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ABSTRACT: This paper’s scope is the shear interaction mechanisms of three critical geosynthetic
interfaces (geotextile/geomembrane; drainage geocomposite/geomembrane and soil/geomembrane)
typically used for lined containment facilities such as landfills. A large direct shear machine was used to
carry out 159 geosynthetic interface tests. The results showed strain softening behaviour, a very small
dilatancy, 0.1–1 mm, and non-linear failure envelopes at normal stress range of 25–500 kPa. The three
types of interfaces present the same main interaction mechanisms: interlocking and friction. For
geotextile/geomembrane and drainage geocomposite/geomembrane interfaces, the higher the asperity
height, the higher the interface shear strength. Whereas for soil/geomembrane interfaces, the higher the
soil shear strength, the higher the interface shear strength. The drainage geocomposite/geomembrane
interface showed the lowest friction angles, followed by the geotextile/geomembrane and the soil/
geomembrane interfaces.
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1. INTRODUCTION

The main functions of a municipal solid waste landfill are:
maximum accumulation of waste in the smallest possible
space, isolation the waste from natural surroundings
and maintaining security as well as future possible usage
after its closure. Landfills are mainly isolated by geosyn-
thetic protection layers, which interact on geosynthetic/
geosynthetic and geosynthetic/soil interfaces. It is known
that to ensure stability of a landfill, knowledge of the shear
behaviour of these interfaces is critical. This issue has been
investigated thoroughly in recent decades (some of the
most recent papers are Fox and Kim (2008), McCartney
et al. (2009), Palmeira (2009), Eid (2011), Fox and Ross
(2011), Brachman and Sabir (2013), Vieira et al. (2013),
Liu and Martinez (2014), Sayeed et al. (2014), Fox and
Stark (2015)).
The objective of this paper was to study the shear

behaviour of three critical geosynthetic interfaces, geotex-
tile/geomembrane (GT/GM), drainage geocomposite/geo-
membrane (GC/GM) and soil/geomembrane (soil/GM),

providing an even deeper understanding than those
presented in other studies. The large direct shear test has
been used to carry out this testing programme since the
applied normal stress range was between 25 and 500 kPa.
Both Giroud et al. (1990) and Briançon et al. (2011)
pointed out that for very low normal stress (lower than
25 kPa), the inclined plane test should be used.
The GT/GM interfaces can be used for both, lining and

cover systems of the landfills. Geomembranes are typi-
cally used as a hydraulic barrier and geotextiles protect it
from damage that may occur in some situations, such as
high normal stresses and angular soil particles. These
types of interfaces have been previously studied by Giroud
et al. (1990), Koutsourais et al. (1991), Giroud and
Darrasse (1993), Gilbert and Byrne (1996), Stark et al.
(1996), Jones and Dixon (1998), Wasti and Özdüzgün
(2001), Hebeler et al. (2005), Bergado et al. (2006),
Pitanga et al. (2009) and Kim and Frost (2011). The
GT/GM interface was studied by means of the results of
eighteen different interfaces using three types of geotex-
tiles and five types of geomembranes.
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The drainage GC/GM interfaces are widely used in
landfill sealings, especially in cover systems. This interface
minimises rainfall infiltration into a solid waste landfill.
The geocomposite prevents the water from flowing into
the waste. GC/GM interfaces have been investigated by
Giroud et al. (1990) and Stark et al. (1996). This kind of
interface was analysed with twelve different interfaces
using two types of geocomposites and five types of
geomembranes.
Lastly the soil/GM interfaces are an important part of

the landfills’ foundation and are also used to waterproof
reservoirs. The soil is heavily compacted creating a
geologic barrier to prevent the leachate from reaching
the natural ground. Soil/GM interfaces have been studied
by Seed and Boulanger (1991), Stark and Poeppel (1994),
Zettler et al. (2000), Sharma et al. (2007), Eid (2011) and
Fox et al. (2011). This type of interface was investigated by
means of eleven different interfaces using three different
soils and five types of geomembranes.
In the present study a methodology based on the

ASTM D5321 was applied to carry out direct shear tests
for different types of interfaces. The means to grip the
different geosynthetics inside the shear box and the
suitable test parameters (shear displacement rate, con-
solidation time and hydration time) were established
based on studies from Stark and Poeppel (1994), Stark
et al. (1996), Fox et al. (1997), Jones and Dixon (1998),
Fox et al. (1998), Eid et al. (1999), Triplett and Fox (2001),
Zornberg et al. (2005), Sharma et al. (2007) and
McCartney et al. (2009). The relationships analysed
were the interface shear strength versus shear displace-
ment, the shear displacement versus normal displacement
and the interface shear strength versus normal stress.

2. EXPERIMENTALWORK

2.1. Materials

Table 1 presents the physical characteristics of different
types of geosynthetics that were used for the direct shear
tests.

• Three nonwoven geotextiles: GT1 (500 g/m2) was
made of needle-punched monofilaments; GT2
(500 g/m2) was made of needle-punched staple fibres
and GT3 (335 g/m2) was made of thermally bonded
monofilaments.

• Five geomembranes, 1.5 mm thick: GM had smooth
surfaces; GMr1 and GMr4 had irregular heavy
textured surfaces smaller than 1 mm; GMr2s1 and
GMr3 showed regular evenly spread asperities larger
than 1mm; GMr2s2 exhibited regular spread aspe-
rities smaller than 1mm.

• Two drainage geocomposites: GC1 consisted of
two nonwoven needle-punched geotextiles (200 and
300 g/m2) thermally bonded to a geonet. GC2 con-
sisteds of two nonwoven needle-punched geotextiles
(120 and 140 g/m2) thermally bonded to a geonet. The
type of geonet was the same for both geocomposites.
The geonet had two strands with an angle of 70° in the

machine direction and 110° in the cross machine
direction.

Table 2 presents the characteristics of the three soils
employed for testing, which were part of the foundation of
three landfills in Spain. The soil S1 and S2 came from
landfills in Cataluña and S3 came from a landfill in
Albacete. The soil S3 presented a larger plasticity index
than S1 and S2.
Tables 3, 4 and 5 summarise the different GT/GM,

GC/GM and soil/GM interfaces tested as well the testing
conditions.

2.2. Testing equipment

The tests on geosynthetics were carried out with a large
direct shear machine. The shear box was 300mm long and
300 mm wide and therefore fulfilled the minimum
requirement. The tests were performed with a constant
shear rate and fixed normal stress. The shear box was
divided into a moving lower part and a static upper part.
One geosynthetic was fastened to the lower box, whereas
the other one was fastened to the upper box. Different
gripping systems were used for the different types of
geosynthetics. The geotextiles were gripped with a
double-sided adhesive tape. This system worked well for
the range of normal stresses tested.
Based on the studies of Fox et al. (1997, 1998) a

particularly textured plate was designed to grip the
geosynthetic clay liners, drainage geocomposites and
geomembranes. The dimension of this plate was
300 mm×285mm×10mm. The top face had pyramids
of 1 mm height placed quincunx. The bottom face had
channels that ran along the drainage holes allowing the
water flow (Bacas et al. 2011). This piece was screwed on
to a metal support that was placed into the direct shear
box. The top side was in contact with the geosynthetic and
the bottom side was in contact with the metal support.
Figure 1 shows three sketches of the arrangement of the
geosynthetic samples inside the direct shear machine.

2.3. Procedures

The direct shear tests were performed in accordance with
the ASTM D5321 method.
The GT/GM interfaces were tested under wet con-

ditions (Table 3) and the drainage GC/GM were tested
under dry conditions (Table 4). It is worth mentioning the
studies of Byrne et al. (1992), Mitchell and Mitchell
(1992) and Bergado et al. (2006) in which they showed
that the water content did not significantly affect the
interface shear strength. The soil/GM interfaces were
tested under dry conditions (Table 5) because both the
compacted soil and geomembranes were highly imperme-
able and the interface would require a lot of time to be
saturated.
The hydration time was 24 h for geotextiles, these

samples were submerged into tap water inside a humid
chamber (temperature 21°C, humidity 96%). The geo-
membranes were not hydrated. The consolidation time
was 10 min inside the shear machine and the constant
shear rate was 5 mm/min for GT/GM and GC/GM and
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1mm/min for soil/GM. These different shear rates were
used for the following reasons: on the one hand, the
recommendation of the above-mentioned standard (see
sections 10.7 and 11.6) was followed. On the other hand,
for GT/GM interfaces, the studies of Stark et al. (1996),
Triplett and Fox (2001) state that the shear rate does not
significantly affect the peak and post-peak strength.
For soil/GM tests, the soil sample was compacted

outside the machine applying a static vertical load with a
hydraulic press to get the modified Proctor density.
First the normal stress was applied using a rigid

loading platen, after 10 min of consolidation, the lower
shear box was moved horizontally at a constant shear rate.
The maximum horizontal displacement reached was
50mm. The shear displacement, shear force and vertical
displacement were recorded during the test. The shear
force was measured using a suitable dynamometric ring.
Two linear variable differential transformers (LVDTs)
were used to measure horizontal and vertical
displacements.

3. DIRECT SHEAR TESTS

3.1. Geotextile/geomembrane

3.1.1. Interface shear strength behaviour
All interfaces tested present frictional behaviour, which
was modelled by Coulomb’s equation τ=ca+σn · tan(δ),
where τ and σn are interface shear strength and normal
stresses acting on the failure plane, ca is the interface
adhesion and δ is the interface friction angle. Linear
regression of the plot of τ against σn was used to identify
the best-fit interface shear strength parameters. The shear
strength of most interfaces tested in this investigation
presented frictional parameters, that is, negligible or null
adhesion and important friction angles.
A total of 90 direct shear tests of 18 different GT/GM

interfaces (Table 3) were performed under wet conditions.
The range of normal stress applied was 25–450 kPa.
The peak interface shear strength was usually reached at
4−10mm and the post-peak strength was obtained at
50 mm.

Table 1. Type of geosynthetics

Geosynthetic Label Typea Raw materialb/Type of
fibre

Manufacturing process Mass/area or
density

Thicknessc

(mm)

Geotextiles GT1 NW PP/monofilament Needle-punched 500 g/m2 4 ± 0.2
GT2 NW PP/staple fibres Needle-punched 500 g/m2 5 ± 0.6
GT3 NW 70%PP 30%PE

/monofilament
Thermally bonded 335 g/m2 2 ± 0.2

Geomembranes GMr1 Textured
(�0.5 mm)d

HDPE Coextrusion with
nitrogen gas

≥ 0.94 g/cm3 1.5

GMr2 Textured (s1:�1.2;
s2:�0.8)d

HDPE Calendered structured ≥ 0.94 g/cm3 1.5

GMr3 Textured (�1.3) HDPE Structred same resin as
base

0.94 g/cm3 1.5

GMr4 Textured (�0.25) HDPE Coextrusion with
nitrogen gas

≥ 0.93 g/cm3 1.4

GMs Smooth HDPE Flat sheet extrusion 0.94 g/cm3 1.5
Drainage

Geocomposite
GC1 NW(200)/Geonet/

NW(300)
PP (geotextile),

HDPE (geonet)
Thermally bonded 950 g/m2 5

GC2 NW(120)/Geonet/
NW(140)

PP (geotextile),
HDPE (geonet)

Thermally bonded 710 g/m2 5

aNW=nonwoven geotextile, W=woven geotextile, Na-bentonite=sodium bentonite, NW(200)=nonwoven geotextile (200 g/m2).
bPP=polypropylene, PE=polyethylene, HDPE=high density polyethylene, PET=polyester.
cThickness at 2 kPa for geotextiles and GCLs, at 20 kPa for geocomposites and geomembranes.
dAsperity height (mm) measured through the scanning electron microscope (SEM). GMr2 presents two different textured sides: s1=side 1 and
s2=side 2.

Table 2. Type of soils

Soil Grain-size wL
a IP MPb (γmax; wopt) Direct shear parameters (R2 > 0.98)

Friction angle (°) Cohesion (kPa)

Peak Residual Peak Residual

S1 90% fine 10% coarse 45 21 19.2 kN/m3; 12% 37 34 48 0
S2 85% fine 15% coarse 37 17 20.6 kN/m3; 8.5% 33 34 9 0
S3 90% fine 10% coarse 57 33.5 17.0 kN/m3; 15% 25 26 17.5 0

awL=liquid limit, IP=plasticity index.
bMP=modified proctor compaction was used, γmax=maximum dry density.
wopt=optimum water content corresponding to saturation degree of 85%.

Frictional behaviour of three critical geosynthetic interfaces 357

Geosynthetics International, 2015, 22, No. 5

Downloaded by [ David University] on [06/10/15]. Copyright © ICE Publishing, all rights reserved.



Figure 2a presents graphs of typical interface shear
strength plotted against shear displacement for a non-
woven geotextile/textured geomembrane interface (GT1/
GMr2s1). Strain-softening behaviour can be observed
(Byrne 1994; Stark et al. 1996; Jones and Dixon 1998) and
the higher the normal stress, the higher the strain-
softening behaviour (Bacas et al. 2011).
Approximately 60% of the tests revealed non-linear

failure envelopes and 40% linear envelopes. Figure 2b
shows non-linear peak and post-peak failure envelopes
(continuous lines). However, the straight envelopes
passing through the origin (dashed lines) with peak and
post-peak friction angles of 23° and 10° also show a good
fit (R2 > 0.9).
In agreement with Giroud et al. (1990), Koutsourais

et al. (1991), Stark et al. (1996), Hebeler et al. (2005),
McCartney et al. (2009) and Kim and Frost (2011), the
interaction mechanism during the shear of geotextile/
textured geomembrane presented two main components:
one was the interlocking (hook and loop) between the
individual filaments and the geomembrane roughness and
the other was the friction between the materials. Figure 3
illustrates how these mechanisms developed at a super-
ficial level (< 50 kPa) or at a geotextile matrix level, which
depended on the normal stress.

Table 4. Geocomposite/geomembrane interfaces tested

Geocomposite/
geomembrane
interfaces

Sample
size (mm)

Normal
stress (kPa)

Direct shear test
conditions

GC1(200)a/GMs
GC1(200)/GMr1
GC1(200)/
GMr2s1

GC1(200)/
GMr2s2

GC1(200)/GMr3
GC1(200)/GMr4

300×285 25, 50, 100

Dry:

• consolidation
time: 10 min

• shear rate:
5 mm/minGC2(140)b/GMs

GC2(140)/GMr1
GC2(140)/
GMr2s1

GC2(140)/
GMr2s2

GC2(140)/GMr3
GC2(140)/GMr4

aGC1(200)=GC1 was tested by the side of the NWof 200 gr/m2.
bGC2(140)=GC2 was tested by the side of the NWof 140 gr/m2.

Table 3. Geotextile/geomembrane interfaces tested

Geotextile/
geomembrane
interfaces

Sample
size (mm)

Normal
stress (kPa)

Direct shear test
conditions

GT1/GMs
GT1/GMr1
GT1/GMr2s1
GT1/GMr2s2
GT1/GMr3
GT1/GMr4

300×285
25, 50,
100, 300,
450

Wet:

• hydration time:
geotextile 24 h,
geomembrane
0 h

• consolidation
time: 10 min

• shear rate:
5 mm/min

GT2/GMs
GT2/GMr1
GT2/GMr2s1
GT2/GMr2s2
GT2/GMr3
GT2/GMr4
GT3/GMs
GT3/GMr1
GT3/GMr2s1
GT3/GMr2s2
GT3/GMr3
GT3/GMr4

Table 5. Soil/geomembrane interfaces tested

Geotextile/
geomembrane
interfaces

Sample
size (mm)

Normal
stress (kPa)

Direct shear test
conditions

S1/GMs
S1/GMr1
S1/GMr2s1
S1/GMr3

200×200 100, 300,
500

Dry:

• static
compaction of
soil off shear
machine

• consolidation
time: 10min.

• shear rate:
1 mm/min

S2/GMs
S2/GMr1
S2/GMr2s1
S2/GMr3
S3/GMs
S3/GMr1
S3/GMr3

Textured
plate

GM
GC

Textured
plate O

ut
si

de
co

nt
ai

ne
r

In
te

rio
r

co
nt

ai
ne

r

Soil

GM

(a) (b) (c)

Figure 1. Sketch of large direct shear test: (a) GT/GM, (b) GC/GM and (c) Soil/GM
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3.1.2. Influence of geomembrane roughness
Figure 4 presents graphs of the interface friction angles
plotted against asperity height (mm), where the following
aspects were observed: The smaller values belonged to the
smooth geomembrane (GMs) and the interface shear
strength was supplied by the friction mechanism; hence,
the GT/GMs interfaces presented similar peak and
post-peak friction angles.
The interlocking mechanism was directly affected by

the roughness, increasing the peak interface shear strength
as well as causing strain softening behaviour. Normally,
the higher the asperity height and interlocking, the higher
the peak interface shear strength (Ivy 2003; McCartney
et al. 2005). Hence, GMr2s1 and GMr3 with asperity
heights larger than 1mm (Table 1) showed the greatest

peak values. Similarly, GMr4 had the smallest asperity
height and presented the smallest peak frictional angles.
Furthermore, the interlocking increased with increasing
normal stress (Bacas et al. 2011).
The post-peak values did not show a clear trend related

to the size of the asperity, but show dependency on the
type of geotextile (McCartney et al. 2005).

3.1.3. Influence of geotextile fibres
Figure 5 shows interface shear strength plotted against
shear displacement curves at 50 kPa for the needle-
punched geotextiles, GT1 and GT2. They were made of
needle-punched monofilament and staple fibres, respect-
ively (Table 1). It can be observed that the length of the
fibres greatly affected the interface shear strength at low
normal stress. GT2 presented the smaller interface shear
strength values for both geomembranes, GMr1 and
GMr3, whose macrotexture is smaller and greater than
1mm, respectively. Thus, at a superficial level, the staple
fibres of the GT2 did not develop an interlocking
mechanism as strong as the monofilament of the GT1 did.
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On the other hand, the influence of the manufacture of
the geotextiles can be observed by comparing the
nonwoven monofilament geotextiles GT1 and GT3 in
Figure 4. The former is made by needle-punching and the
latter is made by a heat bonding system. Figure 6 shows
microscope pictures of these geotextiles. GT1 presents
looser filaments and greater gaps than GT3, which shows
higher interlocking, leading to higher interface shear
strength.
Finally, the post-peak values seem to depend on the

type of geotextile to some extent. Figure 4 shows that GT3
presented the largest post-peak values except for GMr3,
because its heat-bonded monofilaments were stretched
and very tangled during the shear, causing a higher
resistance as the geomembrane brushed against the
geotextile. GT2 on the other hand presented most of the
lowest post-peak values because its staple fibres were
stretched and brushed most easily.
One conclusion from these analyses is that the manu-

facturing process of the geotextile influences both the
peak and the post-peak interface shear strength. If the
geomembrane roughness is irregular and dense the use of
heat-bonded monofilaments is recommended, because the
interlocking mechanism has a big influence on interface
shear strength. If, however, the roughness is regular and
uniform then the use of needle-punched filaments is
recommended, especially for high normal stress levels.

Finally, for cover systems of landfills subjected to low
ranges of normal stresses, the use of monofilament rather
that staple fibres are recommend, because the former
mobilises the interlocking mechanism at lower normal
stresses better than the latter.

3.2. Drainage geocomposite/geomembrane

3.2.1. Interface shear strength behaviour
The drainage GC/GM interfaces were tested with normal
stress ranging from 25 to 100 kPa, which simulate the
upper range of low normal stresses that typical cap and
liner systems are subjected to. A total of 36 direct shear
tests of 12 different drainage GC/GM interfaces (Table 4)
were carried out under dry conditions. In addition, eight
tests of geocomposites alone (GC1 and GC2) were
performed in dry conditions. The peak interface shear
strength was usually reached at 3−8mm in line with Stark
et al. (1996), the post-peak strength was reached at 50 mm.
Figure 7a presents curves of typical interface shear

strength plotted against shear displacement for drainage
of geocomposite/textured geomembrane interfaces, GC2
(140)/GMr3. The asperity height of GMr3 was > 1mm.
The drainage geocomposite GC2 had two needle-
punched geotextiles, 120 and 140 g/m2 (side tested),
thermally bonded to a geonet (Table 1). These curves
show that the reduction in shear stress at displacements
beyond peak led to the typical strain softening behaviour
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(Byrne 1994; Stark et al. 1996). The curve of 100 kPa
presents a peak interface shear strength larger than the
others. Although the data are limited, the failure envelope
tends to be bilinear (Figure 7b), with the inflection point
at normal stress of 50 kPa, indicating that beyond the
normal stress of 50 kPa, the interaction mechanisms
changed.
The analysis of the interface shear strength curves as

well as the samples after testing resulted in the interaction
mechanisms presented in Figure 8. As was the case for
GT/GM interfaces, the interaction mechanisms depended
on the normal stress applied. At low normal stress the
interaction was mainly between the geotextile and the
geomembrane, and therefore similar to the GT/GM
interfaces described earlier. Figure 8a displays the inter-
locking (hook and loop) between geotextile filaments and
geomembrane roughness and the friction mechanisms.
Thus, the geonet does not significantly affect interface
shear strength.
As normal stress increases, the geotextiles are com-

pressed around the strands of the geonet, which is
embedded into the geomembrane, as shown in Figure 8b.
Therefore, the shear behaviour is frictional, similar to the
geonet/geomembrane interfaces (Koutsourais et al. 1991;
Byrne et al. 1992; Bergado et al. 2006), the interlocking
mechanism hardly makes a difference. The friction takes
place between the geonet strands and the geomembrane
roughness (Giroud et al. 1990). The geonet aids the
damage or removal of the roughness from the geomem-
brane as Stark et al. (1996) also pointed out.
The failure plane occurred between the geotextile of the

drainage geocomposite and the geomembrane. However,

for GC/GMr3 interfaces at normal stress of 100 kPa the
failure plane was inside the drainage geocomposite,
between the geonet and the geotextile. Due to this fact,
GC1 and GC2 were tested alone. The peak secant friction
angles at 100 kPa were 28° and 26°, respectively. These
values are smaller than the peak secant friction angles of
GC1(200)/GMr3 and GC2(140)/GMr3, 32° and 30°,
confirming the internal geocomposite weakness plane.

3.2.2. Influence of geomembrane roughness
Figure 7 presents the results of two types of interfaces:
GC2(140)/GMr4 and GC2(140)/GMr3. The asperity
height of GMr4 was < 1mm and GMr3 was > 1mm.
GMr3 exhibited higher interface shear strength than
GMr4. The failure envelopes of GMr3 were bilinear but
GMr4 had a linear failure envelope for the normal stress
range tested. This was due to the fact that geomembranes
with asperities smaller than 1mm presented the inflexion
point at a higher normal stress (> 100 kPa) than geomem-
branes with asperities larger than 1mm (50 kPa), as can
be observed in Figure 9b. GMr1, GMr2s2 and GMr4
present similar interface shear strengths and linear
envelopes, increasing the interface shear strength propor-
tionally to the normal stress. However, GMr2 and GMr3
do not; they exhibit bilinear failure envelopes.
Figure 9a presents the friction angles of the drainage

GC/GM interfaces tested plotted against asperity height.
These friction angles were within the range of the values
presented by Stark et al. (1996). The results prove that the
geomembrane roughness increased the interface shear
strength: the higher the asperity height, the higher the
shear strength. This fact is more noticeable when the
roughness was larger than 1mm.

3.3. Soil/geomembrane

3.3.1. Interface shear strength behaviour
The soil/GM interfaceswere tested at normal stress of 100,
300 and 500 kPa, simulating the range of normal stresses
that typical liner systems are subject to. A total of 33
direct shear tests of 11 soil/GM interfaces were performed
in dry conditions (Table 5). The soil samples were 200 mm
long, 200 mm wide and 50mm high. They were com-
pacted outside the direct shear machine to get the

(a) (b)

NW geotextile

Geomembrane

Geonet
NW geotextile

Figure 8. Interaction mechanisms between drainage geocomposite
and textured GM (cross shear direction section): (a) at low normal
stress; (b) at high normal stress
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modified Proctor density and the optimum water content
(Table 2). However, in real conditions, the soil was directly
compacted on the geosynthetic, which can affect to the
results at low normal stress.
The peak interface shear strength was usually reached

at 3−8mm (Stark and Poeppel 1994), the post-peak
strength was measured at 50 mm.
Figure 10a presents the typical interface shear

strength − shear displacement curves for the interfaces
S1/GMr3 and S1/GMr1. The interface shear strength
curves present strain-softening behaviour, as described
in previous interfaces (GT/GM and drainage GC/GM).
The interface shear strength reaches its peak when the
asperities move the soil over them. Then, the strength goes
down because the remoulded soil resists less. Figure 10b
shows the straight failure envelopes for high normal
stresses. The peak and post-peak friction angles were 29°
and 20° for S1/GMr3, 31° and 27° for S1/GMr1.
All test results analysed and the observation of the

samples after testing show the interaction mechanisms
developed during shearing. These interaction mechanisms
followed the same rules as GT/GM and drainage GC/GM
interfaces. Figure 11 illustrates different behaviours at low
and high normal stress. At the low normal stress tested,
100 kPa, the asperities slightly embedded into the soil.
Thus, the interface shear strength was mainly supplied by
the sliding between asperities and the soil at a superficial
level. However, it is noteworthy that this behaviour may be
affected by the way the soil was compacted. As the normal
stress increased (> 100 kPa), the soil was entirely
embedded between the asperities, and interface shear

strength came from a friction mechanism developed in
two ways: one was the internal shear strength of the soil
itself placed above the geomembrane and the other was
the friction between the asperities and the soil, as
indicated in Figure 11b, that is, the sliding and ploughing
effect reported by Zettler et al. (2000).

3.3.2. Influence of geomembrane roughness
Figure 10 shows the results of the interfaces S1/GMr1 and
S1/GMr3. GMr1 has an irregular heavily textured surface
smaller than 1mm. GMr3 has regular asperities larger
than 1mm. GMr1 reached greater interface shear strength
than GMr3. The roughness of GMr1 was almost entirely
embedded into the soil, which caused the interface shear
strength to be mainly supplied by the internal shear
strength of the soil itself. The shear plane was inside the
soil as shown in Figure 12a (Koerner et al. 1986; Mitchell
and Mitchell 1992; Orman 1994). However, the roughness
of GMr3 led to a ploughing effect, mobilising the internal
shear strength of the soil and the friction of the
soil-roughness contacts, which remoulded the soil and
resulted in smaller post-peak values (Zettler et al. 2000).
In this case, the shear plane was between the soil and the
geomembrane as shown in Figure 12b.
Figure 13 presents the friction angles of the soil/GM

interfaces tested, observing that evidently, the smooth
geomembrane offered the smallest interface shear
strength. The peak friction values were between 6° and
11° and the post-peak ones between 3° and 8°. These
values are in line with the data shown by Seed and
Boulanger (1991), Koerner et al. (1986), Stark and
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Poeppel (1994) and Bergado et al. (2006). In this case, the
post-peak strength was caused by the polishing of the
smooth geomembrane during the shear and the damage
on its surface. This damage was caused by the friction of
coarser particles within the clayed soil (Zettler et al. 2000;
Sharma et al. 2007). These facts were observed in the
visual inspection of the samples after testing.
The peak friction angles of the compacted soil/textured

geomembrane interfaces were between 18° and 32°, in
line with data from Mitchell and Mitchell (1992). The
post-peak angles were between 6° and 27°. GMr1 usually
yielded the largest peak values, because most of the
friction was provided by the soil itself. GMr2s1 presented
slightly larger values than GMr3, because the asperity
of GMr2s1was less dense (4 units/cm2) than that of GMr3
(9 units/cm2). This means that therewas more soil between
the asperities of GMr2s1 than between that of GMr3, and
hence the former moved more soil friction, causing larger
peak values.

3.3.3. Influence of type of soil
Small direct shear tests were carried out with the different
soils, S1, S2 and S3 to analyse their effects on the
interfaces. The sample dimensions were 60 mm long×
60mm wide×29 mm height. The normal stresses applied
were 100, 200 and 300 kPa and the constant shear rate was
0.006 mm/min. The soil samples were prepared by
modified Proctor density and water content (Table 2).

Figure 13 shows that the soil S1 presented the largest
peak interface friction angles, 37°. Furthermore, these
results show that the largest interface friction angles
belonged to S1/geomembranes, whose peak values were
between 29° and 32° and post-peak values were between
20° and 27°. Note that these values did not exceed the
angles of internal shear strength of the soil S1 itself
(Koerner et al. 1986; Koutsourais et al. 1991;Mitchell and
Mitchell 1992; Stark and Poeppel 1994; Bergado et al.
2006).
The soil S3 (Ip=34), which was more clayed than the

soils S1 (Ip=21) and S2 (Ip=17), presented the lowest
peak angle of friction, 25°, as well as the lowest peak
friction angles of S3/geomembrane interfaces, 18° to 20°,
and the lowest post-peak values, 6° to 13°. These findings
prove that the internal shear strength of soil was the main
interaction mechanism supplying interface shear strength
at high normal stress, as also pointed out by Koerner et al.
(1986) and Mitchell and Mitchell (1992).

3.4. Comparison of peak friction angles

Figure 14 compares the peak interface friction angles,
which were from lowest to highest: drainage in the order
GC/GM, GT/GM and soil/GM.
An exception to this were the interfaces formedwith the

geomembrane GMr3, which showed similar values with
the geotextiles and the drainage geocomposites tested and
the compacted soils S1 and S2. The only exception was the
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compacted soil S3 that presented the lowest values due to
its larger plasticity index.

4. CONCLUSIONS

Large direct shear tests were conducted on three critical
interfaces typically used for lined containment facilities:
GT/GM, drainage GC/GM and soil/GM. The following
main conclusions are derived from this study.

(a) The interface shear interaction mechanisms depend
on the normal stress, for GT/GM interfaces, the
interlocking and friction mechanisms take place at a
superficial level at low normal stress (< 50 kPa) and at
a matrix level at high normal stress (> 50 kPa). For
drainage GC/GM interfaces, the interlocking and
friction mechanism appeared at low normal stress
(< 50 kPa). However, only the friction mechanism
appears at high normal stress (> 50 kPa). For soil/
GM interfaces, the friction mechanism appeared at
low normal stress (< 100 kPa) and internal soil
friction at high normal stress (> 100 kPa).

(b) For GT/GM interfaces, the peak interface shear
strength mainly depended on the roughness of the
geomembrane. Whereas post-peak interface shear
strength appeared to depend on the type of
geotextile. Usually the geotextiles made with staple
fibres presented smaller post-peak values than
monofilaments.

(c) If the roughness of the geomembrane is irregular and
dense it is recommended that nonwoven geotextile
made of monofilaments was used, because it develops
a larger interlocking mechanism causing the interface
shear strength to increase.

(d) If the roughness of the geomembrane is regular and
evenly spread it is recommended to use the nonwoven
geotextile with needle-punched filaments, especially
for high normal stresses.

(e) For cover systems of landfills subject to low normal
stresses, it is recommend that monofilaments be used
rather than staple fibres, since the former mobilises
the interlocking mechanism at lower normal stresses.

(f) For drainage GC/GM interfaces, the shape of the
interface shear strength failure envelope depends on
the asperity height of the textured geomembrane. If
the asperity is smaller than 1mm the failure envelope
is linear, but if the asperity is larger than 1mm it is
bilinear.

(g) The comparison of peak friction angles of the
geosynthetic interfaces tested usually showed the
following interfaces frommost critical to least critical:
drainage GC/GM, GT/GM and soil/GM.
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NOTATION

Basic SI units are given in parentheses.

ca adhesion of interface (Pa)
Ip plasticity index (dimensionless)
δ interface friction angle (degrees)
σn normal stress (Pa)
τ interface shear strength (Pa)

ABBREVIATIONS

GT geotextile
GM geomembrane
GC drainage geocomposite

GT1, GT2, GT3 geotextile type 1, 2, 3
GMr1, GMr3,

GMr4
geomembrane type 1, 3, 4

GMr2s1, GMr2s2 geomembrane type 2 side 1, side 2
GC1, GC2 drainage geocomposite type 1, 2
S1, S2, S3 soil type 1, 2, 3
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