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Abstract

Spatial and temporal dissection of the genomic changes occurring during the evolution of human 

non–small cell lung cancer (NSCLC) may help elucidate the basis for its dismal prognosis. We 

sequenced 25 spatially distinct regions from seven operable NSCLCs and found evidence of 

branched evolution, with driver mutations arising before and after subclonal diversification. There 

was pronounced intratumor heterogeneity in copy number alterations, translocations, and 

mutations associated with APOBEC cytidine deaminase activity. Despite maintained carcinogen 

exposure, tumors from smokers showed a relative decrease in smoking-related mutations over 

time, accompanied by an increase in APOBEC-associated mutations. In tumors from former 

smokers, genome-doubling occurred within a smoking-signature context before subclonal 

diversification, which suggested that a long period of tumor latency had preceded clinical 

detection. The regionally separated driver mutations, coupled with the relentless and 

heterogeneous nature of the genome instability processes, are likely to confound treatment success 

in NSCLC.

Lung cancer is the leading cause of cancer-related mortality (1, 2). Understanding the 

pathogenesis and evolution of lung cancer may lead to greater insight into tumor initiation 

and maintenance and may guide therapeutic interventions. Previous work characterizing the 

genome of non–small cell lung cancer (NSCLC) has demonstrated that NSCLC genomes 

exhibit hundreds of nonsilent mutations together with copy number aberrations and genome 

doublings (3-9). Although subclonal populations have been identified within single biopsies 

(9), the extent of genomic diversity within primary NSCLCs remains unclear. Moreover, 

although both exogenous mutational processes, such as smoking (10-12), and endogenous 

processes, such as up-regulation of APOBEC cytidine deaminases (13-15), have been found 

to contribute to the large mutational burden in NSCLC, the temporal dynamics of these 

processes and their contribution to driver somatic aberrations over time remain unknown.

To investigate lung cancer evolution, we performed multiregion whole-exome and/or whole-

genome sequencing (M-seq WES/WGS) on a total of 25 tumor regions, collected from 

seven NSCLC patients who underwent surgical resection before receiving adjuvant therapy. 

The major NSCLC histological subtypes, including adenocarcinoma (LUAD) and squamous 

cell carcinoma (LUSC), were represented (table S1). Sequencing of tumor and normal DNA 

to mean coverage depths of 107× and 54× for M-seq WES and M-seq WGS, respectively 

(table S2), identified 1884 nonsilent and 76,129 silent mutations (16).

To evaluate the intratumor heterogeneity of nonsilent mutations, we classified each mutation 

as ubiquitous (present in all tumor regions) or heterogeneous (present in at least one, but not 

all, regions). Spatial intratumor heterogeneity was identified in all seven NSCLCs, with a 

median of 30% heterogeneous mutations (range 4 to 63%) (Fig. 1A and fig. S1). In the 

adenosquamous tumor from patient L002, heterogeneous mutations separated concordant 

with LUAD (regions R1 and R2) or LUSC (regions R3 and R4) histopathologies (fig. S2). 

Patients L003 and L008 each presented with two tumors in separate lobes of the lung. M-seq 

WES revealed 74% ubiquitous mutations in the tumors from L008, which indicated a clonal 
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origin. However, in L003, only a single mutation (EGFRL858R, the epidermal growth factor 

receptor in which Leu858 is replaced with Arg) was detected in both tumors (Fig. 1A). Given 

that EGFRL858R is a highly recurrent mutation (17) and also that no silent mutations were 

shared, we concluded that the tumors in L003 were of independent clonal origin, with the 

evolution of identical oncogenic events in parallel.

To resolve the extent of genomic diversity in NSCLC and to infer the ancestral relations 

between tumor regions, we estimated the fraction of tumor cells within each region 

harboring each mutation (16, 18). Almost all ubiquitous mutations (>99%) were classified as 

fully clonal within each region. Moreover, in most regions, the majority of heterogeneous 

mutations was clonal and, thus, present in all cells within the region (Fig. 1B and fig. S3). 

However, certain regions displayed considerable subclonal diversity. For example, >75% of 

heterogeneous mutations present in L004 R5 were subclonal (Fig. 1B), and this region 

consisted of two distinct subclonal populations. The subclonal structure of each tumor 

region was then used to construct phylogenetic trees, by using both maximum parsimony 

and unweighted pair-group methods. We also took into account regional copy number losses 

that resulted in shared truncal mutations becoming heterogeneous later in tumor evolution 

(16), such as a segment of chromosome 6 in LS01 (fig. S4) and the PAX7 mutation in the 

lymph node of L001 (Fig. 1A). Notably, all seven NSCLCs showed evidence of branched 

tumor evolution (fig. S5).

We next evaluated the regional heterogeneity of potential NSCLC driver mutations, 

classified into three categories on the basis of current evidence supporting driver mutation 

status (16). Every tumor showed evidence for ubiquitous, as well as heterogeneous, driver 

mutations, many of which were clonally dominant in a subset of tumor regions and entirely 

absent in others (Fig. 1B, fig. S3, and table S3). Note that the probability of missing a 

category 1 “high-confidence” driver gene by analyzing a single region for each tumor was 

on average 42% (range 0 to 67%) and 83% (range 67 to 100%) for all potential driver genes 

(categories 1 to 3), which highlights the potential limitations of assessing single tumor 

regions. Nevertheless, category 1 and 2 driver mutations were significantly more often 

truncal compared with mutations in nondriver genes in our M-seq analysis (P = 0.04). 

Consistent with these data, in The Cancer Genome Atlas (TCGA) cohort, previously 

reported driver genes (5, 19, 20) were significantly enriched for clonal mutations (P < 0.001) 

(fig. S6). These data indicate that, in NSCLC, most known driver mutations occur early in 

tumor evolution.

To determine the intratumor heterogeneity of copy number aberrations, we estimated integer 

DNA copy numbers for each tumor region (7, 16, 21, 22). A large fraction of the genome 

had undergone alterations in all tumors, and genomic profiles were more similar within 

tumors than between different tumors (fig. S7). To evaluate the spatial heterogeneity of 

potential tumor driver copy number aberrations, we explored the regional distribution of 

chromosomal segments identified as recurrently gained or lost in TCGA LUAD or LUSC 

tumors. Most segments were identified as aberrant in at least one tumor region, and many 

recurrent gains and losses were found to be heterogeneous in at least one tumor (Fig. 2A). 

For example, in L001, a focal EGFR amplification (chr7p11.2), as well as deletions of 

chromosomal segments harboring CDKN2A (chr9p21.3) and PTEN (chr10q23.31), was 
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observed in all regions, whereas, in L008, we observed heterogeneous copy number losses 

involving CDKN2A and PTEN. In support of copy number aberrations occurring later in 

tumor development, we also identified subclonal copy number aberrations within tumor 

regions. For instance, more than 15% of the genome in region R1 of L008 was subject to 

subclonal copy number alterations (fig. S8). Consistent with evidence of subclonal copy 

number aberrations, centromeric fluorescence in situ hybridization analyses confirmed 

numerical chromosomal diversity within individual tumor regions (fig. S9), which suggested 

that chromosomal instability may provide a substrate for subclonal competition.

The high-coverage M-seq WGS (mean 96×) for L002 and L008 enabled us to investigate the 

regional separation of large-scale genomic events in these samples. For the adenosquamous 

tumor L002, we identified 30 structural variants, most of which were found either in the 

LUAD region R1 or the LUSC region R3, but not both (table S4), which suggested that they 

occurred after subclonal diversification (Fig. 2B). By contrast, for L008, 48 of the 52 

identified structural variants were shared between the two tumor regions from different 

lobes of the lung, which suggested that the majority of these variants occurred before tumor 

metastasis to the other lobe (Fig. 2B). Notably, in L008, “chains” of translocations with 

highly clustered breakpoints were found between chromosomes 14 and 17, as well as 

chromosomes 17 and 19 (fig. S10 and table S4), which disrupted the FANCM and NF1 

tumor suppressor genes. Breakpoint homology profiling suggests involvement of either 

nonhomologous or alternative end-joining (23, 24), indicative of double-strand break events. 

This lesion pattern is consistent with chromoanagenesis (25) and indicates a punctuated 

evolution pattern where multiple oncogenic events may have occurred simultaneously (26).

Four tumors displayed evidence for whole-genome–doubling events (16). In three tumors 

(L001, L004, and L008), the genome-doubling event was shared across every tumor region; 

it occurred before diversification, with the majority of truncal mutations (84 to 88%) present 

at ploidy ≥2, indicative of a large mutational burden before genome doubling. In one tumor, 

L002, the majority of heterogeneous mutations were also present at ploidy ≥2, indicative of 

two independent genome-doubling events: one in the LUAD region and one in the LUSC 

region (fig. S11). Notably, every truncal driver mutation likely occurred before genome 

doubling.

To further explore the dynamics of the mutational processes shaping lung cancer genomes 

over time, the spectra of point mutations in each tumor were temporally dissected. Early 

(truncal) mutations likely reflect processes involved before and during tumor initiation and 

early development, whereas late (branched) mutations reveal mutational processes shaping 

the genome during tumor maintenance and progression, including those contributing to 

intratumor heterogeneity. For L002, we analyzed regions R1 and R3 separately to allow 

comparisons of LUAD and LUSC histologies within the same tumor.

In all tumors, we observed statistically significant shifts in the mutation spectra over time (P 

< 0.05 all cases) (Fig. 3A). Furthermore, every tumor exhibited a statistically significant 

decrease in the proportion of C>A transversions in late compared with early mutations (P < 

0.05) (Fig. 3A), although this was more pronounced in the LUAD cases [mean odds ratio: 

LUAD 3.13 (range 2.07 to 5.55) and LUSC 1.34 (range 1.21 to 1.46)]. Because C>A 
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transversions are associated with the mutagenic effects of tobacco smoke (12), a decrease in 

the proportion of C>A transversions indicates a relative decrease in the mutational burden 

attributable to smoking during LUAD development, in both former smokers and current 

smokers.

To validate these observations in a larger NSCLC cohort, mutations in TCGA LUAD and 

LUSC samples were temporally dissected (16). Consistent with our M-seq analyses, both 

TCGA LUAD and LUSC smokers and former smokers exhibited a decrease in the 

proportion of C>A transversions in late mutations (LUAD current smokers, P < 0.0001; 

former smokers, P < 0.0001; never-smokers, P = 0.147; LUSC current smokers, P = 0.003; 

former smokers, P < 0.0001; and never-smokers, P = 0.673) (Fig. 3B). Similarly, the least-

pronounced decrease was observed in LUSC current smokers; 25% of LUSC displayed no 

decrease in C>A transversions, compared with less than 10% in LUAD. The mutational 

footprint of smoking exhibits a strand bias with C>A transversions accumulating 

preferentially on the transcribed strand (10, 12). Both LUAD and LUSC former smokers 

revealed a statistically significant decrease in strand bias in late, compared with early, C>A 

transversions (LUAD, P = 0.00354; LUSC, P = 0.046), consistent with an ancestral footprint 

of smoking on these genomes. Conversely, no statistically significant difference was 

observed between early and late mutations in current smokers (LUAD, P = 0.23; LUSC, P = 

0.22).

In the majority of M-seq tumors, the decreased proportion of C>A mutations was 

accompanied by an increase in C>T and C>G mutations at TpC sites, indicative of 

APOBEC cytidine deaminase activity (13-15). Mutations consistent with APOBEC-

mediated mutagenesis were more pronounced on the branches than the trunk in four out of 

five LUAD M-seq samples (Fig. 3C). On average 31% (8 to 41%) of nonsilent branch 

mutations occurred in an APOBEC-mutation context compared with 11% (7 to 16%) of 

truncal nonsilent mutations. Branched driver genes PIK3CA, EP300, TGFBR1, PTPRD, and 

AKAP9 harbored mutations in an APOBEC context, which indicated a possible functional 

impact of APOBEC activity on subclonal expansion. Likewise, TCGA LUAD tumors with 

detectable APOBEC mutational signatures showed significant enrichment in late, compared 

with early, APOBEC mutations (P < 0.001) (fig. S12), and 20% of subclonal driver 

mutations were found to occur in an APOBEC context, compared with 11% of clonal driver 

mutations. However, for TCGA LUSC tumors with detectable APOBEC mutational 

signatures, temporal dissection of APOBEC mutations did not reveal such a clear trend (fig. 

S12), which indicated potential differences in the temporal dynamics of APOBEC-mediated 

mutagenesis between histological subtypes. In addition to temporal heterogeneity, spatial 

heterogeneity in both the proportion of APOBEC-associated mutations (Fig. 3, D and E) and 

APOBEC mRNA expression was observed in the M-seq tumors (fig. S13).

To gain a deeper understanding of NSCLC evolution, we focused on the two tumors with 

high-coverage M-seq WGS and temporally placed the genomic instability processes relative 

to the emergence of the most-recent common ancestor (Fig. 4). In patient L002, a current 

smoker, tobacco carcinogens played a significant role early in tumor development, with 

C>A transversions representing 39% of truncal mutations (Fig. 4A). Early mutations 

included multiple driver genes, such as TP53 and CHD8. Upon diversification into a LUAD 
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subclone and a LUSC subclone, copy number alterations (fig. S7) and driver mutations were 

acquired independently in both subclones, such as a stop-gain mutation in the tumor 

suppressor gene FAT1 on the LUSC branch and mutations affecting TGFBR1, ZFHX4, 

ARHGAP35, and PTPRD in the LUAD region. APOBEC-associated mutations were 

elevated specifically in the LUAD region, which included the driver mutations in TGFBR1 

and PTPRD, and the highest APOBEC3B mRNA expression was detected in this region (fig. 

S13).

The tumors from patient L008 also displayed truncal C>A transversions and spatial 

heterogeneity in APOBEC enrichment, with a more pronounced APOBEC signature in the 

tumor of the middle lobe compared with the upper lobe (Fig. 4B). In L008, we gained 

further temporal resolution by exploring the mutations before and after the truncal genome-

doubling event. All truncal driver mutations were found to occur before genome doubling. 

However, a tobacco smoke signature of C>A transversions was observed in more than 30% 

of truncal mutations both before and after doubling, and only in 21% and 9% of 

heterogeneous mutations in the two regions R1 and R3 from separate lobes of the lung. 

Because L008 ceased smoking more than 20 years before surgery (table S1), these data 

suggest that the genome-doubling event and truncal driver mutations occurred within a 

smoking carcinogenic context more than 20 years ago. Similarly, the genome-doubling 

event and truncal driver mutations in former smoker L001 also appeared to occur before 

smoking cessation more than 20 years before surgery (fig. S14). These data suggest a 

prolonged tumor latency period after genome doubling and before clinical detection in 

NSCLC.

Through sequencing multiple surgically resected tumor regions, we were able to unravel 

both the extent of genomic heterogeneity and the evolutionary history of seven NSCLCs. In 

contrast to the situation in clear cell renal cell carcinoma (ccRCC) (27, 28), known driver 

mutations typically occurred early in NSCLC development, and the majority of high-

confidence driver events were fully clonal. Conceivably, this explains the progression-free 

survival benefits associated with NSCLC oncogenic driver targeting (29). However, like 

ccRCC (27, 28), all NSCLCs exhibited heterogeneous driver mutations and/or recurrent 

copy number aberrations and many heterogeneous mutations gave the “illusion of clonality,” 

as they are present in all cells from certain regions but undetectable within other regions. 

Notably, although our multiregional sampling approach allowed us to evaluate spatial 

heterogeneity, only a small part of the entire tumor was sampled (on average <5%), which 

indicates that we might be underestimating the full extent of heterogeneity in these tumors.

Conceivably, intratumor heterogeneity may compromise the ability of a single biopsy to 

define all driver events comprehensively for optimal tumor control. For instance, L008 

presented with an activating BRAF (G469A) mutation (30) in all regions and an activating 

PIK3CA (E542K) mutation (31) only in region R3. Thus, a biopsy taken from R3 might 

suggest treatment with an inhibitor of the phosphatidylinositol 3-kinase–mammalian target 

of rapamycin (PI3K/mTOR) signaling axis and combination therapy. Conversely, a single 

biopsy from any other region would suggest treatment with a BRAF inhibitor, for which the 

tumor cells from R3 might be resistant because of the PIK3CA mutation (32).
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Our study also sheds light on the divergent genomic instability processes involved in 

NSCLC evolution and their dynamics over time. Evidence for spatial diversity in genomic 

instability processes suggests that opportunities to exploit such mechanisms therapeutically 

may be limited in this disease (33). In three tumors, we detected genome-doubling events 

occurring before subclonal diversification but after acquisition of driver mutations, 

consistent with findings in colorectal cancer that genome doubling may accelerate cancer 

genome evolution (34). The relation of chromosomal instability with drug resistance and 

early tumor recurrence (35, 36) suggests that targeting truncal driver events may be 

compromised by the initiation of chromosomal instability later in tumor evolution. These 

results, coupled with the observation that NSCLC tumors may have prolonged latency 

periods, support continued efforts to optimize methods for earlier detection.

Unexpectedly, we found that despite continuous exposure to the mutagens in tobacco 

smoke, tumors from smokers showed evidence that an additional genomic instability process 

(APOBEC-associated mutagenesis) likely contributes to tumor progression. A large 

proportion of subclonal driver mutations were found to occur in an APOBEC context, which 

suggests that the differences in mutation spectra over time and space may reflect the activity 

of the process generating the mutations, as well as the selective advantage of the acquired 

mutations.

The presence of subclonal, regionally separated driver events, coupled with the relentless 

and dynamic nature of genomic instability processes observed in this study, highlight the 

therapeutic challenges associated with NSCLC. Engaging an adaptable immune system may 

present a tractable approach to manage the dynamic complexity in NSCLC (37). 

Longitudinal studies will be required to decipher drivers of subclonal expansion, identify the 

origins of subclones contributing to metastatic recurrence, and resolve the evolutionary 

principles that underpin the dismal outcome associated with this disease.

Supplementary Material
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Fig. 1. Intratumor heterogeneity of somatic mutations in human NSCLC
(A) Heat maps show the regional distribution of all nonsilent mutations; presence (blue) or 

absence (gray) of each mutation is indicated for every tumor region. Cartoons depict the 

location of each tumor. Column next to heat map shows the intratumor heterogeneity; 

mutation present in all regions (blue), in more than one but not all (yellow), or in one region 

(red). Mutations are ordered on tumor driver category with categories 1 to 3 indicated in the 

right column in black, dark gray, and light gray, respectively (details in table S3). Total 

number of nonsilent mutations is provided below each tumor with percentage of 

heterogeneous mutations in brackets. In L001, the mutation marked by an asterisk (*) is 

additional to the germline MEN1 mutation. LN, lymph node; R, region. (B) Two-

dimensional Dirichlet plots show the cancer cell fraction (CCF) of the mutations in all 

regions of tumors L004; increasing intensity of red indicates the location of a high posterior 

probability of a cluster. In region R5, the majority of heterogeneous mutations are subclonal, 

and a cluster of mutations with a CCF below 1 can be observed.
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Fig. 2. Intratumor heterogeneity of chromosomal alterations in human NSCLC
(A) Distribution of potential tumor driver copy number alterations is indicated for each 

tumor region. The upper heat maps show the regional distribution of recurrently amplified 

(left) or deleted (right) chromosomal segments based on TCGA LUAD data, and the lower 

heat maps show the regional distribution of recurrently amplified or deleted chromosomal 

segments based on TCGA LUSC data. For each region, gain (red) or loss (blue) was 

determined relative to the mean ploidy. (B) Circos plots depicting inter- and 

intrachromosomal translocations, as well as deletions and insertions for regions R1 and R3 

for L002 (upper) and L008 (lower); shared events are indicated in blue, events private to 

region R1 are indicated in red, and private to region R3 in green. The outer circle represents 

the integer copy number data for R1 and the inner circle for R3 for each tumor sample; copy 

number segments with an integer value greater than mean ploidy are in red and those less 

than mean ploidy in blue.
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Fig. 3. Temporal and spatial dissection of mutation spectra in LUAD and LUSC samples
(A) Fraction of early mutations (trunk) and late mutations (branch) accounted for by each of 

the six mutation types in all M-seq samples. (B) Beeswarm plots showing the fraction of 

early mutations and late mutations accounted for by each of the six mutation types in every 

TCGA former smoker or current smoker with both early and late mutations. Significance is 

indicated. (C) APOBEC mutation enrichment odds ratio for early (trunk, blue bars) and late 

(branch, red bars) mutations for M-seq samples. The APOBEC signature encompasses C>T 

and C>G mutations in a TpC context (16).The 95% confidence intervals for Fisher’s exact 

test are indicated. (D and E) Three mutation types (C>A; C>G and C>T) at all 16 possible 

trinucleotide contexts for L002 (D) and L008 (E). For both samples, trunk mutations as well 

as branch mutations from two regions are depicted.
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Fig. 4. A model of the evolutionary history of NSCLC
Evolutionary histories of tumors from patients L002 (A) and L008 (B) are depicted. 

Genomic instability processes defining NSCLC evolution have been placed on their 

phylogenetic trees. Driver mutations occurring in an APOBEC context are highlighted with 

a blue box, and those occurring in a smoking context with a gray box. In each case, the 

timing of genome-doubling events is indicated with an arrow. CIN, chromosomal instability; 

muts, mutations.
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