use of the toolbox AUTO
[13].

II. ANALYSIS OF THE SUPERCONDUCTING STATES

The Josephson junction driven by a current source can be
modeled by the circuit of Fig. 1, which is described by the
following nonlinear equation [8], [11], [12] :

is(t) = I0 sinφ+
h̄

2eR
φ̇+

h̄C

2e
φ̈ (1)

where h̄ is Planck’s constant (divided by 2π), e the
electronic charge, I0 a threshold current associated with the
tunneling current, C the junction capacitance, R the junction
resistance and is(t) the driving source. In this paper, the
case of a periodic current source is(t) = Idc + Iac sin νt
will be analyzed. In the quantum mechanical model of the
Josephson junction the quantity φ is the phase difference of the
condensate wave functions inside each of the two electrodes
that form the junction [3], [12]. This phase is related to the
voltage across the junction by the fundamental law:

v(t) =
h̄

2e
φ̇(t) (2)

Following the normalization provided in [8], equation (1)
can be represented by the following two-dimensional system
of nonlinear differential equations:

φ̇ = y, ẏ =
1

β
(−y − sinφ+ ρ+A sinωt) = f(φ, φ̇, t) (3)

where β = 2eI0CR
2/h̄, ρ = Idc/I0, A = Iac/I0, the

time variable t has been properly normalized as in [8] and
ω = νh̄/2eRI0 is the normalized frequency of the driving
source. Due to the periodicity of the system (3) on the variable
φ, we can represent the state variables (φ, y) in the phase
space S1 × <, with S1 = [−π, π]. It is considered that the
junction behaves as a superconductor when a non-zero average
current can be maintained through the device with zero average
voltage across it. In the presence of the driving source, the
average current flowing through the junction is 〈is(t)〉 = Idc,
with 〈〉 being the time average over the driving source period.
Then, the supercurrent is obtained when Idc 6= 0 and at the
same time 〈v(t)〉 = 0. In the absence of periodic forcing (A =
0), for |ρ| < 1 the system (3) has in the phase space a pair
of equilibrium points (φ = φs, y = 0) and (φ = φn = π −
φs, y = 0) of saddle and node type, respectively. For ρ 6= 0,
in these states the junction behaves as a superconductor, since
for an applied average current Idc = ρI0 it presents a voltage
v = yh̄/2e = 0. When varying ρ, the maximum supercurrent
value is Idc = ±I0, attained at ρ = ±1, where both states
collide in the phase space in a saddle-node bifurcation [5],
[8].

C R I0 sin ϕ is(t)

v(t)

Fig. 1. Schematic of the Josephson junction circuit model.

When a small periodic forcing is present, the equilibrium
points become a pair of small amplitude periodic cycles of
node and saddle type [6], [8], [29]. In order to analyze these
solutions in the frequency domain, they will be expressed in
a Fourier series as:

φ(t) =

N∑
k=−N

Φk e
jkωt, y(t) =

N∑
k=−N

jkωΦk e
jkωt (4)
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where N is the number of harmonics considered. When the
system converges to the stable node solution, by introducing
the expressions (4) in equation (2), it is obtained that the
voltage average value is 〈v〉 = 〈y〉 h̄/2e = 0. The circuit in
this case behaves as a superconductor since, for 〈v〉 = 0, the
average current across the junction is 〈is(t)〉 = Idc = ρI0. The
region of the parameters space (ρ, β,A, ω) in which the stable
node exists, and therefore superconductivity can be observed,
will be denoted in the following by SC region. If now we
introduce the expressions (4) into the system (3) and equate
the harmonic components at the same frequencies, we obtain
the following Harmonic Balance (HB) system:

H =
[
jkω

]2
Φ− F

[
Φ
]

= 0 (5)

where Φ and F are the vectors containing the 2N +
1 harmonic components of the time domain signals φ(t)
and f(t). The diagonal matrix

[
jkω

]
multiplies each k-th

harmonic component in Φ by jkω. The nonlinear algebraic
system (5) can be numerically solved by using the Newton-
Raphson technique for a given value of the system parameters.

Our first purpose is to analyze the evolution of the SC region
as the forcing amplitude A is increased. In order to simulate
the periodic superconducting solution, N = 2 harmonics
have been used. With the aim to allow convergence, we have
started the analysis from the value A = 0, for which the
solutions (4) reduce to the equilibrium points (φn, φs). Then,
we set φn as initial condition to (5) and vary A to obtain the
solution path. Note that formulation (5) does not impose any
restrictions on the magnitude of the amplitude A to obtain
the solution paths. The results are shown in Fig. 2, where
the harmonic component Φ0 has been represented versus the
forcing amplitude A. As can be seen, as the normalized source
amplitude is increased both periodic solutions get closer in
the phase space and finally collide in a turning point. Several
values of the parameter ρ have been considered. For small
|ρ| value, the resulting paths present a wide region of very
high slope around the turning point in the Φ0 variable. This
makes it necessary the use of a continuation technique based
on the interchange of parameters [30]. In these cases, the
error function depends on both the phase harmonics and the
forcing amplitude. Then the equation H

[
Φ, A

]
= 0 is solved

at each point of the path by fixing A or Φ0, depending on
the magnitude of the derivative D = ∂Φ0/∂A at that point.
For small D values, P = Φ is the set of unknowns and the
parameter A is fixed during the resolution. Near the turning
point, for high D values, the variable Φ0 is substituted in P by
the parameter A and Φ0 remains fixed during the resolution.

In order to validate the technique, the periodic solutions of
each path have been calculated through the time discretization
technique implemented in AUTO [13]. The number of
mesh intervals used for discretization is NTST=15. For
each solution, the average value Φ0 = 〈φ(t)〉 has been
superimposed in Fig. 2. From this comparison, it is derived
that the presented frequency domain technique is able to
simulate the periodic regimes with the same accuracy as the
time continuation technique. On one hand, system (5) contains
a single state variable, described with N = 2 harmonic
components. This means u = 2N + 1 = 5 real unknowns to

be solved by Newton-Raphson’s method. We think that, in this
particular system, the ability to describe the superconducting
region by using u = 5 real numbers for each solution can
be an advantage with respect to the time-domain techniques
based on finite differences. These techniques discretize the
state variables along the time interval using a one-dimensional
mesh of more than u = 5 components. On the other hand, the
time continuation technique is faster than the implemented
frequency domain continuation. In the same machine, Intel
Core(TM)2 Duo CPU E8500 @ 3.16 GHz, the total simulation
time to obtain one path is Ts = 1.53 sec for the frequency-
domain technique and Ts = 0.37 sec for the time continuation.
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Fig. 2. Influence of the forcing amplitude A over the periodic solutions for
β = 0.05, ω = 3π rad/s. Paths in the (A,Φ0) space. As the parameter A
increases, the periodic solutions get closer in the phase space and eventually
collide in a turning point. For small |ρ| value the use of an interchange of
parameters technique has been necessary. The results of the time domain
simulations of the stable solutions have been superimposed for comparison.

Now, with the aim to analyze the global dependence of
the SC region on the AC normalized amplitude A, we have
represented the solution paths obtained through the previous
technique in the space (A, ρ,Φ0). The resulting solution paths
can be seen in Fig. 3(a). This representation shows that for
A = 0 the equilibrium points lie in the curve sinφ = ρ,
with φ ∈ S1. In this case, the maximum supercurrent value
is I = ±I0. As the parameter A is increased, the solution
paths lie on a surface S in this space, bounded in the A-
direction by turning points. The SC region for a given value
A0 of the forcing amplitude is given by the intersection of
the surface S in the parameter space (A, ρ,Φ0) with the plane
A = A0. The evolution of the SC region as the amplitude A is
varied has been analyzed with the aid of system (5). For each
value A = A0, ρ is added to the set of unknowns and Φ0 is
considered as a parameter. In this way, as can be seen in Fig
3(a), for each value of Φ0 there exists a unique solution for the
parameter ρ. Solving system (5) for a sweeping of Φ0 in the
interval [−π, π], a path in the plane (ρ,Φ0) is obtained. The
resulting paths are shown in Fig. 3(b). In each path a pair of
periodic solutions coexist which, as will be shown in the next
subsection, are of node and saddle type, respectively. For each
value of the amplitude A the SC region is limited by a pair of
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turning points at ρ = ±ρs. In this case, the technique has also
been validated through the time domain integration of system
(3). As in the previous case, the transient states become longer
for ρ values in the vicinity of the turning points, increasing the
simulation computational cost. The results are superimposed
in Fig. 3(b).

As can be seen, as A is increased the interval [−ρs, ρs]
gets reduced in size. Therefore, the maximal admissible
supercurrent Idc = ±ρsI0 also decreases with A. The
maximum supercurrent is attained at the turning points of the
paths represented in Fig. 3(b). Since there does not exist an
open interval of solutions to system H

[
Φ, ρ

]
= 0 about these

points, the implicit function theorem asserts that:

det

[
∂H

[
Φt, ρs

]
∂Φ

]
= 0 (6)

where Φt is the value of the set of harmonics at the turning
point ρ = ρs. The dependence of the maximum supercurrent
value Idc on the input source amplitude A can be obtained
efficiently and with high precision by solving system (5)-(6)
with the set of unknowns P =

(
Φ, ρ

)
. The results are shown

in Fig. 4. In this figure, the normalized maximum supercurrent
|Idc|/I0 = |ρs| has been represented versus the amplitude A,
for β = 0.05 and ω = 3π rad/s. For these values, the SC
region exists in the range A ∈ [0, 25].

A. Stability analysis

In order to analyze the stability of the periodic solutions
of system (3), we study the trajectory of the state variables
in the neighborhood of the cycles. In this situation, the state
variables can be expressed as:

φ(t) =

N∑
k=−N

[Φk + ∆Φk(t)] ejkωt,

y(t) =

N∑
k=−N

[jkωΦk + ∆Yk(t)] ejkωt

(7)

Now, introducing this expression into the system (3),
equating the harmonic components at the same frequencies
and eliminating the steady-state components, we obtain the
following linear system:[

jkω
]

∆Φ + ∆Φ̇ = ∆Y ,[
jkω

]
∆Y + ∆Ẏ = TGφ

[
Φ
]

∆Φ + TGy
[
Φ
]

∆Y
(8)

where TGφ
[
Φ
]

and TGy
[
Φ
]

are the Toeplitz matrixes
corresponding the harmonic components of the time-domain
functions gφ(t) = ∂f/∂φ and gy = ∂f/∂φ̇ evaluated at the
periodic steady state. The equations (8) constitute a linear
time invariant (LTI) system in the perturbation harmonic
components, which can be expressed in compact form as
Ẋ = MX with [31] :

X =

(
∆Φ

∆Y

)
, M =

(
−
[
jkω

]
I

TGφ
[
Φ
]

TGy
[
Φ
]
−
[
jkω

]) (9)

where I is the identity matrix. The stability of the periodic
solutions is given by the eigenvalues of the matrix M , which
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Fig. 3. Influence of the forcing amplitude A over the periodic solutions for
β = 0.05, ω = 3π rad/s. (a) Paths in the (A, ρ,Φ0) space. For A = 0
the equilibrium points lie in the curve sinφ = ρ. The solution paths lie on a
surface bounded in the A-direction by turning-point bifurcations (b) Evolution
of the SC region with the forcing amplitude. The stable solutions obtained
through time domain simulations have been superimposed.

here will be called system poles. Taking into account the
Toeplitz structure of the matrixes forming M , the system poles
are given by a set {λqi } that can be expressed as [32], [33] :

λqi = σi + j (ωi + qω) , i = 1, 2, q = −N, · · · , N (10)

These poles can be mapped to a pair of Floquet multipliers
mi = e2πλq

i
/ω for all q and i = 1, 2. The Floquet multipliers

have been evaluated along the paths of Fig. 2, with the result
of Fig. 5. Since the stability properties of these paths are
symmetrical about ρ = 0, only the analyses corresponding
to positive values of ρ have been shown. In this figure, the
magnitude of m1 has been traced, after ordering the multipliers
to fulfill |m1| > |m2|. The module |m2| remains always
smaller that the unity, so it has not been traced in the figure.
As can be seen, the two periodic solutions that coexists for
each ρ value are of saddle and node type along the whole
range of the amplitude A covered in each path. At the turning
points the magnitude of m1 crosses the value |m1| = 1 with
infinite slope, which corresponds to a saddle-node bifurcation.
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Fig. 4. Dependence of the maximum supercurrent on the input source
amplitude A for β = 0.05 and ω = 3π rad/s

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25

Normalized source amplitude  A

ρ = 0.84

ρ = 0.05

D
o

m
in

a
n

t 
m

u
lt
ip

lie
r 

  
  
|m

1
| 

Fig. 5. Stability analysis of the periodic solutions in terms of the forcing
amplitude A. The periodic solutions are of saddle and node type and the
turning point observed in the analysis of Fig. 2 corresponds to a saddle-node
bifurcation

III. ANALYSIS OF THE TWO-TORUS SOLUTION

A. Steady-state solution

As stated in [5], [6], [8], for 0 < |A| < ε with ε small, as
the parameter ρ is increased from ρ = 0 there exists a stable
solution which lies on a two dimensional stable (attracting)
invariant surface in the state space (φ, φ̇, ϕ = ωt) [8]. This
surface is periodic in φ and ϕ and so is diffeomorphic to a two-
torus. In this solution, the state variable φ has the following
form:

φ(t) = ωat+ θ(t) (11)

where θ(t) is a bounded signal containing the frequencies ω
and ωa. The new frequency ωa is autonomous, depending on
the system parameters. The phase variable φ(t) in (11) grows
unbounded with time when considered as an element of <.
This makes it difficult to approach it by a finite Fourier basis
in an Harmonic Balance system of the form (5). In order to

overcome this problem, we perform the change of variables
(φ, y)→ (θ = φ− ωat, y), so that the system (3) becomes:

θ̇ = y − ωa, ẏ = u(θ, θ̇, t),

u(θ, θ̇, t) ≡ 1

β
[−y − sin(ωat+ θ) + ρ+A sinωt]

(12)

Note that, when expressed in the variables (θ, y), the two-
torus solution becomes bounded in the space < × <. System
(12) could be simulated using time continuation techniques
like [16], which converts (12) in a system of PDEs. To
solve this system, the torus solution is discretized in a n-
dimensional mesh, each dimension corresponding to a phase
variable. The number of samples of each phase variable must
be high enough to properly construct the phase derivatives
of the system of PDEs. As stated in [16], for n=2 the two-
dimensional mesh can be composed of several hundreds of
samples. This technique is very powerful, and is applicable to
a high number of nonlinear systems. In other works like [17],
two techniques are presented: the semi-discretization method
and the full-discretization method. In the semi-discretization
technique, the state variables are expressed as Fourier series
with time-varying coefficients. The fundamental frequency of
the series is given by the forcing term, whereas the time-
varying coefficients are periodic with the system autonomous
frequency. These expressions are introduced in the original
system of EDOs and, applying the Galerkin’s method, the
equations equating harmonics of the same frequencies are
obtained. As a result, the original system is transformed into
an autonomous system of EDOs whose solution is periodic.
In [17], this final system is solved by time-continuation
techniques. In the full-discretization method, the state variables
are expressed in multi-dimensional Fourier series with constant
coefficients. The dimension of the series is given by the
number of independent frequencies contained in the solution.
These expressions are introduced in the original system of
EDOs and the result is a discretized system to be solved.
In the particular case of the Josephson junction circuit, we
have used a similar frequency- domain description of the state
variables as in the full-discretization method. One reason is
the reduced number of harmonic components describing the
quasi-periodic solution in the frequency domain. Other reasons
for using a frequency-domain approach have been given in
the Introduction. The Fourier expression of the state variables
corresponding to this solution is:

θ(t) =
∑
k,l

Θk,l e
j(kωt+lωa)t =

∑
r

Θr e
jΩrt,

y =
∑
r

Yr e
jΩrt, k = −N, . . . , N, l = −M, . . . ,M

(13)

with Ω =
[
Ω1, . . . ,Ω(2N+1)(2M+1)

]t
being the vector

frequency basis containing all the frequency components
kω+ lωa. Now, introducing the expression (13) in the system
(12) we arrive to the Harmonic Balance system:

H
[
Θ, ωa

]
=
[
jΩ
]
Y
[
Θ, ωa

]
− U

[
Θ, ωa

]
= 0,

Y
[
Θ, ωa

]
≡
[
jΩ
]

Θ + ωa1dc
(14)

where Θ, Y and U are the vectors containing the (2N +
1)(2M + 1) harmonic components of the time domain signals
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θ(t), y(t) and u(t). The diagonal matrix
[
jΩ
]

multiplies each
k-th harmonic component by jΩk and the vector 1dc provides
the harmonic components of the signal x(t) = 1 in the basis
Ω. The unknowns of system (14) are the harmonic components
Θ and the autonomous frequency ωa. In order to assure the
convergence to the two-torus solution, the following equations
can be added to system (14) :

ωa − λ
λ

= 0, Θr
01 = 0 (15)

where the superindex r means real part and λ is an
additional unknown to be solved. The left equation in (15)
assures that the obtained solution has the form (11), avoiding
convergence to the periodic limit cycle solution (with ωa = 0).
The equation in the right is used to balance system (14)-
(15), due to the system self-oscillation at the frequency ωa.
The introduction of this additional equation is justified in the
Appendix A. As in the case of the system (5), the nonlinear
algebraic system (14)-(15) can be numerically solved by using
the Newton-Raphson technique. First, the case A = 0 has
been analyzed. In this case, the solution that lies on the two-
torus is periodic in the space (S1,<) and is called rotation
[8]. The autonomous frequency ωa of this solution has been
represented in Fig. 6 as the parameter ρ is swept from outside
to inside of the SC region. As described in [8], as the parameter
ρ is reduced the rotation solution approaches the y = 0
axis in the phase space (φ, y). Inside the region |ρ| ≤ 1,
the rotation coexists in the phase space with the saddle and
node equilibrium points corresponding to the superconducting
states, described in Section II. In this region, the system
will evolve to one or another solution depending on the
initial conditions, given rise to the hysteresis phenomenon.
The rotation eventually collides with the equilibrium point of
saddle type and disappears in a saddle-connection bifurcation
[6], [8].

The hysteresis phenomenon can be explained in the
following way [8]. Let the system parameters be out of the
superconducting (SC) region. Then, a non superconducting
state is observed, whose corresponding solution lies in a two-
torus in the phase space. Let the system parameter(s) be now
moved from this point to another point H inside the SC region
where the two torus and the limit cycle solutions coexist. We
will continue observing the the two-torus solution because
the initial conditions are near this kind of solution. Then,
we see a non superconducting solution at the point H. Now,
we further move the system parameter(s) from H to a point
S inside the SC region where only the limit cycle solution
exists. In S, the system trajectory evolves to the limit cycle
and a superconducting state is observed. Now, if the system
parameters are returned to the point H in a reversible way,
the state variables are maintained inside the stable manifold
of the limit cycle. As a consequence, we observe now a
superconducting state in H. Then, the observed state in H
depends on the path followed by the system parameters.

Since the simulation of the frequency domain system (14)-
(15) assures the convergence to the rotation solution, the
hysteresis zone and the evolution of the autonomous frequency
ωa can be easily calculated through this technique. Note that,

as explained in [5]–[8], [12] for A = 0, as the parameter
β is reduced the hysteresis region shrinks and eventually
disappears. In the presented analysis, the value β = 5
providing hysteresis has been chosen to prove the ability of
the new technique to converge to the two-torus solution when
coexisting with the periodic superconducting solution.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4
�
a
(r
a
d
/s
)

�

SC region  (A=0)

Hysteresis region

Fig. 6. Evolution of the rotation solution (A = 0) with the parameter ρ, for
β = 5. The autonomous frequency has been represented as a function of ρ.

Next, the two-torus solution for |A| > 0 is analyzed.
The vector Θ is constituted by a set of 12 harmonic
components, resulting in a number of u = 25 unknowns to
be solved. In this case, the previous rotation-type solution is
in general transformed to a quasi-periodic solution, containing
the frequency components ωa and ω. If the parameter ρ is
swept from outside to inside of the SC region as in the
previous analysis, the behavior of this solution is qualitatively
similar to the case A = 0. For certain values of the parameter
ρ the solution in the two-torus gets synchronized to the
driving source, as it will be shown in the Section III.B. In
the part of the SC region where the two torus coexists with
the saddle and node-type periodic cycles, hysteresis can be
observed in a manner similar to what happens when A = 0.
As illustration, the two-torus solution has been calculated in
the presence of the periodic forcing, for two values of ρ.
The phase space representation of the steady-state solutions
is shown in Fig. 7. The mean value 〈y(t)〉 agrees with the
autonomous frequency ωa, as expected from the expression
(11). The solutions obtained through Harmonic Balance and
time domain simulations have been depicted together for
comparison. The solution presents one degree of freedom in
the phase of the autonomous component ωa. When simulated
in the frequency domain, the value of this phase component is
determined by the right equation in (15). In the time domain
simulation, this value will depend on the initial conditions of
the trajectory that evolves to the two-torus. As a consequence,
the solutions obtained in the time and frequency domains are
usually phase shifted, as can be seen in Fig. 7 for the case
ρ = 0.55.
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Fig. 7. Two-torus solutions. Phase space representation for β = 5 and
ρ = 1.5, 0.55. The periodic forcing parameters are A = 5, ω = 3π rad/s.
Comparison with the time-integration simulation

B. Analysis of the synchronized states

When the frequencies ω and ωa are harmonically related
in the form mω = nωa with m,n ∈ Z+, the solution that
lies on the two-torus is periodic. As it has been analyzed in
the previous Section, in the absence of the driving current
source the autonomous frequency ωa grows monotonically
with the parameter ρ. As a result, as the parameter ρ is varied,
the autonomous component nωa can get synchronized to the
m − th harmonic provided by the source. If the amplitude
A is small enough, for a given value of the driving source
parameters (A,ω) the relation mω = nωa is fulfilled in a
closed interval I(A,ω,m, n) = [ρL, ρU ] of the parameter ρ,
whose length is proportional to the amplitude value A [34],
[35].

As can be derived by combining equations (2), (11) and
(13), inside each interval I(A,ω,m, n) the average voltage
remains constant at the value 〈v〉 = h̄mω/2ne. Then,
considering that Idc = ρI0, the synchronized ranges provide
flat regions in the Idc − 〈v〉 representation, as it has been
extensively analyzed in [5], [7], [8] through time-domain
techniques. With the aim to analyze these ranges in the
frequency domain, we can particularize system (12) to the
synchronized solutions by making ωa = mω/n :

βθ̈ + θ̇ +
mω

n
− ρ+ f(θ, t) = A sinωt,

f(θ, t) = sin
(mω
n
t+ θ

) (16)

In the synchronized state, the variable θ(t) is periodic
and can be expressed in a periodic Fourier series with the
fundamental frequency ωs = ω/n. Then, system (16) can be
translated to the frequency domain obtaining the Harmonic
Balance system:

H
[
Θ, ρ

]
≡
{
β
[
jkωs

]2
+
[
jkωs

]}
Θ+

+ 1dc

(mω
n
− ρ
)

+ F
[
Θ
]

= AEn
(17)

where Θ, F
[
Θ
]

and En are the vector of harmonics of the
signals θ(t), f(t) and sinωt in the periodic Fourier basis. The
unknowns of system (17) are the 2N+1 harmonic components
in Θ.

Previous analyses like [36] have analyzed the
synchronization mechanism of an autonomous oscillation at
frequency ωa by an input source at frequency ω ' ωa/m. In
these analyses, it is considered that the nonlinear functions
of the system of ODEs are the ones that provide higher
harmonic components of the source, in particular the
harmonic mω ' ωa, which synchronizes the autonomous
component. Nevertheless, that explanation is no longer
valid in the case of the Josephson-junction circuit, since
the external input is modeled in the system of ODEs as
an additive term, not affected by the nonlinear function
sinφ. The analyses [5], [7] perform a theoretical study of
this synchronization phenomenon by using a time-domain
description of the system, which require elaborate analyses
of the two-torus solution or the use of integral manifolds.
The frequency domain description of the system deals
directly with the harmonic components involved in the
synchronization phenomenon. Then, this formulation allows
to derive a simple alternative and analytical explanation
for the ultra-synchronization mechanism in these kinds of
systems. Other methods to study the synchronized states in
periodically-forced circuits and their stability are presented
in [37]–[40]. As it is explained in the Appendix B, if the
amplitude A is small enough, the set of synchronized solutions
of system (17) lie in a closed curve in the space (Θ, ρ). Along
this curve, the harmonic component Θp = |Θp|ejϕp , with
p = mn, remains phase-locked to the m− th harmonic of the
current source. As a consequence, along the synchronization
range versus ρ, the phase ϕp of the harmonic component
Θp covers the range [0, 2π]. In order to simulate the set of
synchronized solutions, the phase ϕp will be considered as
a parameter and it will be varied in the interval [0, 2π]. To
determine the system, the parameter ρ is included in the set
of unknowns. Then, the system to be solved is:

H
[
Θ, ρ

]
= AEn, arg Θp = ϕp (18)

As illustration, system (18) has been solved to obtain the
synchronized states for (m = 1, n = 3). The synchronization
range is obtained by sweeping the phase ϕ3 in (18) between
0 and 2π. The result is shown in Fig. 8. Two values of the
normalized source amplitude A have been selected, showing
that for small A the width of the interval I(A,ω,m, n) is
proportional to this parameter.

Performing an analysis similar to that of Fig. 3(b), it
can be seen that these two synchronized-behavior intervals
are inside the SC region, coexisting with the periodic cycle
solutions corresponding to superconducting states. The system
will evolve to one or another solution depending on the initial
conditions, giving rise to the hysteresis phenomenon described
in [5], [6], [8]. In the synchronized intervals, delimited by a
pair of turning points, the Idc−〈v〉 characteristic presents flat
regions corresponding to ranges of constant average voltage.
These regions can be easily obtained with the presented
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Fig. 8. Harmonic balance simulation of the synchronized states fulfilling
ω = 3ωa for β = 5 and ω = 1.5 rad/s. The periodic windows have been
obtained for two different values of the normalized amplitude A

frequency domain technique, by solving system (18) for the
corresponding pairs (m,n).

As can be seen in Fig. 8, for each value of the parameter ρ
there exists a pair of synchronized solutions. These solutions
are of node and saddle type, colliding at each edge of the
synchronization range in a saddle-node bifurcation [34], [35],
[41]. The evolution of these bifurcation points with the source
amplitude A delimits the location and width of the considered
synchronization range for each value of the parameter A. This
evolution can be analyzed by using the fact that at the turning
points the determinant of the HB Jacobian matrix vanishes :

det

[
∂H

[
Θ, ρ

]
∂Θ

]
= 0 (19)

as it corresponds to a saddle-node bifurcation. Then,
equation (19) is added to (18) and the resulting system is
balanced by introducing ϕp in the set of unknowns. Fig.
9 shows the result of solving system (18)-(19) versus the
amplitude A. The same range (m = 1, n = 3) as in Fig.
8 has been analyzed. In this representation, the synchronized
area is delimited by the so-called Arnold tongue [42]. For
small source amplitude, the width of the range I(A,ω,m, n)
grows linearly with A but, as the amplitude A is increased,
the growing rate becomes nonlinear. There exists a tongue
T (m,n) associated to each pair (m,n), and their existence
has been theoretically predicted in previous works [5], [7].
The frequency domain technique presented in this Section
allows the simulation of these tongues for any pair of values
(m,n). In order to verify the technique, a set of time domain
simulations of system (3) has been performed to obtain the
two torus solution in the range of ρ values of Fig. 9. Note
that the time integration simulation of the two-torus in this
region can be involved. This is because the stable manifold of
the two-torus solution reduces and intertwines with that of the
coexisting superconducting solution as A is increased or the
limits of the synchronization range are approached. In those

cases it is difficult to avoid convergence to the coexisting stable
periodic solution. In Fig. 9 the value A = 4 has been chosen
for the time integration simulations. For each simulation, the
value of the normalized average voltage 2e 〈v〉 /h̄ =

〈
φ̇
〉

has
been calculated. As can be seen in this figure, the normalized
voltage presents a flat region whose limits agree with the
(ρL, ρU ) values predicted by the frequency domain technique
for A = 4. Inside this region, the normalized average voltage
remains constant at the value 2e 〈v〉 /h̄ = mω/2n.

The technique has also been validated with the toolbox
AUTO [13]. The number of mesh intervals used for
discretization is NTST=15. The detection of saddle-node
bifurcations has been activated in the simulation, obtaining
the bifurcation locus that delimits the synchronized region.
The results are superimposed in Fig 9.

Finally, it must be emphasized that the presented frequency-
domain formulation does not impose any restriction to
the amplitude of the driving source. According to the
synchronization theory [34], [35], as the amplitude of
the driving source is increased, the closed synchronization
intervals eventually break into open curves. Although this case
can be simulated using the presented technique, the analyses
have been centered on the case of closed intervals, since no
experimental analysis of this phenomenon in the Josephson
junction has been found in the literature.
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Fig. 9. Evolution of the lower and upper limits of the synchronization range
ω = 3ωa with the normalized source amplitude A (Arnold tongue), for β = 5
and ω = 1.5 rad/s. The time integration simulations of the normalized
average voltage 2e 〈v〉 /h̄ for A = 4, together with the bifurcation locus
obtained in AUTO, have been superimposed for comparison

IV. CONCLUSION

A frequency-domain technique has been proposed to
analyze the solutions of the periodically-forced Josephson
junction circuit. This technique avoids some of the problems
inherent to the time domain integration, such as long transient
states or convergence to undesired solutions. It has been used
to obtain efficiently and with high precision the bifurcation
locus that delimits the SC region in terms of the amplitude
A. This analysis has allowed to predict the reduction of the
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maximum supercurrent allowed value as the amplitude Iac of
the driving source is increased. The harmonic properties of
the synchronized solution have been studied in detail. Making
use of these properties, a formulation has been derived to
efficiently simulate the quasi-periodic regimes and the width
and location of the synchronization ranges that give rise to
flat regions in the I-V characteristic. The technique has been
validated by comparison with time continuation methods and
time integration simulations.

APPENDIX

A. Analysis of the degree of freedom in the autonomous quasi-
periodic solution

Let xs(t) =
∑
k,lXk,l e

j(kω+lωa)t be a solution to a system
of ODEs :

ẋ = h [x, t] = h [x, t+ nT ] ,∀n ∈ Z, T =
2π

ω
(20)

where ω and ωa are not harmonically related. From the
periodicity of the function h [x, t] in the t variable it can be
derived that xs(t+nT ) is a solution for ∀n ∈ Z . This solution
is expressed in the Fourier basis as :

xs(t) =
∑
k,l

Xk,l e
j(kω+lωa)(t+nT ) =

=
∑
k,l

Xk,l e
j(kω+lωa)tejlϕ, ϕ = 2πn

ωa
ω

(21)

Now, since ωa/ω is an irrational number, by choosing the
appropriate value of n we can add to the phase of the (0, l)
component any desired phase shift ϕ with any degree of
accuracy. In particular, a constraint of the form Re Xi

0,l = 0
can be imposed to the solution.

B. Analysis of the synchronized states versus the parameter ρ

In order to simulate the synchronized solution inside the
interval I(A,ω,m, n) we can make use of the following
properties :

Proposition 1: Let x(t) = [θ, y]
t be the vector of state

variables of system (12). Along the interval I(A,ω,m, n),
for A small enough the phase of the mn − th harmonic of
each state variable of the synchronized solution in the basis{
ejkωst

}
covers the range [0, 2π].

Proof: As explained in Section III, in the absence of the
input current source, the two-torus solution of system (12)
becomes periodic. Then, the vector of state variables can be
expressed as:

x(t) =
∑
k

Xk e
jkω0t, x = [θ, y]

t (22)

where ω0 is the value of the autonomous frequency ωa
in the absence of the external source. When this source is
introduced, the two-torus solution can be expressed in the
following general way:

x(t) =
∑
k,l

[
Xk,l + ∆Xk,l(t)

]
ej[k(ω0t+ϕ(t))+lωt] (23)

where the amplitude and phase perturbations ∆Xkl(t), ϕ(t)
have been introduced. Now, considering that the phase ϕ(t)

is a function of the state variables, the following differential
equation can be stated:

ϕ̇(t) =
∂ϕ

∂x
ẋ =

=
∑
k,l

Gkl
[
X,∆X(t)

]+
ẋ(t) ej[k(ω0t+ϕ)+lωt] =

=
∑
k,l

Qkl(X,∆X(t), ϕ̇) ej(kω0+lω)tejkϕ(t)

(24)

where Gkl is the vector of the harmonics of ∂ϕ/∂x of
order (k, l) and the harmonic components Qkl result from
rearranging the product in the second line of (24) in the
Fourier basis. In the case mω ' nω0, the exponential
terms ± (nω0 −mω) become dominant in ϕ due to the
averaging produced by the time integration. Assuming that
the amplitude A is small enough, the amplitude perturbations
can be neglected in (24) and the phase perturbation is ruled
by the following differential equation :

ϕ(t) '
∫ t

0

B(ϕ̇) cos [n (ω0τ + ϕ(τ))−mωτ + α] dτ,

B(ϕ̇) = |Qn,−m(X, ϕ̇)|
(25)

Synchronization occurs when:

n (ω0 + ϕ̇) = mω −→ ϕ = ∆ωt+ φ0 (26)

with ∆ω = mω/n − ω0. The synchronized solution is
periodic with the fundamental frequency ωs = ω/n = (ω0 +
∆ω)/m. If we introduce the expression (26) for ϕ in (25) we
obtain:

∆ω

B(∆ω)
' cos [nφ0 + α] (27)

Now, taking into account that the autonomous frequency ωa
grows monotonically with the parameter ρ, an equation of the
following form can be obtained:

g (∆ρ) ' cos [nφ0 + α] (28)

If ∆ρ is considered as an unknown, it is seen that
by sweeping nφ0 ∈ [0, 2π] the whole set of ∆ρ values
corresponding to the synchronization range is obtained. The
phase nφ0 corresponds to the harmonic k = n, l = 0 in the
expansion (23). Assuming that the amplitude A is small, this
harmonic agrees with the p − th component in the periodic
basis

{
ejkωst

}
, with p = nm. Then, when considering

the previous approaches, the phase of the p − th harmonic
component of the synchronized solution covers the interval
[0, 2π] along the synchronization range versus ∆ρ.

Proposition 2: Let Θ be the vector of harmonics of the state
variable θ(t) in the synchronized interval I(A,ω,m, n). Along
this interval, for A small enough, the solutions of system (17)
lie in a closed curve in the space

(
Θ, ρ

)
.

Proof: Let
(
Θ0, ρ0

)
be the non perturbed solution to

system (17) for A = 0. For a small value of the normalized
amplitude A, this solution becomes

(
Θ0 + ∆Θ, ρ0 + ∆ρ

)
, and

system (17) can be linearized about the non perturbed solution,
obtaining the linear system:

∂H

∂Θ

∣∣∣∣
0

∆Θ +
∂H

∂ρ

∣∣∣∣
0

∆ρ = AEn (29)
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System (29) has 2N + 1 equations and 2N + 2 unknowns.
The system can be balanced by including the additional
equation:

arg Θp = ϕp, p = mn (30)

As it has been demonstrated in Proposition 1, the whole set
of synchronized solutions can be obtained by solving system
(29)-(30) for all the values of ϕp ∈ [0, 2π]. As the phase ϕp
is varied in the interval [0, 2π], the solutions Θ0 + ∆Θ(ϕp)
and ρ0 + ∆ρ(ϕp) of system (29)-(30) trace a closed curve in
the space

(
Θ, ρ

)
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