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CHAPTER 1

Resumen en Español

1.1 Contexto y Objetivos de la Tesis

Las predicciones meteorológicas a corto y medio plazo son un producto muy popular y

demandado, tanto a nivel social como comercial. Estas predicciones proporcionan una esti-

mación de las variables meteorológicas de interés (por ejemplo temperatura o precipitación)

durante los próximos d́ıas, y se elaboran a partir de los datos proporcionados por modelos

numéricos de circulación atmosférica que permiten simular la evolución de la atmósfera a

partir de una condición inicial dada. Para tener en cuenta las distintas fuentes de incer-

tidumbre que influyen en este tipo de predicción se ha puesto a punto durante las últimas

décadas una metodoloǵıa probabiĺıstica basada en la utilización de diferentes predicciones

obtenidas a partir de condiciones iniciales ligeramente perturbadas. Esta predicción por

conjuntos (o ensembles) se ha convertido en la herramienta principal para la predicción

meteorológica moderna.

Paralelamente, se han producido notables avances en la modelización numérica de la

circulación acoplada océano-atmósfera que han permitido desarrollar una nueva generación

de modelos para la predicción estacional. A diferencia de la predicción a corto y medio

plazo, la predicción estacional no trata de predecir la temperatura o precipitación para un

instante de tiempo concreto en unos pocos d́ıas, sino las condiciones climáticas promedio

para las próximas estaciones (por ejemplo, en forma de anomaĺıas basadas en terciles:

fŕıo/normal/cálido, seco/normal/húmedo), con un horizonte temporal de hasta un año. La

predecibilidad a esta escala temporal se debe principalmente a la componente oceánica,

que tiene una dinámica más lenta que la atmosférica. Dadas las actuales limitaciones

de cómputo, la resolución espacial de estas predicciones es todav́ıa demasiado grosera

5



6 1. RESUMEN EN ESPAÑOL

(en torno a los cientos de km). Asimismo, la naturaleza probabiĺıstica de las predicciones

estacionales —además de la incertidumbre en las condiciones iniciales es frecuente también

considerar la incertidumbre en la formulación del modelo (predicciones multimodelo)—

dificulta en gran medida su uso, ya que obliga a utilizar herramientas espećıficas para su

adecuada validación y postproceso.

Pese a ello, las predicciones estacionales tienen un gran número de aplicaciones y

ayudan a la toma de decisiones en muchos sectores socioeconómicos importantes como

la agricultura, la enerǵıa, el transporte, la salud y la hidroloǵıa. Por este motivo, su

uso no ha dejado de aumentar en las últimas décadas. Entre las variables con mayor

demanda (temperatura, precipitación y viento), la precipitación es la más problemática

por su carácter mixto (ocurrencia/cantidad) y su alta variabilidad espacial (véase, por

ejemplo, Schmidli et al., 2007; Bundel et al., 2011). Por esta razón, la presente Tesis

Doctoral se centra exclusivamente en esta variable.

A diferencia del corto y medio plazo, los actuales modelos numéricos para la predicción

estacional no son fiables globalmente sino que, para cada variable de interés y estación del

año, su utilidad está limitada a ciertas regiones del mundo, principalmente los trópicos

(Stockdale et al., 1998). Además, la baja resolución espacial de estos modelos resulta

insuficiente para la mayoŕıa de aplicaciones prácticas y sus predicciones no pueden ser

utilizadas directamente en estudios de impacto, por lo que es necesario realizar algún tipo

de postproceso o regionalización (downscaling en inglés) que permita llevarlas a una escala

local útil.

Para ello, dos enfoques conceptualmente distintos han sido desarrollado en las últimas

décadas: el downscaling dinámico y el estad́ıstico. Mientras que el downscaling dinámico

se basa en el uso de modelos regionales que, anidados a las salidas de baja resolución de

los modelos globales, simulan numéricamente el clima a una resolución más alta sobre un

área limitada (véase, por ejemplo, Giorgi and Mearns, 1999; Laprise, 2008), el downscaling

estad́ıstico (SD, por sus siglas en inglés) se basa en modelos estad́ısticos/algoritmos que

relacionan las salidas de baja resolución de los modelos globales (predictores) con las

observaciones locales (predictandos) sobre la zona de interés (véase, por ejemplo, von

Storch et al., 1993). En esta Tesis Doctoral se considera únicamente este último, puesto

que se ha comprobado su potencial para mejorar la calidad de las predicciones globales

de precipitación estacional (Feddersen and Andersen, 2005) y su coste computacional es

drásticamente menor. Sin embargo, mientras que el SD ha sido ampliamente utilizado para

la modelización del cambio climático, la experiencia hasta la fecha para la predicción esta-

cional es más limitada (véanse, por ejemplo, los resultados del informe D52.1 del proyec-

to SPECS: Review of the different statistical downscaling methods for s2d prediction).

Además, las técnicas de SD han sido desarrolladas y aplicadas en su mayor parte para los
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extratrópicos, ya que varios factores dificultan su éxito en los trópicos (Hewitson et al.,

2014), precisamente la zona de mayor predecibilidad a escala estacional.

En base a las consideraciones anteriores, en esta Tesis se plantean los siguientes tres

objetivos principales:

1. Realizar una validación exhaustiva de la calidad de las predicciones de precipitación

estacional dadas por los modelos globales y estudiar el efecto que el fenómeno El

Niño-Oscilación del Sur (ENSO, por sus siglas en inglés) —el principal factor de

predecibilidad estacional (ver, por ejemplo, Goddard and Dilley, 2005; Doblas-Reyes

et al., 2010)— pueda tener sobre la misma.

2. Adaptar las distintas metodoloǵıas y técnicas para SD para su correcta aplicación

en el contexto de la predicción estacional, contemplando diversos factores que no se

han tenido en cuenta antes, tales como el efecto de la incertidumbre en el reanálisis

sobre las predicciones regionalizadas.

3. Analizar las ventajas y limitaciones de las distintas metodoloǵıas y técnicas para SD

en el contexto de la predicción estacional, considerando para ello las medidas de vali-

dación adecuadas que permitan evaluar el (posible) valor añadido de las predicciones

regionalizadas de precipitación con respecto a las salidas directas de los modelos

globales.

Para alcanzar estos objetivos, gran parte de la Tesis se centra en una región de es-

tudio particularmente interesante localizada en los trópicos: Filipinas. Los motivos que

sustentan esta elección se exponen en detalle en el Caṕıtulo 4.

1.2 Śıntesis

Esta Tesis Doctoral está organizada en cuatro bloques principales: un primer bloque

introductorio (Parte I) al que sigue un bloque metodológico (Parte II), un bloque central

en el que se presentan los principales resultados (Parte III) y un último bloque (Parte IV)

en el que se exponen las principales conclusiones.

La Parte I abre con un caṕıtulo preliminar (Caṕıtulo 3) en el que se introducen en

primer lugar las bases de la predicción estacional. A continuación se hace un breve barrido

por las diferentes fases que ha ido experimentando la misma, desde la predicción emṕırica

—basada principalmente en el concepto de teleconexión (ver caṕıtulo para más detalles)—

hasta el uso de los actuales modelos globales del clima (GCMs, por sus siglas en inglés),

complejos modelos numéricos que resuelven las ecuaciones que describen los procesos que

ocurren en los diferentes componentes del sistema climático (y las interacciones entre ellos).
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Posteriormente se introduce la predicción por conjuntos (la predicción estacional ha de in-

terpretarse en términos probabiĺısticos), aśı como el concepto de multimodelo, en el que

diferentes GCMs se combinan con la idea de cuantificar la incertidumbre en la predicción

debida a diferencias en la formulación de los distintos modelos. En este punto, se presenta

el dataset de ENSEMBLES (Weisheimer et al., 2009), cuyas simulaciones se utilizan a lo

largo de toda la Tesis por ser el multimodelo de predicciones estacionales retrospectivas

(hindcasts) más largo y completo hasta la fecha. Se estudia como los modelos que compo-

nen este dataset reproducen la temperatura en la superficie del mar (SST, por sus siglas

en inglés) observada en la región El Niño 3.4 y cómo simulan, a nivel mundial, los pa-

trones de teleconexión del Niño con la precipitación. Se analiza también, a nivel mundial,

la distribución espacio-temporal de sus patrones de bias y drift (ver caṕıtulo para más

detalles). Después se presenta una breve discusión sobre la verificación de las predicciones

estacionales (con especial atención a la reliability) y se introducen las métricas que se

utilizan para tal fin a lo largo de la Tesis. Para acabar, se da una perspectiva general

del estado del arte en el campo de la predicción estacional (sistemas operativos, servicios

climáticos, etc.), aśı como de los avances que pueden esperarse en el mismo en un futuro

próximo.

En el Caṕıtulo 4 se presenta el caso de estudio regional considerado para el desarrollo de

gran parte de la Tesis, Filipinas, y se discute su idoneidad. En primer lugar, basándonos en

el dataset de observaciones de alta calidad disponible para esta Tesis —precipitación diaria

en 42 estaciones gestionadas por la Philippine Atmospheric, Geophysical and Astronomical

Services Administration (PAGASA) y distribuidas uniformemente por todo el páıs para

el peŕıodo 1981-2005— se hace un estudio descriptivo del clima de la región. A con-

tinuación, se lleva a cabo una validación regional de la precipitación de los modelos de

ENSEMBLES (se consideran las predicciones deterministas y se toma como referencia

las observaciones en las 42 estaciones PAGASA). Los resultados de esta validación —los

modelos muestran importantes errores sistemáticos, que cambian sustancialmente entre

localidades próximas— ponen de manifiesto la necesidad existente de regionalizar (llevar

a la escala local útil) las predicciones globales dadas por los GCMs.

Por tanto, en el primer caṕıtulo de la Parte II (Caṕıtulo 5) se proporciona una descrip-

ción completa de las diferentes metodoloǵıas disponibles para el downscaling estad́ıstico

—Perfect Prog (PP) y Model Output Statistics (MOS)— y se explican las diferencias entre

ambos, aśı como sus relativos ‘pros y contras’. Se introduce también el concepto de vali-

dación cruzada, el cual es aplicado con asiduidad durante toda la Tesis. A continuación,

se analizan en detalle los diferentes métodos de SD (SDMs, por sus siglas en inglés) uti-

lizados en la Tesis. Entre los métodos PP (que infieren la precipitación local basándose

en relaciones estad́ısticas entre las variables sinópticas de larga escala y las observaciones
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locales), se consideran distintas configuraciones de la técnica de análogos y de modelos

lineales generalizados (GLMs, por sus siglas en inglés). En cuanto a los métodos MOS,

se consideran dos que son comúnmente utilizados para la corrección del bias (métodos

MOS-BC), que ajustan la precipitación global dada por los GCMs apoyándose en las

osbservaciones, a nivel de distribución. Todos estos métodos se aplican en condiciones

‘perfectas’, es decir, utilizando predictores de reanálisis tanto para la fase de calibración

como para la de predicción (ver caṕıtulo para más detalles) sobre cuatro de las estaciones

PAGASA —representativas de los cuatro climas diferentes presentes en el páıs (ver Sección

4.1),— considerando para ello un marco de validación cruzada para el peŕıodo 1981-2005,

y se analizan sus ventajas e inconvenientes para el SD de predicciones estacionales. En

base a los resultados de este análisis, se escoge la configuración de las distintas técnicas

de SD que será utilizada durante el resto de la Tesis.

Más allá de la configuración de las propias técnicas, en el Caṕıtulo 6 se analizan varios

factores que son relevantes para el SD de predicciones estacionales, estableciéndose el mar-

co metodológico bajo el cual se aplicarán las mismas durante la Tesis. En particular, se

aborda la búsqueda de predictores (y dominio geográfico sobre el que se definen los mis-

mos) adecuados para la región piloto, Filipinas —necesario para los métodos PP,— el tipo

de dato utilizado para la calibración de las distintas técnicas (estacional o anual; ver el

caṕıtulo para más detalles) y se detalla el preproceso que se hace de las distintas variables

predictoras antes de entrar en los diferentes SDMs.

La mayoŕıa de los resultados centrales de la Tesis se presentan en la Parte III, la cual

se estructura en torno a tres caṕıtulos clave.

En el Caṕıtulo 7 se evalúa la calidad de las predicciones estacionales globales de pre-

cipitación dadas por los modelos de ENSEMBLES (se toma como referencia una rejilla

mundial de observaciones) para el peŕıodo 1961-2000. Para ello se aplica una metodoloǵıa

de validación probabiĺıstica basada en terciles. Esta misma metodoloǵıa se aplica tam-

bién para una validación regional detallada sobre Filipinas, tomando en este caso como

referencia la precipitación observada en las 42 estaciones PAGASA. Además, puesto que

ENSO es el principal factor de predecibilidad estacional (ver, por ejemplo, Goddard and

Dilley, 2005; Doblas-Reyes et al., 2010), se analiza también la relación existente entre

este fenómenos y la calidad de las predicciones de los modelos globales. En particular,

se estudia cómo dichos modelos reproducen la SST en la región El Niño 3.4 y se hace un

estudio de las teleconexiones de El Niño/La Niña con la precipitación (se calcula para ello

la frecuencia de ocurrencia de cada tercil en los eventos Niño/Niña), determinando hasta

qué punto los diferentes modelos son capaces de reproducir los patrones observados.

En la primera parte del Caṕıtulo 8 se cuantifica la incertidumbre del reanálisis, para lo

cual se comparan dos reanálisis actuales de referencia sobre una región extensa que con-
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tiene Filipinas y se calculan sus diferencias. A continuación, se evalúa el impacto que

tiene la elección del reanálisis considerado para la calibración de los métodos PP en las

predicciones regionalizadas. Para ello, se considera un método PP ilustrativo y se apli-

ca (teniendo en cuenta los resultados del Caṕıtulo 6) sobre las 42 estaciones PAGASA

tanto en condiciones ‘perfectas’ (en modo validación cruzada para el peŕıodo 1981-2005)

como en condiciones ‘no perfectas’ (utilizando predictores GCM). En este último caso,

se consideran dos horizontes temporales diferentes: las predicciones estacionales de los

modelos de ENSEMBLES en modo hindcast (peŕıodo 1981-2005) y las proyecciones de

cambio climático para el modelo del Max Planck Institute (MPI) ECHAM5 (hasta el final

del siglo 21).

Como colofón de la Tesis se presenta un caṕıtulo clave (Caṕıtulo 9) en el que se analizan

las ventajas y limitaciones de las distintas metodoloǵıas (MOS-BC y PP) y técnicas para

SD en el contexto de la predicción estacional. En primer lugar, se evalúa el ĺımite de

predecibilidad que puede alcanzarse mediante la aplicación de técnicas de SD en Filipinas.

Para ello se considera un método ilustrativo PP y otro MOS-BC, los cuales se aplican

en condiciones ‘perfectas’ sobre las 42 estaciones PAGASA (en modo validación cruza-

da para el peŕıodo 1981-2005). A continuación, y con el objetivo de ver si el SD puede

mejorar la calidad de las salidas directas de precipitación de los modelos globales (más

allá de reducir sus biases sistemáticos), se aplican dos métodos PP y otros dos MOS-BC

a los modelos de ENSEMBLES, y las predicciones regionalizadas se comparan con las

correspondientes salidas directas sobre las 42 estaciones, considerando para ello métricas

de verificación adecuadas que caracterizan el accuracy y la reliability (para el caso de

predicciones deterministas y probabiĺısticas basadas en terciles, respectivamente).

Por último, en la Parte IV se resumen las principales conclusiones de la Tesis. Además,

se enumeran algunos de los logros conseguidos (principalmente publicaciones) y se da una

breve perspectiva de las ĺıneas futuras de trabajo a seguir.

1.3 Principales Resultados

A continuación se exponen brevemente los principales resultados obtenidos en cada

uno de los caṕıtulos que conforman esta Tesis.

Caṕıtulo 3: Predicción Estacional

Además de presentar las bases de la predicción estacional y dar una visión general del

estado del arte en este campo, en este caṕıtulo también se incluyen una serie de contribu-

ciones personales que se comentan brevemente a continuación:
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� Se calcularon las teleconexiones observadas entre El Niño/La Niña y la precipitación

a nivel mundial, obteniéndose resultados similares a los de otros estudios previos

(véase, por ejemplo, Ropelewski and Halpert, 1987; van Oldenborgh et al., 2000;

Mason and Goddard, 2001; Kayano et al., 2009; Shaman and Tziperman, 2011; Zhang

et al., 2012; Yadav et al., 2013; Zhang et al., 2013). En particular, se encuentran

importantes patrones de teleconexión, especialmente en los trópicos.

� Se calculó la correlación entre la SST observada y la simulada por los modelos

de ENSEMBLES en la región El Niño 3.4, encontrando valores muy altos para

todas las inicializaciones y estaciones, con la excepción de la parte central del año

(aproximadamente entre Mayo y Agosto) para la inicialización de Febrero, lo cual

está de acuerdo con la barrera de predecibilidad de primavera para el ENSO, que

ha sido documentada en estudios previos (véase, por ejemplo, Zheng and Zhu, 2010;

Tippett et al., 2011; Yan and Yu, 2012; Duan and Wei, 2013). Estos resultados

ponen de manifiesto la predecibilidad del fenómeno ENSO.

� Se calcularon los patrones mundiales de bias y drift (ver el caṕıtulo para más detalles)

de la precipitación de los modelos de ENSEMBLES para cuatro meses ilustrativos

(Febrero, Mayo, Agosto y Noviembre) —dada la configuración de los modelos con-

siderados (ver Weisheimer et al., 2009, para más detalles), esta selección de meses

permite ver la evolución del drift a lo largo de la simulación.— En general, tanto

el bias como el drift se encuentran principalmente en los trópicos y son más im-

portantes sobre los océanos que sobre tierra. Hay que destacar que el drift es tan

importante como el bias para ciertas regiones y modelos. Sin embargo, mientras que

el primero se corrige de forma rutinaria en la actualidad, rara vez hasta la fecha se

ha tratado la corrección de este último (a pesar de su presencia sistemática en las

predicciones estacionales actuales).

� Basándose en la metodoloǵıa propuesta por Weisheimer and Palmer (2014) —la cual

es ligeramente modificada en esta Tesis (ver el caṕıtulo para más detalles),— se cal-

culó la reliability de las predicciones probabiĺısticas de precipitación (se consideraron

terciles) para las versiones de 15 y 51 miembros del modelo ECMWF System 4 sobre

las 21 regiones de tierra definidas en Giorgi and Francisco (2000), para el peŕıodo

1981-2010. Los resultados encontrados fueron mejores para la versión de 51 miem-

bros. Sin embargo, se vio que las probabilidades predichas se concentran en torno

a 1/3 (el valor climatológico esperado) en este caso, lo cual da lugar a una mejor

reliability puesto que, como consecuencia de los pesos aplicados, la pendiente de la

recta de reliability (que pasa siempre por el punto de intersección climatológico) no
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se ve tan afectada por errores en otros tramos de probabilidad.

Caṕıtulo 4: El Caso de Estudio Regional: Filipinas

Estas son algunas de las razones que sustentan la elección de Filipinas como caso de

estudio para gran parte del desarrollo de esta Tesis:

� Filipinas es un archipiélago de más de 7000 islas, con una topograf́ıa compleja y varios

climas diferentes en un área relativamente pequeña, por lo que resulta un banco de

pruebas ideal para estudios de SD (Moron et al., 2009). Además, el clima de la

región se ve fuertemente influenciado por el fenómeno ENSO (Koide et al., 2012) y

los monzones del suroeste (verano) y noreste (invierno) (Wang, 2002), siendo uno

de los páıses más propensos a desastres naturales del mundo (Benson, C., 1997;

Israel and Briones, 2012). Por estas razones, el páıs podŕıa beneficiarse en gran

medida de la aplicación de técnicas de SD para la regionalización de las predicciones

estacionales.

� Se validó la precipitación global de los modelos de ENSEMBLES (predicciones de-

terministas) a nivel regional, tomando como referencia la precipitación observada

en las 42 estaciones PAGASA y se vio que los biases son en general fuertes (por

encima de 1000 mm/estación en muchos casos) y vaŕıan sensiblemente entre loca-

lidades cercanas. Además, la calidad de las predicciones es particularmente mala

en verano, cuando el monzón del suroeste tiene lugar y se producen los impactos

socioeconómicos más graves. Para superar estas limitaciones, el uso de técnicas de

SD se hace necesario. Sin embargo, estas técnicas se han desarrollado casi exclusi-

vamente para los extratrópicos —hay múltiples problemas que todav́ıa dificultan su

éxito en los trópicos (Hewitson et al., 2014), — por lo que su aplicación en Filipinas

resulta un reto.

Caṕıtulo 5: Métodos de Regionalización Estad́ıstica

Con el fin de optimizar su configuración y compararlas entre śı, las distintas técnicas de

SD que se describen en este caṕıtulo se aplicaron sobre cuatro de las estaciones PAGASA

—representativas de los distintos climas de Filipinas (ver Sección 4.1)— en condiciones

‘perfectas’, utilizando una validación cruzada para el peŕıodo 1981-2005 (ver caṕıtulo para

más detalles). Estos son los resultados más importantes que se obtuvieron:

� Se consideraron la técnica de análogos y los GLMs como representativos de la

metodoloǵıa PP (ver caṕıtulo para más detalles). En cuanto a la técnica de análogos,
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se utilizó una versión determinista que tiene en cuenta sólo el análogo más cercano

y otra estocástica en la que la predicción se obtiene sorteando al azar entre las ob-

servaciones correspondientes a los 15 análogos más cercanos. El comportamiento de

los dos métodos es muy similar en cuanto a la reproducción de distribuciones —en

particular, ambos muestran un déficit de d́ıas de lluvia predichos (lo que da lugar

a leve bias seco) y subestiman ligeramente la varianza.— Sin embargo, la versión

determinista produce mejores correlaciones que la estocástica y es por tanto la única

considerada en esta Tesis Doctoral.

En cuanto a los GLMs, se consideró una configuración determinista en la que la

predicción se obtiene a partir los valores esperados estimados y otra estocástica en

la que se introduce un procedimiento de simulación (ver Sección 5.4.1-2 para más

detalles). El método determinista no es capaz de predecir precipitaciones pequeñas

y además subestima en gran medida la varianza —la mayoŕıa de los valores predi-

chos se concentran en un rango muy pequeño,— lo que da lugar a un bias húmedo

(superior al 10%) y una fiabilidad distribucional muy deficiente. Por el contrario, el

bias está centrado alrededor de cero y la varianza predicha se asemeja mucho más

a la observada en la versión estocástica —simular permite reproducir todo el rango

de valores de precipitación,— mejorando en gran medida la fiabilidad distribucional.

Sin embargo, las correlaciones decaen fuertemente como efecto de la componente

estocástica introducida, que implica una reducción en la capacidad predictiva del

método. En base a su mejor rendimiento en términos de distribuciones, se puede

presumir que los GLM estocásticos son necesarios para SD de proyecciones de cam-

bio climático. Sin embargo, en la predicción estacional es clave evaluar el accuracy,

por lo que es importante aislar la señal determinista de la componente estocástica.

Por tanto, los GLM considerados en esta Tesis Doctoral son deterministas. En

comparación con los métodos de análogos, las correlaciones mostradas por el GLM

determinista son claramente mejores.

� Con respecto a la metodoloǵıa MOS-BC (ver caṕıtulo para más detalles), se con-

sideraron dos métodos comúnmente utilizados para la corrección del bias del tipo

q-q mapping, uno de ellos paramétrico y el otro emṕırico. Se vio que ambos (es-

pecialmente el emṕırico) mejoran la baja fiabilidad distribucional mostrada por la

precipitación de ERA-Interim. Sin embargo, las correlaciones obtenidas (muy pareci-

das para los dos métodos) son peores que las correspondientes al reanálisis. Aún aśı,

éstas son más altas que las mostradas por los métodos de análogos y muy parecidas

a las obtenidas para el GLM determinista (a excepción de la correlación interanual,

que es mejor en este último). En cuanto a fiabilidad distribucional, el bias y la va-
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rianza predicha (especialmente esta última) son mejores en el método emṕırico. El

paramétrico sobrestima claramente la varianza, lo cual podŕıa reflejar una limitación

intŕınseca para simular precipitaciones extremas (este método supone que tanto la

precipitación observada como la simulada se ajustan a una distribución gamma, lo

cual podŕıa no ser cierto). Por su parte, los buenos resultados ofrecidos por el método

emṕırico podŕıan deberse a cierto sobreajuste (over-fitting).

Caṕıtulo 6: Aspectos Metodológicos para la Regionalización Estad́ıstica de Predicciones Esta-

cionales

Centrándose en Filipinas, se analizaron una serie de aspectos relevantes para el SD de las

predicciones estacionales. Como resultado de las conclusiones que se exponen a continuación,

en este caṕıtulo se establece el marco metodológico bajo el cual se aplican todos los métodos

de SD que se consideran en la Tesis:

� Aplicando un método PP ilustrativo en condiciones ‘perfectas’ sobre las 42 estaciones

PAGASA (en modo validación cruzada para el peŕıodo 1981-2005) se encontró que

la combinación de variables de circulación (velocidad del viento zonal en diferentes

niveles verticales) y termodinámicas (humedad y temperatura) sobre un dominio que

cubre el páıs proporciona los mejores resultados, mientras que el potencial predictivo

es menor si se utilizan sólo variables de circulación. Por tanto, se considera la

combinación de predictores P4 (ver Tabla 6.1) para todos los métodos PP que se

aplican en la Tesis.

� Se evaluaron las diferencias entre utilizar para la fase de calibración sólo datos co-

rrespondientes a la propia estación a predecir (dato estacional) o todo el conjunto

de datos disponibles (dato anual). Para dos configuraciones diferentes de un método

PP basado en GLMs (aplicado en condiciones ‘perfectas’ en modo validación cruza-

da para el peŕıodo 1981-2005) se encontró que el dato estacional produce mejores

resultados que el anual, sobre todo para la parte central del año. En cambio, se vio

que los métodos MOS-BC no son sensibles al tipo de dato (estacional o anual) usado

para la calibración. En consecuencia, todos los SDMs considerados en esta Tesis se

calibran utilizando el dato estacional.

� Se calculó el bias de los modelos de ENSEMBLES para los predictores de larga

escala incluidos en P4 (ver Tabla 6.1) sobre el dominio usado para SD (Figura 6.1),

encontrándose en general errores importantes. Además, más allá de las diferencias

esperadas entre modelos, en algunos casos los patrones espaciales obtenidos vaŕıan



1.3. PRINCIPALES RESULTADOS 15

considerablemente de un mes a otro (dentro de la misma estación), lo que obliga a

llevar a cabo un preproceso (o harmonización) adecuado de estas variables —que las

haga compatibles con el reanálisis utilizado para la calibración— antes de entrar en

cualquier método PP (ver caṕıtulo para más detalles).

Caṕıtulo 7: Validación de Predicciones Estacionales Globales de Precipitación: El Papel del

Fenómeno ENSO en la Calidad de las Mismas

� Se validaron las predicciones estacionales globales de precipitación de los modelos

de ENSEMBLES (se tomó como referencia una rejilla mundial de observaciones)

para el peŕıodo 1961-2000, aplicando una metodoloǵıa probabiĺıstica para terciles en

términos del ROC Skll Score (ROCSS). A pesar de que la predecibilidad encontrada

vaŕıa en función de la región, la estación y el lead-time, se encontró que 1) los trópicos

son la región donde las predicciones tienen mayor calidad, 2) en general, el invierno

(la primavera) es la estación en la que la calidad de las predicciones es mayor (menor)

y 3) la calidad de las predicciones se debilita a medida que aumenta el lead-time,

aunque los patrones espaciales de ROCSS se conservan (sobre todo sobre el norte de

Sudamérica y el archipiélago Malayo).

� Para estudiar el papel que el fenómeno ENSO tiene sobre la predecibilidad encontra-

da a nivel mundial, se llevó también a cabo una validación condicionada (restringida

a eventos El Niño y La Niña) y se hizo un estudio de las teleconexiones de El Niño/La

Niña con la precipitación (en base a la frecuencia de ocurrencia de cada tercil en los

eventos Niño/Niña). Los resultados obtenidos indican que la distribución espacial

y temporal de la predecibilidad estacional no sólo está determinada por el efecto

directo de ENSO —y por lo tanto por la habilidad de los modelos para predecir la

SST en la región El Niño 3.4— sino más bien por su efecto indirecto a través de

las teleconexiones asociadas con el Niño y La Niña —y por lo tanto, limitada por la

capacidad de los modelos para simular los patrones de teleconexión observados.—

� Siguiendo la misma metodoloǵıa basada en terciles que se utilizó a nivel mundial,

se realizó también una validación probabiĺıstica regional sobre Filipinas (tomando

como referencia en este caso la precipitación observada en las 42 estaciones PAGASA)

para el peŕıodo 1981-2005. Los resultados vaŕıan en función del modelo y la zona

del páıs considerada. Sin embargo, de acuerdo con la validación determinista llevada

a cabo en el Caṕıtulo 4, se encuentran ROCSS aceptables en todas las estaciones

(especialmente en invierno y primavera) menos en verano, cuando se producen los

impactos socioeconómicos más graves como consecuencia del monzón del suroeste.
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� También se hizo un estudio regional de las teleconexiones de El Niño/La Niña con

la precipitación observada en las 42 estaciones PAGASA para el peŕıodo 1981-2005

(siguiendo la misma metodoloǵıa utilizada a nivel mundial). En consonancia con

los resultados obtenidos previamente por Lyon et al. (2006), los resultados de este

análisis ponen de manifiesto la fuerte influencia del fenómeno ENSO sobre el clima

de Filipinas (Koide et al., 2012), dejando lluvias por debajo (por encima) de lo

normal en los eventos Niño (Niña), excepto en verano, cuando la señal se invierte

(especialmente en los eventos Niño). Las teleconexiones más débiles tienen lugar en

verano, la estación en la que la calidad de las predicciones de los modelos es peor.

Caṕıtulo 8: El Efecto de la Incertidumbre en el Reanálisis sobre las Predicciones Regional-

izadas

� Una comparación entre los reanálisis de referencia ERA-Interim y JRA-25 sobre un

área extensa que incluye Filipinas reveló que mientras las diferencias son mı́nimas

para la circulación (vientos zonales), existe una gran incertidumbre para las varia-

bles termodinámicas (humedad y temperatura). Por tanto, la hipótesis de que los

predictores de reanálisis reflejan las condiciones atmosféricas ‘reales’ a gran escala

no se cumple para la región considerada.

� Se consideró un método PP ilustrativo para evaluar el efecto que tiene en las predic-

ciones regionalizadas la elección del reanálisis considerado para la calibración. En

primer lugar, en modo validación cruzada para el peŕıodo 1981-2005, se utilizaron

por separado los reanálisis ERA-Interim y JRA-25 para obtener los coeficientes de

regresión que relacionan la precipitación observada en las 42 estaciones PAGASA

con los predictores de larga escala incluidos en P4 (ver Tabla 6.1), los cuales fueron

seleccionados en base a los resultados del Caṕıtulo 6. Se vio que los resultados son

sensibles al reanálisis utilizado si la humedad y/o la temperatura —las variables que

muestran la mayor incertidumbre— se incluyen en el campo predictor. Sin embar-

go, a nivel puntual (en promedio espacial), las diferencias en la correlación diaria

son como máximo de 0.1 (0.03), por lo que esta sensibilidad parece ser pequeña en

condiciones ‘perfectas’. Posteriormente, los coeficientes obtenidos de la calibración

con ERA-Interim y JRA-25 se aplicaron por separado a predictores del modelo MPI-

ECHAM5 y de los modelos de ENSEMBLES, con el fin de generar proyecciones de

cambio climático (hasta final de siglo) y predicciones estacionales (para el peŕıodo

1981-2005) locales, respectivamente. En el primer caso, las diferencias inducidas por

el reanálisis que se detectan en condiciones ‘perfectas’ (en clima presente) se ampli-

fican considerablemente cuando se incluyen entre los predictores la humedad y/o la
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temperatura, las cuales son indispensables para capturar la señal correcta de cambio

climático (Goodess and Palutikof, 1998; Wilby et al., 1998). En particular, las deltas

proyectadas para el final del siglo (2071–2100 menos 1981–2000) difieren en más de

un 35% (en promedio para todo el páıs) entre los dos reanálisis. Por el contrario, en

el segundo caso, las predicciones estacionales regionalizadas son muy similares para

la mayoŕıa de los modelos, las estaciones y las zonas del páıs, independientemente

del reanálisis utilizado. Estos resultados demuestran que la elección del reanálisis

considerado para la calibración de los métodos PP es una fuente de incertidumbre

(error) importante para estudios de cambio climático, mientras que no es de espe-

cial relevancia en el contexto de la predicción estacional —algo que, hasta nuestro

conocimiento, no hab́ıa sido determinado antes.—

Caṕıtulo 9: Ventajas y Limitaciones de los Métodos de Regionalización Estad́ıstica para Predic-

ciones Estacionales

� Se aplicaron dos métodos PP y otros dos MOS-BC a los modelos de ENSEMBLES

y las predicciones regionalizadas obtenidas se compararon con las correspondientes

salidas directas sobre las 42 estaciones PAGASA para el peŕıodo 1981-2005, con-

siderando métricas de verificación que caracterizan el accuracy y la reliability (para

las predicciones deterministas y probabiĺısticas basadas en terciles, respectivamente).

En general, los resultados obtenidos vaŕıan en función de la estación del año, pero

también de la región, el modelo y el método de SD escogidos. Además, son más

sensibles a la metodoloǵıa considerada (MOS-BC o PP) que al SDM usado (para

una misma metodoloǵıa).

� En términos de accuracy, ni los métodos MOS-BC ni los PP dan lugar a mejoras

relevantes (con respecto a la precipitación dada por el modelo) ni en invierno ni

en primavera, lo que sugiere que el valor añadido que puede obtenerse por medio

de técnicas SD es limitado para aquellos casos en los que los modelos ya simulan

satisfactoriamente la precipitación. Sin embargo, mientras que los métodos MOS-

BC no mejoran claramente (o incluso empeoran) la precipitación de los modelos

en verano y en otoño, los métodos PP proporcionan en general resultados mejores

(peores) que sus salidas directas en verano (otoño). En particular, éstos últimos dan

lugar a importantes mejoras de accuracy en verano en la parte noroeste del páıs.

Los resultados obtenidos en términos de reliability son muy similares a los obtenidos

para el accuracy, lo que pone de manifiesto la idoneidad de la metodoloǵıa propuesta

por Weisheimer and Palmer (2014) —la cual se modifica ligeramente en este Tesis—

para estudios a nivel regional (ver caṕıtulo para más detalles).
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� Para los métodos PP se encontró que los casos en los que se mejora (empeora) la

calidad —entendida como accuracy y reliability— de la salida directa, los modelos

reproducen mejor (peor) las variables predictoras de larga escala, las cuales se definen

sobre un dominio sinóptico, que la precipitación, la cual se ve más afectada por

distintos efectos locales. Esto sugiere que los métodos PP podŕıan aprovechar la

habilidad de los modelos para reproducir la larga escala para indirectamente obtener

mejores (en comparación con la salida directa) predicciones locales de precipitación.

1.4 Publicaciones Relacionadas

Parte de los resultados centrales de esta Tesis Doctoral (Parte III) han dado lugar a

publicaciones en revistas cient́ıficas de reconocido prestigio en el campo de las ciencias

atmosféricas. En particular:

� El Caṕıtulo 7 se basa en los resultados de “Manzanas, R., M. D. Fŕıas, A. S. Cofiño,

and J. M. Gutiérrez, 2014: Validation of 40 year multimodel seasonal precipitation

forecasts: The role of ENSO on the global skill. Journal of Geophysical Research:

Atmospheres, 119 (4), 1708–1719, doi:10.1002/2013JD020680.”

� El Caṕıtulo 8 se basa en los resultados de “Manzanas, R., S. Brands, D. San–

Mart́ın, A. Lucero, C. Limbo, and J. M. Gutiérrez, 2015: Statistical downscaling in

the tropics can be sensitive to reanalysis choice: A case study for precipitation in

the Philippines. Journal of Climate, 28 (10), 4171–4184, doi:10.1175/JCLI-D-14-

00331.1.”

� El Caṕıtulo 9 se basa en los resultados de “Manzanas, R., J. M. Gutiérrez, and A.

Lucero, 2016: Can statistical downscaling and bias correction methods improve the

accuracy and reliability of seasonal forecasts? Enviado a Climate Dynamics.”

Además, en paralelo al desarrollo de la Tesis han surgido otras publicaciones cuyos

resultados no han sido incluidos aqúı:

� Haciendo uso de parte del conocimiento metodológico adquirido, algunos de los

métodos de downscaling utilizados en esta Tesis han sido aplicados sobre España

en “San–Mart́ın, D., R. Manzanas, S. Brands, S. Herrera, and J. M. Gutiérrez,

2016: Reassessing model uncertainty for regional projections of precipitation with

an ensemble of statistical downscaling methods. En revisión en Journal of Climate.”

� Manzanas, R., 2016: Can statistical downscaling improve the skill of global seasonal

forecasts in Senegal? En revisión en Theoretical and Applied Climatology.
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� Manzanas, R., L. K. Amekudzi, K. Preko, S. Herrera, and J. M. Gutiérrez, 2014:

Precipitation variability and trends in Ghana: An intercomparison of observational

and reanalysis products. Climatic Change, 124 (4), 805–819, doi:10.1007/s10584-

014-1100-9.

� Gutiérrez, J. M., D. San–Mart́ın, S. Brands, R. Manzanas, and S. Herrera, 2013:

Reassessing statistical downscaling techniques for their robust application under cli-

mate change conditions. Journal of Climate, 26 (1), 171–188, doi:10.1175/JCLI-D-

11-00687.1.

� Brands, S., R. Manzanas, J. M. Gutiérrez, and J. Cohen, 2012: Seasonal predictability

of wintertime precipitation in Europe using the Snow Advance Index. Journal of

Climate, 25 (12), 4023–4028, doi:10.1175/JCLI-D-12-00083.1.

1.5 Software Desarrollado: MeteoLab

Para la mayoŕıa de los cálculos realizados en esta Tesis se ha utilizado MeteoLab,

una toolbox de Matlab® para downscaling estad́ıstico desarrollada por el Grupo de Me-

teoroloǵıa de Santander que puede descargarse libremente desde http://meteo.unican.

es/trac/MLToolbox. Mientras que la técnica de análogos y las de corrección del bias

(ver Caṕıtulo 5) ya estaban implementadas en dicha toolbox, los métodos GLMs han sido

desarrollados en esta Tesis y se encuentran disponibles en la versión actual. A contin-

uación se muestra el código necesario para reproducir con MeteoLab todos los métodos de

downscaling que se han utilizado en esta Tesis (se sigue la nomenclatura introducida en el

Caṕıtulo 5). Para más detalles sobre las distintas opciones de configuración de los mismos

se refiere al lector a http://meteo.unican.es/trac/MLToolbox/wiki/Downscaling.

method.type = 'ANALOGES'; % Metodo
method.properties.NumberOfPCs = 30; % Numero de PCs
method.properties.AnalogueNumber = 1; % Numero de analogos
method.properties.InferenceMethod = 'mean'; % Metodo de inferencia

Código MeteoLab para definir el método AN det.

method.type = 'ANALOGES'; % Metodo
method.properties.NumberOfPCs = 30; % Numero de PCs
method.properties.AnalogueNumber = 15; % Numero de analogos
method.properties.InferenceMethod = 'rand'; % Metodo de inferencia

Código MeteoLab para definir el método AN sto.

http://meteo.unican.es/trac/MLToolbox
http://meteo.unican.es/trac/MLToolbox
http://meteo.unican.es/trac/MLToolbox/wiki/Downscaling
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method.type = 'GLM'; % Metodo
method.properties.ThresholdPrecip = 0.1; % Umbral dias humedos (mm)
method.properties.NumberOfPCs = 15; % Numero de PCs
method.properties.SimOccurrence = 'false'; % No simular ocurrencia
method.properties.SimAmount = 'false'; % No simular cantidad

Código MeteoLab para definir el método GLM det.

method.type = 'GLM'; % Metodo
method.properties.ThresholdPrecip = 0.1; % Umbral dias humedos (mm)
method.properties.NumberOfPCs = 15; % Numero de PCs
method.properties.SimOccurrence = 'true'; % Simular ocurrencia
method.properties.SimAmount = 'true'; % Simular cantidad

Código MeteoLab para definir el método GLM sto.

method.type = 'GQM'; % Metodo
method.properties.Variable = 'pr'; % Variable
method.properties.threshold = 0.1; % Umbral dias humedos (mm)
method.properties.FreqCorrection = 'true'; % Correccion de frecuencias

Código MeteoLab para definir el método QM par.

method.type = 'EQM'; % Metodo
method.properties.Variable = 'pr'; % Variable
method.properties.threshold = 0.1; % Umbral dias humedos (mm)
method.properties.extrapolation = 'constant'; % Tipo de extrapolacion
method.properties.quantiles = 1:99; % Percentiles corregidos
method.properties.FreqCorrection = 'true'; % Correccion de frecuencias

Código MeteoLab para definir el método QM emp.

1.6 Ĺıneas Futuras de Trabajo

Por un lado, algunos de los resultados obtenidos durante la realización de esta Tesis han

abierto la puerta para el desarrollo de nuevos trabajos que constituyen una continuación

natural de algunos de los análisis presentados en esta memoria:

� En la Sección 3.4.1-2 se introdujo una caracterización del drift de las predicciones

estacionales, considerando para ello la precipitación de los modelos de ENSEMBLES.

Para evaluar tanto la posible mejora del drift en los modelos globales recientes, como

la sensibilidad del mismo al tamaño del ensemble, se ha extendido el estudio realizado

al System 4 (la nueva versión del modelo del ECMWF incluido en ENSEMBLES, el
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System 3). Los resultados preliminares indican que el drift sigue siendo importante,

encontrándose valores especialmente altos en los trópicos y sobre los océanos. Sin

embargo, ensembles pequeños (alrededor de 5 miembros) parecen ser suficientes para

una caracterización precisa del mismo. Por motivos de tiempo, este trabajo no ha

podido ser finalizado durante el transcurso de la Tesis y es una de las primeras ac-

tividades que se abordarán una vez finalizada la misma, poniendo especial interés en

las implicaciones que puedan derivarse para la corrección del bias de las predicciones

estacionales.

� Como se explicó en la Sección 3.5.1, en Weisheimer and Palmer (2014) se evaluó

la reliability de las predicciones estacionales globales de precipitación del System

4 del ECMWF (51 miembros) para las 21 regiones de tierra definidas en Giorgi

and Francisco (2000), y los resultados se presentaron en una escala que va desde

1 (peligrosa) a 5 (perfecta). Sin embargo, hemos detectado que esta clasificación

es sensible a diversos factores. Por ejemplo, los resultados de la misma pueden

verse alterados si el intervalo de confianza considerado para la pendiente de la recta

de regresión que determina la reliability (obtenido por bootstrapping) no se adecua

al tamaño del ensemble disponible. Asimismo, dichos resultados también pueden

cambiar sustancialmente en función de la región de agregación considerada. Por

tanto, se pretende analizar con más detalle todos estos factores, en colaboración con

los autores de la metodoloǵıa original.

Por otro lado, y en el marco de iniciativas y colaboraciones internacionales surgidas

durante el desarrollo de la Tesis, se plantean también una serie de trabajos y ĺıneas de

investigación a desarrollar en el futuro próximo:

� Parte del conocimiento metodológico y las técnicas de downscaling desarrolladas

durante esta Tesis han sido aplicadas a diferentes regiones dentro de los proyectos

SPECS (http://www.specs-fp7.eu) y EUPORIAS (http://euporias.eu). En

particular, en SPECS se ha llevado a cabo un experimento en el que se comparan

downscaling dinámico y estad́ıstico (incluyendo diferentes metodoloǵıas) en Brasil.

Por su parte, en EUPORIAS se ha analizado el valor añadido de las predicciones

estacionales regionalizadas en Etioṕıa (en el contexto de un servicio climático para la

detección temprana de seqúıas) y en dos zonas piloto en Europa (Inglaterra e Italia).

Durante los próximos meses se van completar todos estos estudios (por ejemplo,

en el caso de Etioṕıa se ha visto que la incertidumbre en las observaciones puede

tener efecto sobre las predicciones regionalizadas) y se van a recoger los principales

resultados en una serie de publicaciones que, dada la heterogeneidad de las regiones

http://www.specs-fp7.eu
http://euporias.eu
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consideradas (en términos de variabilidad climática, predecibilidad estacional, efecto

del ENSO, etc.), supondrán un marco de referencia para estudios de downscaling en

el contexto de la predicción estacional.

� A ráız de una estancia de investigación en el Servicio Nacional de Meteoroloǵıa e

Hidroloǵıa del Perú (SENAMHI: http://www.senamhi.gob.pe), se dispone de un

dataset de observaciones de alta calidad que cubre todo el páıs. Dada la comple-

ja variabilidad climática del mismo (una notable diversidad geográfica hace que la

mayoŕıa de climas del mundo estén presentes), aśı como el fuerte efecto del fenómeno

ENSO sobre la región, se plantea una ĺınea futura de trabajo en la que se explo-

rará, en colaboración con el SENAMHI y aplicando la experiencia y el conocimiento

metodológico adquiridos durante el desarrollo de esta Tesis, el potencial de la apli-

cación de las distintas técnicas de downscaling para la predicción estacional en Perú.

� Por último, los métodos de downscaling desarrollados en esta Tesis han contribui-

do al experimento 1a de la acción COST VALUE (http://www.value-cost.eu),

que tiene como objetivo realizar una intercomparación sistemática de las distin-

tas metodoloǵıas y técnicas de downscaling estad́ıstico en el contexto del cambio

climático. Como resultado de esta iniciativa, se ha generado una base de datos con

las predicciones de más de 40 métodos de downscaling diferentes (el ensemble más

amplio hasta la fecha). Además, el Grupo de Meteoroloǵıa de Santander ha desa-

rrollado un portal que permite definir ı́ndices y medidas de validación y aplicarlos al

conjunto de métodos disponibles. Por tanto, otra ĺınea futura de trabajo será incluir

nuevas métricas de verificación de interés para la escala temporal de la predicción

estacional (como por ejemplo la correlación interanual), con el objetivo de evaluar

el potencial de los distintos métodos en este nuevo contexto de aplicación.

http://www.senamhi.gob.pe
http://www.value-cost.eu


CHAPTER 2

Context, Objectives and Structure of the Thesis

2.1 Context

Short-to-medium-range weather forecasts are a very popular and demanded product,

both socially and commercially. These forecasts provide an estimate of the meteorological

variables of interest (e.g. temperature or precipitation) for the next days, and are elabo-

rated based on numerical models which simulate the evolution of the atmosphere from a

given initial condition. To take into account the different uncertainty sources which affect

these forecasts, a probabilistic methodology based on a number of predictions obtained

from slightly different initial conditions (ensemble forecasts) has been developed during the

last decades. Ensemble forecasts are the main tool for modern meteorological forecasting.

In parallel, important advances in the modelling of the atmosphere-ocean coupled

circulation have allowed to develop a new generation of numerical models for seasonal

forecasting. Differently from short-to-medium-range weather forecasts, seasonal forecasts

do not aim to predict the temperature or precipitation at a given moment within a few

days. Instead, seasonal forecasts provide information on the average conditions which can

be expected for the next seasons (e.g. based on tercile anomalies: cold/normal/warm,

dry/normal/wet), up to one year ahead. Predictability at this longer time-scale is mainly

due to the slow dynamics of the ocean. Due to the existing computational limitations,

the spatial resolution of current seasonal forecasts is still too coarse (around hundreds of

km). Moreover, the probabilistic nature of these forecasts —not only the uncertainty in

the initial conditions but also in the model formulation (multimodel predictions) is often

considered— makes them difficult to use, since specific tools are needed for their suitable

validation and postprocess.

23
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Despite this, seasonal forecasts have a great number of applications and help decision-

making in many important socio-economic sectors such as agriculture, energy, transport,

health and hydrology. For this reason, their use has been continuously increasing dur-

ing the last decades. Among the most commonly demanded variables (temperature,

precipitation and wind), precipitation is the most problematic due to its mixed (occur-

rence/amount) character and high spatial variability (see, e.g., Schmidli et al., 2007; Bun-

del et al., 2011). Therefore, this Thesis focuses exclusively on the latter variable.

Differently from short-to-medium-range weather forecasts, current numerical models

for seasonal forecasting are not globally reliable. Instead, for each variable of interest and

season of the year, their usefulness is limited to certain regions of the world, mainly the

tropics (Stockdale et al., 1998). Moreover, the low spatial resolution of these models is

insufficient for most of practical applications so their raw outputs can not be directly used

for impact studies. As a result, proper postprocess is needed to translate the coarse global

seasonal forecasts to the useful local-scale (downscaling).

To this aim, two conceptually different approaches have been developed in the last

decades: dynamical and statistical downscaling. Whereas dynamical downscaling is based

on the use of regional models which, driven at the boundaries by the coarse-resolution out-

puts from the global models, numerically simulate the climate at a higher resolution over

a limited area (see, e.g., Giorgi and Mearns, 1999; Laprise, 2008), Statistical Downscaling

(SD) relies on statistical models/algorithms which link the coarse-resolution outputs from

the global models (predictors) with the local observations (predictands) over the area of

interest (see, e.g., von Storch et al., 1993). In this Thesis, only the latter, which has demon-

strated potential to improve the skill of global seasonal precipitation forecasts (Feddersen

and Andersen, 2005) and is drastically cheaper in terms of computational resources, is

considered. Nevertheless, whereas SD has been extensively used for climate change mod-

elling, there is only limited experience regarding its application for seasonal forecasts (see,

for instance, the results from deliverable D52.1 of the SPECS project: Review of the dif-

ferent statistical downscaling methods for s2d prediction). Moreover, SD techniques have

been mostly developed and applied for extratropical regions since manifold problems still

hinder their successful application in the tropics (Hewitson et al., 2014), the region with

the highest seasonal predictability.

2.2 Objectives

Based on the previous considerations, this Thesis poses the following three main ob-

jectives:

1. To assess the skill of global seasonal precipitation forecasts and to study the effect
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that El Niño-Southern Oscillation (ENSO) —the main driver of seasonal predicta-

bility (see, e.g., Goddard and Dilley, 2005; Doblas-Reyes et al., 2010)— may have

on it.

2. To methodologically adapt the existing approaches and techniques for SD for their

suitable application in the context of seasonal forecasting, taking into account a

number of factors which have never been considered before, such as the effect of

reanalysis uncertainty on the downscaled predictions.

3. To analyze the advantages and limitations of the different approaches and techniques

for SD in the context of seasonal forecasting, considering the proper verification met-

rics which allow to assess the (possible) added value of local downscaled precipitation

forecasts with respect to the raw model global outputs.

To achieve these goals, a great part of the Thesis focuses on a particularly interesting

region located in the tropics: the Philippines. The reasons that support this choice are

detailed in Chapter 4.

2.3 Structure

The Thesis is organized in four main blocks: an introductory block (Part I) which is

followed by a methodological block (Part II), a central block in which the main results are

presented (Part III) and a final block (Part IV) in which the main conclusions obtained

are given.

In Part I there is an opening chapter (Chapter 3) which introduces seasonal forecasting

(as well as many of the concepts which will be later used throughout the Thesis) and

provides a general overview of the state-of-the-art in this field. In addition, some personal

contributions (see the chapter for details) are also presented.

Next, in Chapter 4, the regional case study considered, the Philippines, is introduced and

its appropriateness for the development of the Thesis is discussed.

Part II is formed by two methodological chapters. Chapter 5 introduces the theoret-

ical background needed on the different approaches and techniques available for SD and

provides a detailed analysis of the Statistical Downscaling Methods (SDMs) considered

through the rest of the Thesis.

Chapter 6 establishes the methodological framework followed for the application of the

latter SDMs, covering different aspects —from the selection of predictors to the procedure

followed to harmonize the model predictor data used.—

Most of the core results of the Thesis are given in Part III, which is structured around

three key chapters. In Chapter 7 we carry out a user-oriented validation of global seasonal
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precipitation forecasts for a forty-year period (1961-2000), which allows for robustly iden-

tifying those regions of the world with significant seasonal skill. Additionally, since ENSO

is known to be the major driver of seasonal predictability, the role that this phenomenon

plays on the skill found is also analyzed.

In Chapter 8, focusing on the Philippines, we assess the sensitivity of the downscaled

results to the choice of reanalysis used for the calibration of the PP methods, both in

‘perfect’ and ‘non-perfect’ conditions (see the chapter for details). In the latter case, two

different time-horizons are considered: seasonal forecasts in hindcast mode (for the period

1981-2005) and climate change projections (up to the end of the 21st century).

In Chapter 9 we analyze, also for the Philippines, whether SD can serve to improve the

skill of the raw model global precipitation forecasts (beyond reducing their systematic

biases). To this, and building on the lessons learnt from Chapters 6 and 8, we apply a

number of SDMs representative of the different approaches for SD introduced in Chapter 5

and analyze their relative advantages and limitations by comparing the downscaled results

against the corresponding raw model outputs for the period 1981-2005, focusing on accu-

racy and reliability aspects (for deterministic and tercile-based probabilistic predictions,

respectively).

To conclude, Part IV summarizes the main conclusions obtained from the Thesis.

Additionally, some of the achievements reached are enumerated and a brief outlook of

future work is also given.
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Introduction
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CHAPTER 3

Seasonal Forecasting

Whereas short-to-medium-range weather forecasts focus on the daily weather expected

over the next two weeks, seasonal forecasts provide information on how average seasonal

weather conditions are likely to be from a few months up to one year in advance. These

forecasts have a great number of applications for end-users in different socio-economic

sectors such as agriculture, energy, health or hydrology, and help decision-making. Typi-

cally, temperature and precipitation are the main variables of interest for end-users since

they are needed in most impact applications. Moreover, there exist a number of world-

wide observational datasets for these variables, suitable to validate the performance of

retrospective seasonal forecasts for the last few decades. Therefore, most of the studies

carried out so far in this field have focused on these variables —together with Sea Sur-

face Temperature (SST),— although there has been a recent interest in other variables

such as wind speed or some climate-related indices, for instance the Fire Weather Index

(FWI). This Thesis focuses exclusively on precipitation since previous studies have shown

that this variable is less skillfully predicted than temperature over land areas (see, e.g.,

Kirtman and Pirani, 2009; Barnston et al., 2010; Doblas-Reyes et al., 2010; Bundel et al.,

2011) and its downscaling is much more troublesome (see, e.g., Murphy, 1999; Schoof and

Pryor, 2001; Schmidli et al., 2007).

This chapter presents the basics of seasonal forecasting, introducing many of the con-

cepts that will be used later along the Thesis, and provides a brief overview of the state-

of-the-art in this field.

29
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3.1 Introduction to Seasonal Forecasting

Weather changes on a daily basis. While modern forecasting systems can accurately

predict weather events a few days into the future, daily predictions beyond two weeks are

limited by the non-linear character of the atmosphere dynamics (the complexity and the

strong sensitivity to the initial conditions of the processes involved make precise long-term

forecasts impossible).

However, to some extent, it is possible to predict deviations from the mean seasonal

climatology some months in advance. Seasonal forecasts do not aim to predict the timing

of a particular weather event with any accuracy —e.g., how much is going to rain in

Madrid on January 2nd;— however, the likelihood of receiving above-, near- or below-

normal (i.e., tercile-based categories) precipitation next winter can be predicted in some

cases and for some regions, particularly in the tropics.

Much of the skill in predicting departures from normal seasonal averages is derived

from some of the slowly varying components of the global climate system, especially the

SST, whose slow fluctuations can influence the weather around the world, providing thus a

source of predictability at this time-scale. These effects are not easily noticed in day-to-day

weather events but become evident in long-term weather averages.

Seasonal forecasting originated in the early 1990s. Initially, operational forecasts were

entirely based on empirical/statistical models (typically lagged linear regression methods)

which allowed to predict mean seasonal changes based on SST anomalies, several months

in advance. However, during the end of the 1990s, atmosphere-ocean coupled models, and

later Global Climate Models (GCMs1) including other climate components such as the soil

and the oceanic-ice, started to be used for operational seasonal forecasting. Nowadays,

both empirical/statistical and dynamical approaches are used and are often combined.

3.2 Empirical Seasonal Forecasting

Anomalies on large-scale, slowly varying variables such as SST and/or sea-ice cover

may force changes in atmospheric circulation patterns and hence departures from normal

seasonal weather throughout the world (atmospheric teleconnections). Until the recent

development of GCMs, seasonal forecasts were almost exclusively based on empirical/sta-

tistical methods which exploited these teleconnections by relating the observed seasonal

rainfall anomalies with observed lagged SST anomalies, typically by means of multivariate

linear regression schemes (see, e.g., Nicholls, 1984; Hastenrath, 1995).

1In this Thesis we will refer to all global dynamical climate models as GCMs, independently of their
complexity, i.e., the previous Atmosphere-Ocean Coupled Models (AOCMs) or the modern Earth System
Models (ESMs).
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Figure 3.1: Global precipitation anomaly from the extended TRMM-combined dataset
(http://trmm.jpl.nasa.gov/2b31.html) in blue, the Southern Oscillation Index
(SOI: http://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi) in green
and the Niño-3 index (http://www.cgd.ucar.edu/cas/catalog/climind/Nino_3_3.4_
indices.html) in black. Extracted from Haddad (2004).

The strongest links between SST patterns and seasonal weather are those associated

with El Niño-Southern Oscillation (ENSO), which is known to be the dominant mode of

seasonal variability (Doblas-Reyes et al., 2010). As an illustrative example, Figure 3.1

shows the interannual anomalies of ENSO (as represented by the Southern Oscillation In-

dex and the Niño-3 index) and global precipitation (obtained from the TRMM-extended

dataset), which exhibit similar fluctuation patterns, modulated by the extreme ENSO

episodes (El Niño and La Niña years). At a regional level, ENSO can disrupt the normal

pattern of weather around the globe, leading to large changes in seasonal rainfall that

can bring droughts in some regions and floods in others. Figure 3.2 shows the regional

teleconnections between El Niño and precipitation, calculated following a tercile-based

approach with VASClimO v1.12 observations, in terms of the frequencies of occurrence of

below-, near- or above- normal precipitation categories in El Niño periods. For instance,

2VASClimO v1.1 (Beck et al., 2005) is a gauge-based dataset providing monthly precipitation totals on
a 2.5◦ resolution grid for the global land areas (except the Antarctica) for the period 1951-2000.

http://trmm.jpl.nasa.gov/2b31.html
http://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi
http://www.cgd.ucar.edu/cas/catalog/climind/Nino_3_3.4_indices.html
http://www.cgd.ucar.edu/cas/catalog/climind/Nino_3_3.4_indices.html
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red color for the dry tercile (left column) indicates those grid boxes where dry conditions

are dominant in El Niño years. This figure illustrates the potential of simple empirical

seasonal forecasting, especially in the tropics, the region exhibiting the strongest telecon-

nections. Noteworthy, the study of ENSO teleconnections is an active research area and

a number of studies have focused on the effects of this phenomenon on precipitation (see,

e.g., Ropelewski and Halpert, 1987; van Oldenborgh et al., 2000; Mason and Goddard,

2001; Kayano et al., 2009; Shaman and Tziperman, 2011; Zhang et al., 2012; Yadav et al.,

2013; Zhang et al., 2013).
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Figure 3.2: Relative frequency of occurrence for the dry and wet terciles (left and right
columns, respectively) in the eleven El Niño Winter years defined in Pozo-Vázquez et al.
(2005) —1964, 1966, 1970, 1973, 1977, 1983, 1987, 1988, 1992, 1995 and 1998— within
the period 1960-2000, for the different seasons (in rows). Red (blue) colors correspond to
values above (under) 1/3, the expected climatological frequency. VASClimO v1.1 was the
observational dataset considered. Dashed lines indicate the tropics/extratropics division.
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Apart from SST, other well-known climate indices representing major climatic features

such as the North Atlantic Oscillation (NAO) may be used to estimate their associated

regional impacts. For instance, based on the Snow Advance Index (SAI) (Cohen and

Jones, 2011) —an index describing the Eurasian snow cover increase in October,— Brands

et al. (2012) developed a simple statistical method to predict winter (December-January-

February) precipitation totals for the Iberian Peninsula and Norway. Likewise, Eden et al.

(2015) presented recently a new empirical system based on multiple linear regression for

producing probabilistic forecasts of seasonal surface air temperature and precipitation

across the globe, taking as primary predictor the global CO2 equivalent concentration.

Figure 3.3: Diagram illustrating some of the interactions between the different components
of the climate system. Source: UCAR (http://www2.ucar.edu).

3.3 Dynamical Seasonal Forecasting: Global Climate Models (GCMs)

Global Climate Models (GCMs) have their origin in numerical weather prediction and

are based on the general physical principles of fluid dynamics and thermodynamics. In

particular, they solve complicated differential equations that describe the processes that

occur in the different components of the global climate system (e.g. the atmosphere and

the oceans) and their interactions (see Figure 3.3).

http://www2.ucar.edu
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These numerical computations are performed in a discretized three-dimensional space

formed by grid boxes (see Figure 3.4) whose typical horizontal resolution is about hundreds

of kilometres. This implies a number of simplifying assumptions and requires parametriz-

ing some processes which occur at spatial scales smaller than the grid box size (e.g., con-

vection), using to this aim semi-empirical approaches which change from model to model.

At the interfaces, the atmosphere is coupled to the land and oceans through exchanges of

heat, moisture and momentum. To this, all GCMs contain some form of coupler module,

which tie all components together, interpolating fluxes and controlling their interactions.

DISCRETIZATION (4D) + PARAMETRIZATION
of subgrid processes

NUMERICAL MODELING

Figure 3.4: Schema of the discretization process followed in a GCM to solve the equations
describing the climate system.

As the scientific understanding and the available computational resources increased,

GCMs successively became more and more complex. Nowadays, GCMs are being replaced

by Earth System Models (ESMs), which incorporate new biogeochemical components (e.g.,

representation of the carbon cycle) and more detailed descriptions of the physical processes

involved in the whole climate system.

Differently from weather forecasting, GCMs used in seasonal forecasting are initialized

a few times per month and run forward in time from six months to one year rather than

just a few days. Although there is not universally accepted terminology, we will use the

terms initialization time and lead-time in this Thesis. Whereas the former refers to the

moment in which the model is initialized, the latter makes reference to the time passed from

the initialization moment to the beginning of the target season (season to be predicted).

For instance, initializations of August 1st and May 1st could be used to forecast autumn

(SON) at one and four-month lead, respectively (see Figure 3.5).
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Figure 3.5: Illustration of the terms initialization and lead time for the target season SON.

Initialization is one of the critical stages in dynamical seasonal forecasting. Each

component of the GCM needs to be appropriately initialized with the best available ob-

servations. However, information about the state of the ocean and sea-ice is scarce in

comparison with the data available for the atmosphere (Balmaseda et al., 2007). Thus,

the initial experiments for seasonal forecasting were carried out using atmospheric models

with persistent SST conditions, like in the PROVOST (PRediction Of climate Variations

On Seasonal to interannual Time-scales) project (see, e.g., Branković and Palmer, 2000;

Doblas-Reyes et al., 2000). However, it is generally accepted that the predictive skill of

atmosphere-ocean coupled models is larger than the skill of models using persistent SST

conditions and therefore, state-of-the-art seasonal forecasting models are fully coupled

models which use different assimilation approaches (4D-Var, Kalman filters, etc.).

As mentioned in Section 3.2, predictability at seasonal time-scales arises from the

slowest components of the climate system, specially the SST. However, even if the slow

evolution of SST could be predicted in a deterministic way, seasonal forecast predictions

are intrinsically probabilistic. Probabilistic forecasts can be produced in various ways

(Stockdale et al., 2010). A common approach is to generate an ensemble of simulations by

using a set of slightly different initial conditions. Because of these little initial differences,

the forecasts follow different evolutions, providing a variety of atmospheric trajectories

—but still compatible with the underlying slow variables.— Rather than issuing a single

yes-no prediction, the ensemble members can be used to compute the likelihood of a

certain outcome (e.g., receiving above-normal precipitation for the next season). Figure

3.6 illustrates the probabilistic nature of seasonal forecasts, as well as the aforementioned

initialization time, lead-time and target season concepts.

In order to properly evaluate their performance and skill (see Section 3.5), and to

establish a reference climatology, seasonal GCMs are typically run in retrospective mode

for historical periods of decades as if they had been operational during that time. These

retrospective forecasts are referred to as hindcasts. It is crucial that hindcasts extend for
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Figure 3.6: Schema illustrating the probabilistic nature of seasonal forecasts obtained
from different initial conditions. Black lines show the trajectories of the different ensemble
members.

a period long enough to assure statistically significant results. For instance, Shi et al.

(2015) have recently shown that sampling uncertainty due to the length of the hindcast

period is large. In particular, they found that the skill for forecasting the North Atlantic

Oscillation (NAO) varies within a 40-year period, with ‘artificial’ high levels of skill found

for some 20-year subperiods. Moreover, their conclusions are in agreement with the results

obtained in previous studies (see, e.g., Müller et al., 2005; Kumar, 2009). As a consequence

from this, seasonal forecasts from the longest-to-date and most comprehensive multimodel

seasonal hindcast, provided by the EU project ENSEMBLES (see Section 3.4.1), are con-

sidered in this Thesis. They were retrieved from the Meteorological Archival and Retrieval

System (MARS) of the ECMWF (http://software.ecmwf.int/wiki/display/WEBAPI/

Access+MARS).

3.4 Multimodel Ensembles

Besides the uncertainty in the initial conditions, the particular model formulation (e.g.,

parametrizations) is a key source of uncertainty which leads to different representation of

processes and therefore to different model climatologies.

http://software.ecmwf.int/wiki/display/WEBAPI/Access+MARS
http://software.ecmwf.int/wiki/display/WEBAPI/Access+MARS
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Multimodel approaches where ensembles from different GCMs are combined allow to

quantify the prediction uncertainty due to differences in model formulation. Multimodels

generally produce more skillful forecasts than any single model does (see, e.g., Palmer et al.,

2004; Wang et al., 2009), due to error cancellation and a reduction of overconfidence (the

ensemble spread is widened while the ensemble mean error is reduced). As a result, the

latest operational seasonal forecasts are based on multimodel systems (see Section 3.6.1).

In Europe, multimodel ensembles were produced in a series of initiatives such as

DEMETER (Palmer et al., 2004) and ENSEMBLES (Weisheimer et al., 2009), and are

still the focus in active projects such as SPECS (http://www.specs-fp7.eu). The first

two projects were the precursors of the operational EUROSIP, which includes the models

from the European Centre for Medium-Range Weather Forecast (ECMWF), the Centre

National de Recherches Météorologiques (CNRM-Météo-France) and the UK Met Office

(UKMO), ans has been recently expanded to incorporate the CFSv2 model from NOAA/N-

CEP.

Besides these European initiatives, other multimodel projects have been developed and

are currently operating in other parts of the world, such as the North American Multimodel

Ensemble (NMME) (Kirtman et al., 2014); an experimental system including coupled

models from several North American modelling centres: NOAA/NCEP, NOAA/GFDL,

NCAR, NASA and CMC-Canada. Contrarily to the European multimodels, the NMME

provides free retrospective forecasts and real-time seasonal forecasts. An example of the

products provided is given in Figure 3.7, which shows the prediction of the 2016 El Niño

event, issued on August 2015.

Figure 3.7: One-month lead forecasts of the SST anomaly in El Niño3.4 region from the
different models included in the NMME (Kirtman et al., 2014), up to April 2016. Obtained
from http://www.cpc.ncep.noaa.gov/products/NMME/current/plume.html.

http://www.specs-fp7.eu
http://www.cpc.ncep.noaa.gov/products/NMME/current/plume.html
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3.4.1 The ENSEMBLES Multimodel Seasonal Hindcast

The ENSEMBLES dataset (Weisheimer et al., 2009) is the longest-to-date and most com-

prehensive multimodel seasonal hindcast. It comprises five global atmosphere-ocean cou-

pled models from the following centres: The UK Met Office (UKMO), Météo France (MF),

the European Centre for Medium-Range Weather Forecasts (ECMWF), the Leibniz Insti-

tute of Marine Sciences (IFM-GEOMAR) and the Euro-Mediterranean Centre for Climate

Change (CMCC-INGV). Table 3.1 summarizes their main components.

Centre Atmospheric model and resolution Ocean model and resolution

ECMWF IFS CY31R1 (T159/L62) HOPE (0.3◦ − 1.4◦/L29)
IFM-GEOMAR ECHAM5 (T63/L31) MPI-OM1 (1.5◦/L40)
CMCC-INGV ECHAM5 (T63/L19) OPA8.2 (2.0◦/L31)

MF ARPEGE4.6 (T63) OPA8.2 (2.0◦/L31)
UKMO HadGEM2-A (N96/L38) HadGEM2-O (0.33◦ − 1.0◦/L20)

Table 3.1: Main components of the five global atmosphere-ocean coupled models con-
tributing to the ENSEMBLES multimodel seasonal hindcast.

The atmosphere and the ocean were initialized using realistic estimates of their ob-

served states and each model was run from an ensemble of nine initial conditions (nine

equiprobable members). For each model, seven-month long runs were issued four times a

year within the period 1960-2005, starting the first of February, May, August and Novem-

ber (see Weisheimer et al., 2009, for more details about the experiment).

In this section, we focus on two important aspects which will help us to better under-

stand some of the main characteristics of this dataset, which will be used throughout the

entire Thesis. In particular, we analyze the ability of the different contributing models to

predict the ENSO phenomenon as well as their patterns of bias and drift.

3.4.1-1 ENSO Teleconnections

During the last two decades, significant amount of research has been devoted to the use

of GCMs to simulate ENSO, which is known to be the dominant mode of seasonal vari-

ability (see, e.g., Goddard and Dilley, 2005; Doblas-Reyes et al., 2010). Here, we show

that the ENSEMBLES models exhibit good skill for this task, being therefore suitable

for seasonal forecasting studies. In particular, Figure 3.8 shows the correlation between

observed (ERSST v3b3) and simulated SST in El Niño 3.4 region4 for the five EN-

SEMBLES models during El Niño —1964, 1966, 1969, 1970, 1973, 1977, 1978, 1983,

1987, 1988, 1992, 1995 and 1998— and La Niña —1965, 1971, 1972, 1974, 1975, 1976,

3The last version of the Extended Reconstructed Sea Surface Temperature dataset (Smith et al., 2008).
4Region of the central equatorial Pacific ocean covering the box 5◦N-5◦S, 120◦W-170◦W.



3.4. MULTIMODEL ENSEMBLES 39

MAM AMJ MJJ JJA

0.6

0.8

1.0

JJA JAS ASO SON

0.6

0.8

1.0

SON OND NDJ DJF

0.6

0.8

1.0

DJF JFM FMA MAM

0.6

0.8

1.0

1-month 
lead

2-month 
lead

3-month 
lead

4-month 
lead

Fe
br

ua
ry

 
in

iti
al

iz
at

io
n

M
ay

in
iti

al
iz

at
io

n
A

ug
us

t
in

iti
al

iz
at

io
n

N
ov

em
be

r
in

iti
al

iz
at

io
n

rh
o

rh
o

rh
o

rh
o

ECMWF UKMO IFM-GEOMAR CMCC-INGV MF MM

Figure 3.8: Correlation between observed (ERSST v3b) and simulated (five ENSEMBLES
models and the corresponding multimodel) SST in El Niño 3.4 region during El Niño and
La Niña episodes —defined according to the ONI index (see the text).— For each of
the four initialization dates —February 1st, May 1st, August 1st and November 1st— (in
rows), results are shown at increasing lead-times from 1 to 4 months (for the corresponding
3-month target seasons).

1984, 1985, 1989, 1996, 1999, 2000 and 2001— years, defined according to the Oceanic

Niño Index (ONI: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/

ensostuff/ONI_change.shtml).

For each of the four initialization dates available —the first of February, May, August

and November (in rows),— results are shown for the five ENSEMBLES models and the

corresponding MM at increasing lead-times from 1 to 4 months (for the corresponding 3-

month target seasons). For all models, high correlations are obtained for all initialization

dates and seasons except for the central part of the year (May-June-July and June-July-

August) for the case of the February initialization. This is in agreement with the spring

predictability barrier for ENSO, which has been documented in previous studies (see, e.g.,

Zheng and Zhu, 2010; Tippett et al., 2011; Yan and Yu, 2012; Duan and Wei, 2013) and

is still found for recent GCMs. Moreover, except for the latter case, correlations do not

decrease substantially as the lead-time increases.

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml
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Furthermore, Figure 3.9 shows the El Niño teleconnections reproduced by the mul-

timodel (see Section 3.4.1), which were computed following the same methodology used

for Figure 3.2. Despite being smoother, the predicted teleconnection patterns resemble

quite well the observed ones —numbers in each map show the spatial correlation between

both,— especially in the most skillful seasons, winter (DJF) and autumn (SON) (see Sec-

tion 7.3 for details). For these seasons, Figure 3.10 —a composite of Figures 7.4 and

3.2— shows the observed teleconnections, but only in those grid boxes showing significant

skill at one month lead-time for the ENSEMBLES multimodel. Most of these grid boxes

exhibit red/blue rather than white colors, which indicates that skillful regions are appre-

ciable teleconnected with El Niño. Moreover, teleconnections are significant (black dots)

over some of the regions showing the highest skill.
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Figure 3.9: El Niño teleconnections reproduced by the ENSEMBLES multimodel for
the dry and wet terciles (left and right columns, respectively) at one month lead-time.
The numbers in each panel show the spatial correlation with the corresponding observed
patterns (shown in Figure 3.2). Dashed lines indicate the tropics/extratropics division.
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Figure 3.10: As Figure 3.2, but restricted to those grid boxes exhibiting significant skill
at one month lead-time for the ENSEMBLES multimodel (see Chapter 7 for details).

These results are in agreement with previous studies which have shown that most

of the skill for seasonal precipitation forecasts is found over regions strongly connected

with ENSO (see, e.g., Coelho et al., 2006; Barnston et al., 2010; Arribas et al., 2011; Lim

et al., 2011; Kim et al., 2012a,b; Landman and Beraki, 2012) and suggest that this skill is

determined to a great extent by the ability of the different models to properly reproduce

the observed El Niño teleconnections (this will be analyzed in detail in Chapter 7).

3.4.1-2 Bias and Drift

At seasonal time-scales, model mean error or bias (deviation from mean observations)

is a function of lead-time. In particular, it arises from the so-called initial shock (rapid

adjustment processes caused by the imbalance between the initial conditions and the

model dynamics) and evolves towards the model climatology, producing a transient trend

(or drift) which should not be confused with a seasonal climate signal (see Figure 3.11).

Analyzing the nature and quantifying the magnitude of these errors has greatly improved

the identification of model deficiencies (see, e.g., Vannitsem and Nicolis, 2008; Vannitsem,

2008; Eden et al., 2012).

In order to assess the spatio-temporal distribution of bias and drift of seasonal forecasts

worldwide —which can help to identify specific model deficits and offers the possibility

of targeted improvement of certain processes formulation, resolution and parametrization

(Ehret et al., 2012),— we considered precipitation from four of the ENSEMBLES models

for the period 1960-2000. For coherence, all models were bi-linearly interpolated to a
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Figure 3.11: Schema illustrating the drift of seasonal forecasts.

common 2◦ regular grid. Recall that the ENSEMBLES models were initialized four times

a year (the first of February, May, August and November) during the hindcast period and

run for seven months. Therefore, for a given target month, the corresponding bias can

be only computed at certain lead-times. In particular, for the four illustrative months

considered here (February, May, August and November), forecasts are available at 0-, 3-

and 6-month lead. The first column of Figures 3.12 to 3.15 shows the bias0, i.e., the bias

(computed against VASClimO v1.1 observations) corresponding to the 0 -lead predictions.

Additionally, the second and third columns show the incremental drift3-0 and drift6-3,

which are computed as bias differences for increasing lead months in the following way:

driftX-Y = biasX - biasY. Note that this allows to assess the evolution of the model

drift along the entire run. Note also that whereas bias0 depends on the observations,

drift3-0 and drift6-3 depend exclusively on the model. Only those values significantly

different from zero (α = 0.05) are displayed. To compute this significance, a bootstrap

approach was followed. In particular, 1000 different 9-member ensembles were first built

by random selection for each model. Confidence intervals were then computed upon the

1000 bootstrapped results.

The patterns found greatly vary among the different models, especially for particular

regions and months. Broadly speaking —analyzing in detail the results obtained is not

the aim here,— bias and drift are mainly located in tropical latitudes and are stronger

over the oceans than over land. Importantly, the drift is as large as the bias for some

particular regions and models. In particular, note that drift3-0 is systematically stronger

than drift6-3, which might be due to the initial shock (Balmaseda, 2012) —moreover, the
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initial weeks are usually discarded in seasonal forecasting due to the presence of deter-

ministic predictability related to the initial conditions, which leads to artificial increased

skill.— Importantly, if not taken into account, this drift could introduce errors into the

forecast that might be large compared to the signal being predicted (Smith et al., 2013).

However, whereas bias corrections are nowadays routinely applied in seasonal forecasting,

the drift has been seldom studied to-date despite its systematic presence in state-of-the-art

seasonal forecasts. In particular, there are very few works on the relative merits of the

two procedures commonly considered to deal with it, full-field and anomaly initialization

schemes (Magnusson et al., 2013b,a; Carrassi et al., 2014).

3.5 Verification of Seasonal Forecasts

There are two basic aspects that may be assessed in a seasonal forecasting system:

predictability and forecast quality.

On the one hand, predictability is concerned with the extent to which a forecast

anomaly (signal) is large by comparison with relevant sources of variability (noise) in

the forecast system —it is essentially a property of the system and says nothing directly

about whether the forecasts agree with observations or not.— Predictability has com-

monly been assessed through experiments in which an atmosphere model is forced with

prescribed SSTs (see, e.g., Rowell, 1998; Shukla et al., 2000; Straus et al., 2003). In this

case, SSTs are typically taken from observations and ensemble integrations with different

atmospheric initial conditions are used to sample the internal variability that is generated

in the atmosphere. Analysis of variance can then be used to separate the SST forced

signal from the internally generated noise (see, e.g., Rowell et al., 1995; Rowell, 1998).

Results are usually summarized either by the signal-to-noise ratio, or by the ‘potential

predictability’, i.e., the ratio of the SST forced variance to the total variance.

On the other hand, forecast quality can be evaluated by estimating the accuracy, skill

(see Chapter 7 for an assessment of skill of seasonal precipitation forecasts worldwide)

and reliability of a set of hindcasts (Jolliffe and Stephenson, 2003). Accuracy refers to the

precision with which the forecast system tends to match the observed changes that it is

trying to predict, while the skill is the relative accuracy of the forecast over some reference

prediction (e.g., climatology or persistence). Reliability, instead, measures how well the

forecast probability distribution matches the observed relative frequency of the forecast

event, i.e., a forecast system will be reliable if predictions of a 80% probability of a dry

season correspond to observed dry seasons 80% of the time.

Since seasonal predictability strongly varies with the region and the season being fore-

cast (see, e.g., Halpert and Ropelewski, 1992; van Oldenborgh, 2004; Barnston et al.,
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Figure 3.12: Global patterns of significant (α = 0.05) bias (i.e., bias0) and drift (drift3−0
and drift6 − 3) for the ECMWF model —the ensemble mean is considered— for four
illustrative months (in rows) for the period 1960-2000. See the text for details.
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Figure 3.13: As Figure 3.12 but for the IFM-GEOMAR model.
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Figure 3.14: As Figure 3.12 but for the CMCC-INGV model.
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Figure 3.15: As Figure 3.12 but for the MF model.
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2010; Doblas-Reyes et al., 2010), forecast quality verification information is essential

to enable the end-user to quantify, based on past model performance, the uncertainty

associated to a forecast for a particular location and time of the year, allowing thus

for a correct use. Although no single metric can provide a complete picture of fore-

cast quality, the Standardized Verification System for Long Range Forecasts (SVS-LRF:

http://www.bom.gov.au/wmo/lrfvs/index.html) recommends a suite of metrics —see

Attachment II.8 (page 122) of WMO (1992) for details— which allows forecasting centres

to document the quality of their forecasts according to a common standard. Among the

recommended metrics for either deterministic —mean error or bias, Anomaly Correlation

Coefficient (ACC), Root Mean Square Error (RMSE), Mean Square Skill Score (MSSS),

etc.— or probabilistic —Brier Skill Score (BSS), Ranked Probability Skill Score (RPSS),

Relative Operating Characteristic Skill Score (ROCSS), reliability diagrams, etc.— fore-

casts, which cover different aspects relevant to users (Jolliffe and Stephenson, 2003), we

only consider in this Thesis the bias and the ACC for the former and the ROCSS and

reliability for the latter. They are described next.

The bias (3.1) is the most simple validation metric for deterministic predictions. For

a sample size of N , it measures the mean error of the forecasts (fn), i.e., their mean devi-

ation from observations (on). However, this metric does not measure the correspondence

between forecasts and observations, i.e., it is possible to get a perfect score of 0 for a bad

forecast if there are compensating errors.

Bias =
1

N

N∑
n=1

(fn − on) (3.1)

The ACC (3.2) is another common validation metric for deterministic predictions

which measures the temporal correspondence between the forecasts and the observations,

subtracting out their corresponding climatological means (f , o) at each point. ACC is not

sensitive to forecast bias and ranges from -1 to 1 (perfect score).

ACC =

∑N
n=1(fn − f)(on − o)∑N

n=1

√
(fn − f)2

∑N
n=1

√
(on − o)2

(3.2)

The ROCSS (3.3) is a categorical skill score recommended by the SVS-LRF for the

verification of probabilistic seasonal forecasts. It assesses how well a forecast discriminates

between two alternative outcomes, typically getting/not getting a particular event (e.g.

receiving less than normal precipitation). For that event, the ROCSS is computed as

ROCSS = 2A− 1, (3.3)

http://www.bom.gov.au/wmo/lrfvs/index.html
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where A is the area under the ROC curve (commonly used to evaluate the performance of

probabilistic systems). ROC curves are constructed by plotting the HIt Rate (HIR) against

the False Alarm Rate (FAR) using a set of increasing probability thresholds (e.g., 0.05,

0.15, 0.25, etc.) to make the yes/no decision. The ROCSS ranges from 1 (perfect forecast

system) to -1 (perfectly wrong forecast system). A value zero (A = 0.5) indicates no skill

with respect to a climatological prediction. Derived from the fact of considering categories

(e.g. terciles) instead of absolute values, this metric is not sensitive to the different models’

biases (see Section 3.4.1). That is, a biased forecast may still produce a good ROC curve,

which means that it may be possible to improve the forecast through calibration. The

ROCSS is thus acknowledged to be a reasonable first choice to communicate the value

(potential usefulness) of a forecast to the end-users (see, e.g., Thiaw et al., 1999; Kharin

and Zwiers, 2003).

3.5.1 Reliability Categories

As previously mentioned, reliability measures how well the forecast probability distribution

matches the observed relative frequency of a certain event (e.g., a particular precipitation

tercile). Reliability diagrams are used to assess the reliability of probabilistic forecasts

for that event. Since they are conditioned on the forecasts (i.e., given that the event was

predicted, what was the outcome?), reliability diagrams are a good partner to the ROCSS,

which is conditioned on the observations (i.e., given that the event occurred, what was

the corresponding forecast?).

Reliability diagrams plot the observed frequencies of the event as a function of its

forecast probability, as represented by a determined number of bins (see Doblas-Reyes

et al., 2008, for details). For a perfectly reliable forecasting system, the reliability curve

would match the diagonal. Points falling within the so-called skill region, i.e., the region

contained between the no-resolution line (which indicates the expected frequency of the

event; e.g., 1/3 for terciles) and the no-skill line (halfway between the no-resolution line and

the diagonal) positively contributes to the forecast skill (BSS > 0). Weisheimer and Palmer

(2014) proposed a methodology to translate the information provided by the reliability

diagram to an easy-to-interpret scale with five reliability categories: perfect (green), still

useful (blue), marginally useful (yellow), not useful (orange) and dangerous (red). In

particular, they performed a weighted linear regression as a best-guess estimate on all

data points in the reliability diagram, using the number of forecasts in each probability

bin as weights. The different reliability categories are defined based on the relative position

of the so derived reliability line with respect to the perfect reliability (diagonal), no-skill

and no-resolution lines, as well as on the uncertainty range around it (as obtained by

bootstrapping). To estimate the confidence interval around the best-guess reliability line
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they randomly resampled members, grid boxes and years and 75% of the total range

(computed upon 1000 samples) was considered. In this Thesis, we analyzed the sensitivity

of the classification to different confidence intervals (the same bootstrapping procedure was

used) and found that the ensemble size had a large influence, obtaining higher uncertainty

for smaller ensembles. In these situations, the still useful (blue) categories may pass

to marginally useful (yellow) ones due to an enlargement of the confidence region (see

Weisheimer and Palmer, 2014, for details on the definition of the different categories).

Consequently, we considered as confidence interval the 50% of the total range, which is

more suitable for the nine members of the ENSEMBLES models available for this Thesis.

Moreover, within the marginally useful (yellow) category proposed by Weisheimer and

Palmer (2014), we differentiate those cases in which the reliability line falls within the

skill region but the uncertainty range around it is not fully contained. These cases are

identified with the dark yellow color in this Thesis.
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Figure 3.16: Reliability categories (see the text for details) obtained for the one-month
lead seasonal precipitation forecasts from the 15 and 51 members version of the ECMWF
System 4 (top and bottom row, respectively) over the 21 only-land regions defined in
Giorgi and Francisco (2000) for summer (JJA) during the period 1981-2010. Only the dry
and wet terciles (left and right column, respectively) are shown. GPCP v2 was considered
as reference.

Maps in the top (bottom) row of Figure 3.16 show the results obtained from applying

the methodology above described to the one-month lead seasonal precipitation forecasts

from the 15 (51) members version of the ECMWF System 45 over the 21 only-land regions

5The latest seasonal forecasting system from the ECMWF, System 4 (Molteni et al., 2011), provides



3.6. STATE-OF-THE-ART OF SEASONAL FORECASTING 49

defined in Giorgi and Francisco (2000) for the period 1981-2010. Note that reliability

is computed based upon the time-series resulting from joining the predictions for all grid

boxes within each region. For brevity, only the dry and wet terciles (left and right column,

respectively) for summer (JJA) are shown. Observed precipitation from the Global Pre-

cipitation Climatology Project (GPCP) version 2 (2.5◦ resolution from January 1979 to

the present; Adler et al., 2003) was considered as reference. Although this figure suggests

that reliability might be improved by using a larger number of ensemble members, there

is still an open discussion about the effect on reliability of the ensemble size (see, e.g.,

Richardson, 2001; Ferro et al., 2008; Kay et al., 2013; Berner et al., 2014).

To gain insight on this, Figure 3.17 shows the reliability diagrams obtained for the

southeast Asia region (marked with a black border in Figure 3.16) for the 15 and 51

members version (top and bottom row, respectively). The frequency histograms (also

called sharpness diagrams) are also provided inside each plot. These histograms show,

for each of the probability bins considered, the frequency of the forecasts. Whereas the

probabilities peak at the first bin for the 15 members case, they mainly concentrate around

1/3 (the climatological expected value) for the 51 members case. In consequence, as

derived from the applied weights in the regression model proposed by Weisheimer and

Palmer (2014), the slope of the best-guess reliability line in the 15 members case would be

greatly influenced by small deviations in near-zero probabilities —note that the regression

line always passes through the climatological intersection point, i.e., 1/3 for terciles,—

which may lead to worse reliability categories.

Differently to reliability, accuracy and skill do not vary sensibly with the ensemble size

considered. To illustrate this, Figure 3.18 shows the validation results at one-month lead

for the 15 and 51 members version (left and right column, respectively) of the ECMWF

System 4 —also validated against GPCP version 2— in terms of bias, ACC and ROCSS

for JJA. Results are similar in both cases, which suggests that a few ensemble members

might be enough for a robust verification in terms of the aforesaid metrics.

3.6 State-of-the-Art of Seasonal Forecasting

3.6.1 Operational Seasonal Forecasts

Providing operational long-range forecasts (from one month up to two years ahead) on a

global scale requires huge amounts of computer resources along with a very specialized

knowledge. For this reason, there are only a few centres around the world that are pro-

retrospective forecasts for the period 1981-2010, including a 15 members version with seven-month long
simulations initialized on the 1st day of every month and another 51 members version with seven-month
long simulations but only for four initialization dates per year (the 1st of February, May, August and
November).
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Figure 3.17: Reliability diagrams obtained for the southeast Asia region (marked with a
black border in Figure 3.16), for the 15 and 51 members version of the ECMWF System 4
(top and bottom row, respectively) in JJA. Only the dry and wet terciles are shown (left
and right column, respectively). The inset shows the corresponding frequency histograms.

ducing these forecasts, the WMO-designated Global Producing Centres for Long Range

Forecasts (GPCs: http://www.wmo.int/pages/prog/wcp/wcasp/gpc/gpc.php).

The predictions produced by these centres are used to provide consensus-based sea-

sonal forecasts with socio-economic potential by WMO’s Lead Centre for Long-Range

Forecasts Multimodel Ensemble (LC-LRFMME: http://www.wmolc.org), which brings

together prediction providers and local to regional focal points like the Regional Cli-

mate Centres (RCCs: http://www.wmo.int/pages/prog/wcp/wcasp/RCCs.html), the

Regional Climate Outlook Fora (RCOF: http://www.wmo.int/pages/prog/wcp/wcasp/

RCOF_Concept.html), National Meteorological and Hydrological Services (NMHSs) and

private partners.

In addition to the twelve designated GPCs, other major centres providing global sea-

http://www.wmo.int/pages/prog/wcp/wcasp/gpc/gpc.php
http://www.wmolc.org
http://www.wmo.int/pages/prog/wcp/wcasp/RCCs.html
http://www.wmo.int/pages/prog/wcp/wcasp/RCOF_Concept.html
http://www.wmo.int/pages/prog/wcp/wcasp/RCOF_Concept.html
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sonal forecasts are the International Research Institute for Climate and Society (IRI: http:

//iri.columbia.edu) and the Asia-Pacific Economic Cooperation (APEC) Climate Cen-

ter (APCC: http://www.apcc21.net/eng/service/fore/lmon/japcc030101_lst.jsp).

At present, seasonal forecasts are commonly visualized on maps that show the likeli-

hood of rainfall being below-normal, normal, or above-normal for the coming seasons (see

Figure 3.19 for an illustrative example). Other ways of presenting these predictions, tak-

ing into account their probabilistic nature, are being developed in the flagships EU-funded

initiatives for seasonal forecasting, particularly in the EUPORIAS (http://euporias.eu)

project (see deliverable D33.3 for details: http://www.euporias.eu/system/files/D33.

3.pdf).

3.6.2 Towards Climate Services

One of the main barriers of seasonal forecasts is related to the lack of accessibility and

understanding by end-users (Lemos et al., 2012). In fact, there is little evidence of their

direct use for operational applications nowadays (Coelho and Costa, 2010), which is often

ascribed to the users’ difficulty in integrating the predictions into existing decision support

systems —to be useful, climate information must be tailored to meet the needs of users.—

Therefore, it is still needed to improve the manner in which actionable seasonal climate

information is disseminated to policy-makers and stakeholders, offering for instance es-

timates of future risks of occurrence of high-impact extreme events to which society is

vulnerable.

To this, climate services bridge the gap between science and policy by improving the

visualization of the predictions, the public dissemination of the data generated and by

elaborating introductory, both targeted and general-public information on the prediction

generation methodologies and the regions, variables and times of the year where positive

skill can be expected. Moreover, climate services may provide feedback to the operational

forecast centres to design strategies to efficiently structure their resources to provide timely,

useful and understandable information to a wide range of users —for instance, by means

of comprehensive web pages.—

The international community established the Global Framework for Climate Services

(GFCS) to promote the development of operational climate services at the national and

regional levels, especially in developing countries (see http://www.gfcs-climate.org/

projects-list for a list), where users need access to expert advice and support to help

them select and properly apply climate information.

In Europe, several previous —e.g., QWeCI (http://www.liv.ac.uk/qweci), CLIM-

RUN (http://www.climrun.eu), ECLISE (http://www.eclise-project.eu)— and ac-

tive —EUPORIAS and SPECS— projects have contributed to the progress of climate

http://iri.columbia.edu
http://iri.columbia.edu
http://www.apcc21.net/eng/service/fore/lmon/japcc030101_lst.jsp
http://euporias.eu
http://www.euporias.eu/system/files/D33.3.pdf
http://www.euporias.eu/system/files/D33.3.pdf
http://www.gfcs-climate.org/projects-list
http://www.gfcs-climate.org/projects-list
http://www.liv.ac.uk/qweci
http://www.climrun.eu
http://www.eclise-project.eu
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Figure 3.18: Validation results (1981-2010) from the 15 and 51 members version (left and
right column, respectively) of the ECMWF System 4 for summer (June-July-August) pre-
cipitation forecasts at one-month lead. Bias, interannual correlation (ACC) and ROCSS
(dry and wet terciles) are shown in rows. GPCP version 2 was considered as reference.
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Figure 3.19: NMME (Kirtman et al., 2014) probabilistic forecasts of precipitation for
August-September-October 2015, issued in July 2015 (one-month lead). Colours show the
probability of the most likely category. Obtained from http://www.cpc.ncep.noaa.gov/

products/NMME/prob/PROBprate.S.html.

services. In particular, one of the objectives of EUPORIAS is to assess and document

the current marketability of climate services in Europe, whereas SPECS aims to enhance

the European role on the provision of climate services according to WMO protocols by

creating examples of improved tailored forecast-based products for the GPCs and partic-

ipating in their transfer to worldwide RCCs and NHMSs. Furthermore, the Copernicus

Climate Change service (C3S: http://www.copernicus.eu) will deliver substantial eco-

nomic value to Europe by: (1) informing policy development to protect European citizens

from climate-related hazards such as high-impact weather events, (2) improving planning

of mitigations and adaptation practices for key human and societal activities and (3) pro-

moting the development of new services by providing datasets and tools following an open

data policy.

3.7 Beyond the State-of-the-Art in Seasonal Forecasting

Besides the aforementioned lack of accessibility and understanding by end-users (Lemos

et al., 2012), the main barriers perceived for seasonal forecasting are linked to the lack of

http://www.cpc.ncep.noaa.gov/products/NMME/prob/PROBprate.S.html
http://www.cpc.ncep.noaa.gov/products/NMME/prob/PROBprate.S.html
http://www.copernicus.eu
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skill for certain regions/seasons. Despite the huge advances achieved in the last decade,

current forecasting systems have limited skill at seasonal time-scales (Lazar et al., 2005;

CAIICP, 2010). Among others, this is due to their limited spatial resolution (horizon-

tal and vertical), the use of inaccurate numerical schemes (simplified physics) and the

incomplete knowledge of the complex processes involved in the climate system.

Apart from developing new models which can run on finer resolutions and better

describe the different components of the climate system —especial focus in being put on

the stratosphere— and their coupling, some of the approaches that are being investigated

to overcome these issues rely on the use of better initial conditions for the land-surface

(Koster et al., 2010), soil-moisture, sea-ice (Holland et al., 2011) and snow cover (Cohen

and Jones, 2011).

In this regard, multidimensional observational datasets of the coupled atmosphere-

ocean-cryosphere-land surface system will allow to explore the advantages of full-field

versus anomaly initialisation methods —there are very few works on this issue to-date

(Magnusson et al., 2013b,a; Carrassi et al., 2014),— to assess the impact of the initial

shock and to generate sets of initial conditions that efficiently sample the observational

uncertainty in the climate system —the estimation of the optimal set of initial conditions to

generate the appropriate ensemble given a finite amount of computing resources is far from

trivial (Balmaseda and Anderson, 2009)— and help to reduce the typical overconfidence

of single-model ensemble forecast systems (Doblas-Reyes et al., 2009).

Additionally, even though ENSO is known to be the main driver of skill at seasonal

time-scales (Manzanas et al., 2014b), other processes such as the Madden-Julian Oscil-

lation, the Quasi-Biennial Oscillation, the Indian Ocean dipole, feedbacks between the

ocean and the atmosphere and between the land and the atmosphere, and interactions be-

tween the stratosphere and lower layers of the atmosphere are expected to bring additional

predictability. For instance, the new seasonal forecast system from the UK Met Office,

GloSea5, has shown promising skill in predicting the NAO due to a considerable increase

in resolution6 (Scaife et al., 2014), although this is a controversial issue (Shi et al., 2015).

Finally, exploration of methodologies to efficiently combine multimodel ensembles and

statistical downscaling techniques which transfer the coarse forecasts to more local-scales

should be continued (CAIICP, 2010).

6The climate model at the core of GloSea5 is the Hadley Centre Global Environmental Model version
3, with atmospheric resolution of 0.83◦ longitude by 0.55◦ latitude, 85 quasi–horizontal atmospheric levels
and an upper boundary at 85 km near the mesopause. The ocean resolution is 0.25◦ globally in both
latitude and longitude with 75 quasi–horizontal levels.



CHAPTER 4

A Regional Case Study: The Philippines

The Philippines is widely recognized as one of the most natural hazard-prone countries

in the world (Benson, C., 1997). In particular, typhoons, floods, landslides, droughts and

other weather and climate-related natural disasters occur on a regular basis (Israel and

Briones, 2012), damaging lives, properties and the economy in general. Some of these

hazards are directly related to the ENSO phenomenon, which strongly influences the

climate of this region (Koide et al., 2012). The Philippine Atmospheric, Geophysical

and Astronomical Services Administration (PAGASA: http://meteopilipinas.gov.ph)

summarizes the potential impacts of the warm (cold) phase of ENSO in the Philippines

as follows: 1) the rainy season is shorter (longer) because of the delayed (normal or early)

monsoon onset and the early (normal or late) termination, 2) there is weak (strong)

monsoon activity and 3) fewer (more) cyclones pass through the country. As a result,

during El Niño (La Niña), generally below (above) normal rainfall is observed.

In the light of the ENSO predictability documented in Chapter 3, its associated adverse

impacts (Hilario et al., 2009) could be in part mitigated by taking advantage of suitable

seasonal forecasts. In particular, most (if not all) important sectors (e.g., energy, water,

transport, industry) could greatly benefit from proper climate information at this partic-

ular time-scale, which might serve as basis for strategic planning in risk management and

could, in turn, improve decision making from national, regional and local governments.

However, given their low spatial resolution, state-of-the-art seasonal forecasts need to be

satisfactorily translated to the local-scale required for practical applications —e.g., crop

modelling for efficient rice production (Koide et al., 2012), which is crucial for most of the

country’s population (Lansigan, 2005).— To this, which constitutes the central problem

55
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of this Thesis, statistical downscaling techniques (which are introduced in Chapter 5) can

be applied.

Based on these premises, we present in this chapter a general introduction to the

climate of the Philippines and argue why this region is selected as the case study of the

Thesis.
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Figure 4.1: Location of the 42 PAGASA stations considered (their details are given in
Table 4.1). The four stations used with illustrative purposes later during the Thesis are
marked in red.

4.1 Observed Climate

The Philippines is an archipelago of 7107 islands with complex topography (see Figure

4.1a) located between the monsoonal and inner tropics (4◦N and 20◦N latitudes). Apart

from ENSO, the climate of this region is affected by large-scale processes; mainly the

southwest summer and northeast winter monsoons of the western North Pacific Ocean

(Wang, 2002), but also by local forcings related to the presence of mountains (wind-

ward/leeward differences) and coastlines (land-sea breezes) (Robertson et al., 2012). As

a result, the country exhibits a variety of climates in a relatively small area. For a good

representation of this large variability, daily precipitation from 42 gauges maintained by

PAGASA and uniformly distributed across the Philippines (see Figure 4.1b) was available

for this Thesis for the period 1981-2005. These stations, whose details are given in Table

4.1, were selected after a rigorous quality-control, minimizing thus the predictand-induced
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Number CT Name Longitude (◦) Latitude (◦) Height (masl)

1 1 LAOAG CITY 120.6 18.2 5
2 1 VIGAN 120.4 17.6 33
3 1 BAGUIO 120.6 16.4 500
4 1 DAGUPAN CITY 120.3 16.0 2

5 1 MUÑOZ-NUEVA ÉCIJA (UCLS) 120.9 15.7 76
6 1 CABANATUAN 121.0 15.5 32
7 1 IBA 120.0 15.3 5
8 1 SCIENCE GARDEN 121.0 14.7 43
9 1 PORT AREA (MCO) 121.0 14.6 16
10 1 SANGLEY POINT 120.9 14.5 3
11 1 AMBULONG 121.1 14.1 10

12 1 SAN JOSÉ 121.0 12.4 0
13 1 ILOILO CITY 122.5 10.7 8
14 2 CASIGURAN 122.1 16.3 4
15 2 INFANTA 121.7 14.7 7
16 2 DAET 123.0 14.1 4
17 2 TAYABAS 121.6 14.0 158
18 2 VIRAC (SYNOP) 124.2 13.6 40
19 2 VIRAC (RADAR) 124.2 13.4 233
20 2 LEGASPI CITY 123.7 13.1 17
21 2 CATARMAN 124.6 12.5 50
22 2 GUIUAN 125.7 11.0 60
23 2 HINATUAN 126.3 8.4 3
24 3 APARRI 121.6 18.4 3
25 3 TUGUEGARAO 121.7 17.6 62
26 3 CALAPAN 121.2 13.4 40
27 3 ROMBLON 122.3 12.6 47
28 3 MASBATE 123.6 12.4 6
29 3 ROXAS CITY 122.8 11.6 4
30 3 MACTAN INT L’AIRPORT 124.0 10.3 13
31 3 PUERTO PRINCESA 118.7 9.7 16
32 3 DUMAGUETE CITY 123.3 9.3 8
33 3 LUMBIA AIRPORT 124.6 8.4 182
34 3 ZAMBOANGA 122.1 6.9 6
35 4 TACLOBAN CITY 125.0 11.3 3
36 4 MAASIN 124.8 10.1 72
37 4 TAGBILARAN CITY 123.9 9.6 6
38 4 BUTUAN 125.5 8.9 18
39 4 DIPOLOG 123.3 8.6 4
40 4 MALAYBALAY 125.1 8.2 627
41 4 DAVAO CITY 125.8 7.3 18
42 4 GENERAL SANTOS 125.2 6.1 15

Table 4.1: Details of the 42 PAGASA stations considered in this Thesis, which represent
the four climate types (CTs) present across the country (see the text for details).
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uncertainty (Hewitson et al., 2014), which might be an issue for the statistical downscaling

methods applied later during the Thesis —uncertainty in the observations may potentially

weaken the predictor–predictand relationship (Maraun et al., 2010).— Hereafter, they are

classified into the four precipitation climate types (CTs) defined in Coronas (1920) (see

Figure 4.2a), which have been commonly used to-date.
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Figure 4.2: (a) Topography of the Philippines. (b) Location of the 42 PAGASA sta-
tions considered, classified into the four precipitation climate types (CTs) —in colors—
described in the text. (c) Intra and (d) interannual variability of spatial average precipi-
tation amount for each CT for the period 1981-2005.
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It can be seen from Figure 4.2b that precipitation along the coastlines of the northern

part of the archipelago (CT1 and CT2) exhibits a strong seasonal cycle, which is driven

by alternating monsoonal winds. In particular, during the southwest monsoon (June-

September), precipitation peaks at the stations pertaining to CT1 while CT2 is affected

by relative dryness. However, the opposite is the case during the northeast monsoon

(October-February). During the dry months (March-May), easterly winds prevail, leading

to orographic precipitation along the mountain ranges in the east of the archipelago and to

relatively high precipitation amounts for the stations pertaining to CT2. At the stations

belonging to CT3 and CT4 (mainly situated in the center and south of the archipelago),

precipitation is bounded to meso-scale dynamics and is not directly driven by the mon-

soons, leading to a weak seasonal cycle. Additionally, interannual variability is larger for

CT1 and CT2 than for CT3 and CT4 (Figure 4.2c). For further spatial detail of these

climatic features, top (bottom) row in Figure 4.3 shows the mean climatology (standard

deviation) of the 42 stations for the four standard boreal seasons: winter (DJF), spring

(MAM), summer (JJA) and autumn (SON), in columns.

For a more comprehensive description of the climate of the Philippines, the interested

reader is referred to Coronas (1920), Flores and Balagot (1969), Kintanar (1984) as well

as to the PAGASA website.
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Figure 4.3: Top (bottom) row: Mean climatology (standard deviation) for each of the
42 PAGASA stations (Figure 4.1b) for the period 1981-2005, by seasons (in columns).
Numbers in the maps correspond to the spatial average values.
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4.2 From Global to Local: The Need for Downscaling

As mentioned in Chapter 3, state-of-the-art seasonal GCMs numerically solve the

equations characterizing the dynamics of the climate system on a global grid. However, the

coarse horizontal resolution of this grid (usually ranging from 0.75◦ to 1.5◦) is insufficient

to provide the regional or local climate information needed for practical applications.

In particular, GCM outputs are areal-averages representative of the entire grid box and

cannot thus represent the local variability occurring at particular points of interest (Luo

et al., 2013). For instance, two nearby locations with different climates (e.g., one at the

bottom of the valley and the other on top of the mountain) might be represented by the

same model grid box, leading therefore to important forecast errors.

To illustrate these limitations, Figures 4.4 and 4.5 show the validation results —in

terms of bias (in mm/season) and interannual ACC, respectively— obtained for four of

the five ENSEMBLES models for the 42 stations of Figure 4.1b (models are bi-linearly in-

terpolated to the points of interest) during the period 1981-2005. In both cases, significant

(α = 0.05) values are indicated with a black dot. For brevity, only one month lead-time

predictions are shown.

These figures show that large differences are obtained for different models and seasons

at a regional level. Local biases are in general strong (as compared with the climatologies

shown in Figure 4.3). Remarkably, all models show a tendency towards a dry bias for

the stations belonging to the CT1 (CT2) in JJA (SON and DJF), when the southwest

(northeast) monsoon takes place and thus the most severe socio-economic impacts occur.

However, acceptable local interannual correlations are found throughout the year (espe-

cially in DJF and MAM) except for JJA. In particular, the low skill found in this season

for the CT1 region reflects the models’ limitation to predict the interannual variation of

the southwest monsoon.

For a more detailed interpretation of the models’ performance, Figure 4.6 shows in

black the time-series of annual accumulated rainfall for the four illustrative stations marked

in red in Figure 4.1b: Ambulong, Catarman, Roxas City and Butuan (in rows). Note

that each of these stations belongs to a different CT and presents therefore a different

precipitation regime. For each GCM (in columns), the solid (dashed) red lines corresponds

to the ensemble mean (each of the nine members). Numbers on top of each panel indicate

the interannual ACC, the bias and the ratio of variances (RV). The latter is calculated as

σ2model/σ
2
observations.

Biases are strong (above 1000 mm/season) in many cases and can vary substantially

among models for a particular location, which evidences that global seasonal forecasts re-

quire some kind of calibration which satisfactorily translates them to the local-scale useful
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Figure 4.4: Bias (in mm/season) for four of the ENSEMBLES models (in columns) for the
42 PAGASA stations (Figure 4.1b) at one month lead-time for the period 1981-2005, by
seasons (in rows). Significant (α = 0.05) values are indicated with a black dot. A Student’s
t-test was applied to compute this significance. The Satterthwaite’s approximation for the
effective degrees of freedom was considered.
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Figure 4.5: Interannual ACC maps for four of the ENSEMBLES models (in columns)
for the 42 PAGASA stations (Figure 4.1b) at one month lead-time for the period 1981-
2005, by seasons (in rows). Significant (α = 0.05) values are indicated with a black dot.
A Student’s t-distribution with N − 2 degrees of freedom (N = number of years) was
considered to compute this significance.
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Figure 4.6: Time-series of annual accumulated rainfall at the four representative stations
marked in red in Figure 4.1b: Ambulong, Catarman, Roxas City and Butuan (in rows).
For each model (in columns), the solid (dashed) red line corresponds to the ensemble mean
(each of the nine members). Observations are displayed in black. The numbers on top of
each panel indicate the interannual ACC, the bias and the ratio of variances (RV).

for the different impact sectors. Moreover, note that beyond a generalized tendency to un-

derestimate the observed variability, RV also varies among models. Therefore, rather than

simple factor-scaling corrections, more sophisticated approaches which allow for correcting

the bias whilst preserving (if not improving) the skill —as represented by the interannual

ACC— should be applied. To this aim, statistical downscaling techniques (which are

introduced in Section 5) are used in this Thesis. However, these techniques have been

developed and applied almost exclusively for extratropical regions (Hewitson and Crane,

1996; Wilby and Wigley, 1997; Trigo and Palutikof, 2001; Hanssen-Bauer et al., 2005;

Fowler et al., 2007; Maraun et al., 2010; Gutiérrez et al., 2013), whereas studies are rare

or even non-existent for the tropics since manifold problems still hinder their successful

application in this part of the world (Hewitson et al., 2014).
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Following from all the previous considerations, it is recognized that the Philippines

is an ideal test-bed for studies dealing with statistical downscaling (Moron et al., 2009;

Manzanas et al., 2015) of seasonal forecasts and is therefore the region considered to

illustrate some of the most interesting results obtained during the realization of this Thesis,

which will be presented in the next chapters.
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CHAPTER 5

Statistical Downscaling (SD)

As mentioned in Chapter 3, the Global Climate Models (GCMs) used for seasonal fore-

casting solve the complicated differential equations that describe the global climate system

in a three-dimensional space formed by grid boxes, whose typical horizontal resolution is

about hundreds of kilometres (Goddard et al., 2003). Therefore, despite their paramount

importance to simulate the climate system globally, GCMs are unable to provide infor-

mation at the local spatial scale required by most of stakeholders (see, e.g., Doblas-Reyes

et al., 2013, and references therein). Hence, some form of regionalization (or downscaling)

is needed in order to improve their usability. To this aim, two conceptually different ap-

proaches have been developed in the last decades: dynamical and statistical downscaling.

On the one hand, Dynamical Downscaling (DD) is based on the use of numerical Regional

Climate Models (RCMs) which simulate regional features of the climate at a higher reso-

lution over a limited area, driven at the boundaries by the coarse-resolution GCM outputs

(see, e.g., Giorgi and Mearns, 1999; Laprise, 2008). On the other hand, Statistical Down-

scaling (SD) relies on statistical models/algorithms which link the coarse-resolution global

outputs from the GCMs (predictors) with the local observations (predictands) over the

area of interest (see, e.g., von Storch et al., 1993). The relative merits and limitations of

DD and SD —summarized in Table 5.1— have been widely discussed in the literature (see,

e.g,. Wilby and Wigley, 1997; Fowler et al., 2007; Maraun et al., 2010; Winkler et al., 2011)

and it is nowadays recognized that both approaches are complementary in many practical

applications. For instance, distributional bias correction techniques (which are considered

a form of SD) are routinely applied to calibrate the biased RCM outputs according to the

available observations.

In this Thesis we only consider SD, which has demonstrated potential to improve

67



68 5. STATISTICAL DOWNSCALING (SD)

the skill of global seasonal precipitation forecasts (Feddersen and Andersen, 2005) and

is drastically cheaper than DD in terms of computational resources. Noteworthy, the

main shortcoming of SD is that it assumes that the predictors-predictand link remains

stationary/stable in time, which has been shown to be an important issue in climate

change applications (see, e.g., Gutiérrez et al., 2013). However, this is not of special

relevance for the case of seasonal forecasts since out-of-sample cases are not expected to

be as distinct from historical data as in climate change scenarios.

This chapter provides a comprehensive description of the different approaches and

techniques available for SD as well as a detailed description of some of them, which are

later applied in this Thesis.

Strengths Weaknesses

Dynamical

� Individual variables are phys-
ically consistent in time and
space, and the different varia-
bles are internally consistent.

� The same fundamental physi-
cal principles are used in both
a RCM and a GCM.

� No specific calibration data is
required.

� RCMs are very complex and
require substantial computa-
tional resources.

� Artefacts and spurious effects
occur near the boundary of
the RCM domain.

� RCMs add their own biases
to the output data (see, e.g.,
Christensen et al., 2008), so
they need to be statistically
calibrated for impact studies.

Statistical

� The methods are computa-
tionally cheap.

� Many different statistical
methods are available, allow-
ing for substantial flexibility.

� Directly incorporate observa-
tions into the model, so no fur-
ther calibration/correction is
needed for the resulting out-
puts.

� A calibration dataset, typ-
ically a long meteorological
record of high-quality observa-
tions is required.

� The models are empirical, not
based on physical principles,
so temporal, spatial and inter-
variable consistency are typi-
cally not granted.

� Assumes stationary statistical
relationships, which has been
shown to be an issue for cli-
mate change projections (see,
e.g., Gutiérrez et al., 2013).

Table 5.1: Summary of strengths and weaknesses of dynamical and statistical downscaling.
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5.1 Approaches for Statistical Downscaling

As previously mentioned, SD relies on statistical models/algorithms which link the

coarse-resolution global simulated predictors with the local observed predictands over the

area of interest (see, e.g., von Storch et al., 1993). These statistical models/algorithms

are first calibrated using historical data of both coarse predictors and local predictands

for a representative climatic period (usually a few decades) and then applied to new (e.g.,

future or retrospective) low-resolution global predictors to obtain the corresponding local

downscaled predictands. Therefore, all SD approaches consist of a calibration/training

and a prediction phase (a and b in Figure 5.1, respectively). According to the nature of

predictors in the calibration phase, two different approaches for SD exist, namely Perfect

Prog (PP) and Model Output Statistics (MOS) (see Marzban et al., 2006, for an interesting

discussion on this). They are described next.

5.1.1 Perfect Prog (PP)

Under the PP approach (see, e.g., Charles et al., 1999; Timbal et al., 2003; Bürger and

Chen, 2005; Haylock et al., 2006; Fowler et al., 2007; Hertig and Jacobeit, 2008; Sauter

and Venema, 2011; Gutiérrez et al., 2013) quasi-observed predictors from reanalysis1 (c in

Figure 5.1) are used to calibrate the statistical models/algorithms (1 and 2 in Figure 5.1a).

Afterwards, the resulting statistical models/algorithms are applied to GCM predictor data

(e.g. the seasonal forecasts from the ENSEMBLES models) in the prediction phase (1 and

2 in Figure 5.1b).

Therefore, large-scale circulation variables well represented by both reanalyses and

GCMs are typically chosen as predictors, whereas variables directly influenced by model

parametrizations and/or orography (e.g. precipitation) are usually not considered in this

approach (see that c3 and c4 are ruled out in Figure 5.1). Moreover, it is recognized

that suitable predictors for PP should account for a major part of the variability in the

predictands (Wilby et al., 2004; Hanssen-Bauer et al., 2005). As a result from these con-

siderations, one of the most time-consuming tasks in PP is the selection of an appropriate

combination of predictors for each particular predictand and region of study. Typically,

common PP predictors for precipitation are sea-level pressure, specific humidity, geopoten-

tial and winds, which describe atmospheric thickness, moisture, stability and circulation.

One of the main shortcomings of PP is that reanalysis data does not necessarily provide

a ‘perfect’ representation of the large-scale circulation —for instance, Brands et al. (2012)

1Reanalyses combine assimilated meteorological observations with a numerical model which gener-
ates a synthesized estimate of the state of the climate system and are, therefore, considered as quasi-
observations. Typically, reanalyses cover the entire globe —from the Earth’s surface to the upper limit of
the stratosphere— and extend for several decades. See http://reanalyses.org for further details.

http://reanalyses.org
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Figure 5.1: Schema of the different approaches for SD according to the type of data used
for calibration (reanalysis or GCM) and the temporal scale considered (daily or seasonal).
See the text for details.

found significant differences between two distinct reanalyses for key predictor variables,

especially in the tropics.— Therefore, the uncertainty due to ‘imperfect’ reanalyses should

be taken into account in this approach, in particular in tropical regions (Manzanas et al.,

2015). This issue will be analyzed in detail in Chapter 8. In addition, the PP approach

is sensitive to the systematic biases of the GCMs (as compared to reanalyses). Thus, ap-

propriate preprocessing (or harmonization) of the predictor data considered is required to

obtain meaningful results. The harmonization process followed in this Thesis is described

in Section 6.3.

Finally, PP techniques can consider point-wise and/or spatial-wise predictors, using the

values at nearby grid boxes and/or the Principal Components (PCs) corresponding to the

Empirical Orthogonal Functions (EOFs) (Preisendorfer, 1988) of the variables considered

over a representative geographical domain (which must be also conveniently determined).

The use of predictor values at nearby grid boxes or PCs depends on the application.

Usually, the latter are more informative in those cases where the local climate is mostly

determined by synoptic phenomena whereas the former may be needed to add some infor-
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mation about the local variability in those cases where small-scale processes are important.

Sometimes, both type of predictors are combined in order to account for both synoptic

and local effects. Working with PCs allows to filter-out high frequency variability which

may be not properly linked to the local-scale. Moreover, it prevents from the negative

effects related to the different ranges of the different predictor variables considered since it

involves the standardization of the raw fields. For this reason, in the PP techniques con-

sidering point-wise predictors used in this Thesis, we always use standardized anomalies

rather than raw values.

5.1.2 Model Output Statistics (MOS)

Differently from PP, under the MOS approach (see, e.g., Ward and Navarra, 1997; Fed-

dersen et al., 1999; Mo and Straus, 2002; Sokol, 2003; Kang et al., 2004; Marzban et al.,

2006; Vannitsem and Nicolis, 2008), predictors are taken from the same GCM for both the

calibration and the prediction phase (d and e in Figure 5.1, respectively). Typically2, the

only predictor variable considered in this approach is the model counterpart of the target

predictand, e.g., coarse GCM precipitation for local precipitation (d3 and d4 in Figure

5.1). Therefore, as opposite to the PP case, the main advantage of the MOS approach is

that neither predictor nor domain screening is required.

Distributional Bias Correction (BC) techniques are the simplest case of a MOS scheme.

In particular, the BC techniques considered in this Thesis (which will be referred to as

MOS-BC hereafter) operate directly on the coarse GCM precipitation (interpolated to the

location of interest), correcting it at a distributional level, based on local observations (3

in Figure 5.1). Note thus that MOS-BC techniques are specific for the GCM for which they

have been calibrated and cannot be used with other models (Maraun et al., 2010). Note

also that the relative order of the data time-series (temporal structure) is not explicitly

considered in these techniques. Nevertheless, MOS techniques can be also calibrated

taking into account the temporal correspondence between simulations and observations

considering either large-scale GCM predictors or GCM precipitation (4 and 5 in Figure

5.1, respectively), being the latter case the most popular due to its simplicity. However,

the day-to-day temporal correspondence between GCM simulations and observations is

negligible3 and, therefore, the application of MOS techniques (excluding MOS-BC) at a

2There are MOS techniques which consider as predictors large-scale variables from GCM instead of
precipitation (d2/e2 in Figure 5.1). However, these techniques operate on a seasonal basis and are thus
not considered in this Thesis. See the text for details.

3Recently, reanalysis-driven RCMs (Turco et al., 2011) and reanalysis-nudged GCMs (Eden et al.,
2012) have been successfully applied for SD under the MOS approach on a daily time-scale, due to the
temporal correspondence between observed and simulated precipitation. However, these techniques require
the availability of the simulations performed with the GCM (or RCM) nudged to (or driven by) reanalysis,
what makes them unsuitable for most practical applications.
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daily scale is not possible. The advantage of MOS techniques working on longer than

daily (e.g. monthly or seasonal) basis is that linear procedures can be applied due to the

normality of monthly/seasonal data. Canonical Correlation Analysis (CCA) (see, e.g.,

Feddersen et al., 1999; Landman and Tennant, 2000; Sinha et al., 2013) and Singular

Value Decomposition Analysis (SVDA) (see, e.g., Pavan et al., 2005; Chu et al., 2008;

Tung et al., 2013) are typical examples of these kind of techniques. In general, CCA and

SVDA provide similar results, and any of them can be claimed to do better than the other

(see Feddersen et al., 1999, for a comparison).

5.1.3 PP versus MOS

Either in PP or in MOS (excluding MOS-BC) techniques, the statistical models/algo-

rithms are calibrated at an event-wise (time-series) level, i.e., preserving the temporal —

e.g. day–to–day/month–to–month/season–to–season— matching between predictors and

predictands (1, 2, 4 and 5 in Figure 5.1). As mentioned, large-scale variables from re-

analysis are typically considered as predictors in the PP approach (c1-2 /e1-2 in Figure

5.1), whereas GCM precipitation is used in MOS applications (d3-4 /e3-4 in Figure 5.1).

Therefore, since the day-to-day correspondence with the observations is preserved in the

case of reanalysis, PP techniques can be applied on a daily (or longer) basis, whereas MOS

techniques (excluding MOS-BC) require working at longer (e.g. seasonal) time-scales. As

a result of considering aggregated data, PP and MOS (excluding MOS-BC) techniques

working at a seasonal scale (2 /4 and 5 in Figure 5.1) are typically expected to lose part

of the potential predictive capacity of the PP techniques working on a daily basis (which

are foreseen to capture more explicative relationships between predictors and predictand).

Moreover, PP and MOS (excluding MOS-BC) techniques working at a seasonal scale are

prone to poor statistics due to the small sample sizes available for calibration —most of

the current seasonal hindcasts have less than 30 years of data— and can lead to artificial

skill due to statistical over-fitting if no proper cross-validation (this will be explained in

Section 5.2) is applied (Robertson et al., 2012). Finally, some form of weather generator

is needed to disaggregate to the daily scale (see, e.g., Paeth and Diederich, 2011) in these

techniques.

As a consequence from all the previous considerations, only PP techniques working on

a daily basis and MOS-BC ones operating on the distributions of daily values have been

considered in this Thesis (1 and 3 in Figure 5.1, respectively), which allows for robust

calibration due to the large sample sizes involved.
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5.2 Cross-Validation

When assessing the performance of any SD technique it is crucial to properly cross-

validate the results; otherwise, misleading conclusions may be obtained. Leave-one-out

(Lachenbruch and Mickey, 1968) and k-fold (Markatou et al., 2005) are the most common

approaches for cross-validation (Stone, 1974).

In a k-fold cross-validation framework, the original sample is partitioned into k equal

sized subsamples. In each of the k iterations (folds), one of these subsamples is retained

for test (prediction phase) and the remaining k − 1 subsamples are used for training

(calibration phase). The resulting k independent samples are then merged to produce a

single time-series covering the whole calibration period, which is subsequently validated

against observations. When k = n (being n the number of observations), the k-fold cross-

validation is exactly the leave-one-out cross-validation. Gutiérrez et al. (2013) introduced

a 5-fold cross-validation framework (see Figure 5.2) which is used throughout this Thesis.

Note that both leave-one-out and k-fold cross-validation approaches provide similar results,

especially when the size of the available data becomes large (Markatou et al., 2005), as it

is the case in this Thesis. However, the latter is computationally cheaper.

PP techniques are first cross-validated using reanalysis predictors in order to evaluate

their performance in ‘perfect’ conditions before being applied to ‘non-perfect’ GCM pre-

dictors. Therefore, the aim of cross-validation in the PP approach is to properly estimate,

given a known predictor dataset (large-scale variables from reanalysis), the performance

of the particular technique considered, having an upper-bound for its generalization capa-

bility when applied to new predictor data (large-scale variables from GCM).

In the case of MOS-BC techniques, derived from the fact of using the same predictor

(GCM precipitation) for both the calibration and the prediction phases, proper cross-

validation is needed in order to avoid model-over-fitting (which could lead to artificial

skill) if the periods considered for the two phases overlap. Note that, for those techniques

working on a monthly/seasonal basis (not considered in this Thesis), cross-validation would

be especially important due to the limited amount of available data.

5.3 Techniques for Statistical Downscaling

There have been some previous classificatory attempts in order to give a structured

overview of the large number of SD techniques developed in the last decades. Wilby

and Wigley (1997) provided a first useful classification which was later adopted without

major modifications by Giorgi et al. (2001) and Wilby et al. (2004). In Maraun et al.

(2010), a more comprehensive approach was followed in order to encompass all previous

classifications in a way adequately suited to the structure of their article. Moreover, a
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Figure 5.2: Schema of the 5-fold cross-validation used throughout this Thesis, introduced
in Gutiérrez et al. (2013). The total sample is divided into five non-overlapping sub-
samples. In each iteration (fold), the four gray subsamples are used as train/calibration
dataset and a prediction is obtained for the green one (test dataset). Finally, the five
independent predictions are merged into a unique time-series covering the entire period.

slightly different classification considering generative and non-generative techniques has

been recently proposed in the deliverable D52.1 (Review of the different statistical down-

scaling methods for s2d prediction) of the SPECS project, which is publicly available

at http://www.specs-fp7.eu/sites/default/files/u1/SPECS_D52.1.pdf. Basically,

whereas generative techniques rely on a mathematical formula (with a parsimonious num-

ber of parameters), non-generative ones are based on an algorithm. Alternatively, the

transfer functions, weather typing and weather generators categories are also commonly

used (Giorgi et al., 2001). Broadly speaking, transfer functions correspond to the gener-

ative group, whereas weather typing and weather generators are mainly non-generative.

In transfer functions, a quantitative relationship between predictors and predictands is

derived, typically based on either linear —e.g., regression, Principal Component Analysis

(PCA), SVDA, CCA— or non-linear —e.g., Artificial Neural Networks (ANNs), Gener-

alized Linear Models (Section 5.4.1-2)— models. Weather typing techniques are based

on algorithms that infer the local predictions for a particular atmospheric configuration

from the observations corresponding to a set of historical similar situations. The catalog

http://www.specs-fp7.eu/sites/default/files/u1/SPECS_D52.1.pdf
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of historical atmospheric configurations is sometimes replaced by a pre-classification into

a finite number of possible states (weather types), obtained according to their synoptic

similarity (see Huth et al., 2010, for a review). Analogs (Section 5.4.1-1) and Self Or-

ganizing Maps (SOMs) (see, e.g., Hewitson and Crane, 2006) are popular examples of

this category. Finally, weather generators are stochastic techniques which allow to create

random time-series with realistic statistical properties (mean, variability, frequencies of

extremes, length of dry and wet spells, etc.), such as the popular Markov Models (MMs)

or the Hidden Markov Models (HMMs). In seasonal forecasting, these techniques act often

as postprocessing tools for temporal disaggregation to go from monthly/seasonal to daily

data (see, e.g., Paeth and Diederich, 2011; Hirschi et al., 2012). Weather generators are

not used in this Thesis since we only consider SD techniques operating on a daily basis.

Beyond these common classifications, there are hybrid techniques which combine fea-

tures from two or more of the above families as well as many intermediate possibilities (see,

e.g., Feddersen and Andersen, 2005). Further information on the wide range of different SD

techniques introduced in the literature can be found in Maraun et al. (2010) as well as in

the downscaling inventory report from the VALUE (Validating and Integrating Downscal-

ing Methods for Climate Change Research) COST action (http://www.value-cost.eu).

5.4 SD Methods Used in this Thesis

As justified in Section 5.1.3, PP and MOS-BC techniques working on a daily basis are

considered in this Thesis. Hereafter, we will use the term SDM (Statistical Downscaling

Method) to refer to a particular implementation of a given SD technique. In the next

sections (5.4.1 and 5.4.2), the different SDMs used in this Thesis are described in detail. All

of them have been applied using MeteoLab (a Matlab® toolbox for statistical downscaling

developed by the Santander Meteorology Group which can be freely downloaded from

http://meteo.unican.es/trac/MLToolbox/wiki/Installation). The code needed to

define each of them is given in Section 10.3.

5.4.1 PP Methods

5.4.1-1 Analogs

The popular non-parametric analog technique (Lorenz, 1969; Zorita and von Storch, 1999)

assumes that similar (or analog) atmospheric patterns over a given region (predictors) lead

to similar local meteorological outcomes (predictands). The performance of this technique

to downscale daily precipitation can be influenced by the type of similarity measure con-

sidered. In this Thesis we used the Euclidean norm, which has been shown to perform

satisfactorily in most cases and hence is a reasonable first choice (Matulla et al., 2008). For

http://www.value-cost.eu
http://meteo.unican.es/trac/MLToolbox/wiki/Installation
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a given atmospheric pattern simulated by the GCM, the corresponding local forecast is es-

timated (according to a determined criteria) from the observations corresponding to a set

of analog patterns within a historical catalog, formed by reanalysis data in a representative

climatological period. This is illustrated in Figure 5.3, where a particular geographical

domain (marked with blue crosses) is selected to characterize the synoptic phenomena

relevant for the predictand variable of interest (precipitation at the 42 PAGASA stations

of Figure 4.1b, marked in red), as given by a number of informative predictors (winds,

humidity and temperature at different vertical levels).

reanalysis
k nearest 
analogs

{X’t,1, ..., X’t,k}

42 PAGASA 
gauges 

...

Historic archive of daily 
local observations: Y’ 

19
81

20
00

Calibration 
(e.g. 1981-2000)

19
81

20
00

Historic archive of daily
atmospheric patterns: X’

Prediction 
(e.g. 2001-2005: day t)

...

GCM 
atmospheric 

pattern 
for day t: Xt

prediction for 
day t (Yt):

inferred from
{Y’t,1, ..., Y’t,k}

Predictors X = {U850,U300,
Q850,T850}Predictors X’ = {U850’,U300’,

Q850’,T850’}

Figure 5.3: Schema illustrating the analog technique.

In spite of its simplicity, the analog technique performs as well as other more sophisti-

cated ones (Zorita and von Storch, 1999) and it is still one of the best to downscale daily

precipitation, because it is non-parametric —no assumptions are made about the distri-

bution of the predictors— and non-linear —can take into account the non-linearity of the

relationships between predictors and predictands.— Additionally, it is spatially coherent

(i.e., preserves the spatial covariance structure of the local predictands).

The main drawback of the analog technique is that it cannot predict values outside

the observed range, being therefore particularly sensitive to the non-stationarities arising

in climate change conditions (Benestad, 2010; Gutiérrez et al., 2013) —two-step analog
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methods (see, e.g., Ribalaygua et al., 2013) have been recently introduced to overcome this

problem.— However, this issue is not of special relevance in seasonal forecasting. Hence,

analog-based methods have been applied in several studies to downscale precipitation in

the context of seasonal forecasting (see, e.g., Fŕıas et al., 2010; Wu et al., 2012; Shao and

Li, 2013).

In this Thesis, two different configurations of the analog technique (which will be

referred to as AN det and AN sto hereafter) were considered. Whereas the former corre-

sponds to a deterministic (Zorita et al., 1995; Cubasch et al., 1996) version which considers

the closest analog, the latter is a stochastic one in which the prediction is given by random

selection among the observations corresponding to the 15 closest analogs (Beersma and

Buishand, 2003).

Figures 5.4 and 5.5 show the 5-fold cross-validated results (see Section 5.2) obtained

for the four PAGASA stations used with illustrative purposes in Chapter 4 (marked with

red points in Figure 4.1b) for the period 1981-2005 for the AN det and the AN sto meth-

ods, respectively. The predictors and geographical domain considered for this analysis

are shown in Figure 5.3 (further details on the selection of this predictor-domain con-

figuration are given in Section 6.1). The left column shows, for each station (in rows),

a quantile-quantile (q-q) plot of the 1-99 observed (x-axis) and downscaled (y-axis) per-

centiles of daily precipitation —only wet (precipitation ≥ 0.1 mm) days are considered.—

The Spearman correlation (rs) between the observed and downscaled daily complete time-

series is indicated inside the graphs. The right column shows the observed (black) and

downscaled (red) Cumulative Distribution Functions (CDFs) for wet days (values up to

the 99 percentile are considered). The PDF score (Perkins et al., 2007; Maxino et al.,

2008), which measures the overlap between the two wet Probability Density Functions

(PDFs) is also given inside the plots (0 = no overlap at all, 1 = perfect overlap). In the

stochastic method, AN sto, 100 different realizations were carried out. The error bars in

the right column correspond to the inter-quartilic range (25-75 percentiles) of these 100

realizations. Likewise, the 100 CDFs are plotted. In both cases, a confidence interval

(computed upon the 100 realizations) around the median is provided.

Although AN sto yields slightly lower correlations due to its stochastic character, both

methods perform alike. For a more robust interpretation of this comparative, the boxplots

in the top (bottom) row of Figure 5.6 extend the results from Figure 5.4 (5.5) to the 42

PAGASA stations of Figure 4.1b. In the AN sto method, one single realization (chosen at

random) was selected —Figure 5.5 shows that the uncertainty introduced by the stochastic

character of this method is small, so whichever realization can be considered to be repre-

sentative of the SDM.— The first column shows the ratio between predicted and observed

frequency of wet days. The second column displays the HIt Rate (HIR, in green) and the
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Figure 5.5: As Figure 5.4 but for the AN sto method. Given the stochastic nature of this
method, 100 different realizations are carried out. See the text for details.
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False Alarm Rate (FAR, in red). These two columns together allow to describe how well

the SDM discriminates between wet and dry days. The third column shows the corre-

lation between observed and downscaled daily (blue), 10-daily accumulated (black) and

annual accumulated (pink) complete time-series. The forth and fifth columns plot the bias

(expressed in % of the mean observed value) and the ratio of variances (expressed as the

variance of predictions divided by the variance of observations) for wet days, respectively.

Finally, the last column shows the PDF score between the observed and downscaled wet

distributions. In the last three columns all values above 0.1 mm (up to the maximum) are

considered.
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Figure 5.6: Cross-validated results from applying the (top) AN det and (bottom) AN sto
methods for the 42 PAGASA stations shown in Figure 4.1b. In the stochastic method,
AN sto, one single realization (chosen at random) is considered. See the text for details.

In agreement with the results of San-Mart́ın et al. (2016), both SDMs provide very

similar results for all scores. In particular, both predict less rainy days than observed,

which in turn leads to a little dry bias. Furthermore, the variance is slightly underestimated

by both methods. Therefore, based on the similar performance of both AN det and AN sto,

only the former, which yields slightly better correlations is considered in this Thesis. Note

that this choice allows also to avoid the uncertainty introduced in the downscaled results

(although it is shown to be small) by the random nature of the AN sto method.
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5.4.1-2 Generalized Linear Models

Generalized Linear Models (GLMs) were formulated by Nelder and Wedderburn (1972)

in the 1970’s and are an extension of the classical linear regression which allows to model

the expected value of a random predictand variable whose distribution belongs to the

exponential family (Y ) through an arbitrary mathematical function called link function

(g) and a set of unknown parameters (β), according to

E(Y ) = µ = g−1(Xβ), (5.1)

where X is the predictor and E(Y ) the expected value of the predictand. The unknown

parameters, β, can be estimated by maximum likelihood, considering a least-squares iter-

ative algorithm.

GLMs have been used in numerous previous studies for SD of climate change simula-

tions (e.g., Brandsma and Buishand, 1997; Chandler and Wheater, 2002; Abaurrea and

Aśın, 2005; Fealy and Sweeney, 2007; Hertig et al., 2013); however, they have rarely been

used for SD of seasonal forecasts. Despite being a powerful tool to downscale precipita-

tion, GLMs are often difficult to apply since they admit a wide variety of configurations,

which should be carefully tested as they can lead to significantly different results. Given

the dual (occurrence/amount) character of precipitation, we followed in this Thesis the

common two-stage implementation (see, e.g., Chandler and Wheater, 2002) in which a

GLM with Bernoulli error distribution and logit canonical link-function (also known as

logistic regression) is used to downscale daily precipitation occurrence (0 = no rain, 1 =

rain) and a GLM with gamma error distribution and log canonical link-function is applied

to downscale daily precipitation amount.

For analogy with linear regression techniques, we considered initially a deterministic

configuration in which predictions are obtained from the expected values estimated by

both the GLM for occurrence (GLMo) and the GLM for amount (GLMa). In particular,

in the GLMo, the continuous expected values ∈ [0, 1] are transformed into binary ones as

1 (0) if they are equal or greater (smaller) than 0.5, whereas for the GLMa, the expected

values are directly interpreted as rain amounts. The final predicted value is therefore:

Y =

{
GLMa if GLMo ≥ 0.5

0 if GLMo < 0.5

Figure 5.7 is the equivalent to Figure 5.4, but for this deterministic method, which will be

referred to as GLM det henceforward. Although GLM det yields better correlations than

the analogs method, it is not able to predict light precipitation amounts. Furthermore, it

greatly underestimates the observed variance, with most of the predicted rain values in
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Figure 5.8: As Figure 5.5 but for the GLM sto method. See the text for details.
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a small range, which results in a very low distributional similarity. Note that this is not

surprising since only the deterministic signal explained by the predictors is considered in

this SDM.

Building on this, other configurations introducing a stochastic component4 to simulate

the unpredicted local-scale variability were implemented and tested. The best results were

found by introducing a simulation procedure in both the GLMo the and GLMa, which

could be seen as a dynamic predictor-driven version of the inflation of variance used in

some regression-based methods (Huth, 1999). The simulation is as follows: for the GLMo,

the expected value for each day in the test period is used as probability of occurrence for

a Bernouilli distribution from which a random value ∈ [0, 1] is simulated. If this value

is equal or greater (smaller) than the expected one, a 1 (0) is forecast. For the GLMa,

instead of considering the expected value for each day in the test period (µtesti
5), new

daily predictions (µ′testi) are given by simulating from a gamma distribution whose shape

parameter is fitted using the observed wet days in the calibration period (αtrain
6) and

whose scale parameter is νtesti = µtesti/αtrain
7 —i.e., for each simulated day in the test

period, we keep constant the shape parameter (assuming that αtest ' αtrain) whilst letting

vary the scale one.—

Figure 5.8 displays the results obtained for this stochastic configuration (as in Figure 5.5,

100 different realizations were carried out). Simulation allows the method to predict the

full range of observed precipitation amount values, solving thus the discontinuity shown in

Figure 5.7, reducing the bias and increasing the predicted variance. As a result, observed

and downscaled wet distributions match much better. However, correlations strongly

decay as an effect of the stochastic simulation introduced, which implies a reduction of the

predictive capacity of both the GLMo and the GLMa. As in Figure 5.6, the boxplots in

Figure 5.9 extend the validation results for the deterministic and stochastic GLM methods

considered (top and bottom row, respectively) to the 42 PAGASA stations. For the latter,

as for the AN sto method, one single realization, taken at random, was considered —notice

from Figure 5.8 that the uncertainty introduced by the stochastic character of GLM sto

is very small, so any realization can be considered to be representative of the method.—

Both GLM det and GLM sto yield similar ratios of occurrences, although the latter is

worse at reproducing the temporal sequence of rain/no rain events (lower HIR and higher

FAR values). The deterministic configuration yields a wet bias (over a 10%) and clearly

4For generative techniques, stochastic implementations have the advantage of intrinsically better rep-
resenting the local variance which is usually underestimated by deterministic ones.

5Let’s assume a test period of N days, thus i ∈ {1, ..., N}.
6A minimum number of wet days is required to make this fitting.
7We make use here of the relationship µ = αν —valid for any gamma distribution,— where µ is the

expected value and α and ν the shape and scale parameter, respectively.
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Figure 5.9: As Figure 5.6 but for (top row) the GLM det and (bottom row) the GLM sto
methods.

underestimates the variance, which in turn leads to low PDF scores. Differently, bias is

centred around zero and the predicted variance matches better the observed one in the

stochastic version, greatly improving the distributional similarity (higher PDF scores).

Despite this, note that this method overestimates the variance in some cases. We found

that this is due to the presence of ‘unrealistic’ (higher than expected) simulated extremes,

which are caused by the fixed value of the shape parameter imposed for the simulation

process. We have tested the performance of a new type of simulation in which the shape

parameter (as the scale one) is let to vary along the test period for those predicted val-

ues above the 95 percentile. However, the obtained results were variable, improving the

performance in some cases but deteriorating it in others.

Based on their better performance in terms of distributional consistency, stochastic

GLMs are needed for SD of climate change projections. However, in seasonal forecasting

it is key to assess the accuracy of the predictions (e.g. the interannual correlation) and,

hence, it is important to keep the deterministic signal isolated from the stochastic one.

Therefore, the GLMs considered in this Thesis are deterministic, i.e., predictions are based

on the expected values. Note from the second column of Figure 5.9 that, as compared to the

analog methods (Figure 5.6), the correlations exhibited by the stochastic (deterministic)

GLM are quite low (clearly higher).
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5.4.2 MOS-BC (Bias Correction) Methods

As compared to using raw GCM outputs, bias corrected data offers crucial advantages

for impact modelling applications (Hempel et al., 2013). For instance, it is well known

that GCM precipitation cannot be used to force hydrological models without some form

of prior bias correction if realistic output is sought (see, e.g., Feddersen and Andersen,

2005; Hansen et al., 2006; Sharma et al., 2007). Hence, due to their straightforward appli-

cation and low computational requirements (Li et al., 2010), as well as to the increasing

availability of GCM and RCM data, MOS-BC techniques have become very popular in the

last years. Nevertheless, and despite these techniques have been shown to present serious

drawbacks for climate change projections (Hagemann et al., 2011; Maraun, 2012; Räisänen

and Räty, 2013) —such as the inability to suitably correct the large GCM biases affecting

the representation of certain key atmospheric circulation patterns— their problems and

limitations for seasonal forecasts have not been explored yet.

Broadly, the existing MOS-BC techniques can be classified into scaling and distribu-

tional ones (see, e.g., Maraun et al., 2010; Themeßl et al., 2011). The former, which are

the simplest and most used, consist on using an additive or multiplicative scaling factor

(Durman et al., 2001; Casanueva et al., 2013) to calibrate the model simulations, i.e, they

correct the first moment of the PDF. The latter are the so-called q-q mapping techniques,

which adjust higher order moments (different quantiles) of the distribution (Panofsky and

Brier, 1968; Piani et al., 2010; Amengual et al., 2012) and have been widely used in impact

studies (see, e.g., Quintana-Segúı et al., 2010; Teng et al., 2014). Besides, some extensions

to the scaling and distributional techniques such as the multi-variable ISI-MIP (Hempel

et al., 2013) method has been recently introduced.

In this Thesis, two widely used distributional (q-q mapping) MOS-BC methods —one

parametric and one empirical— have been considered. They are described next. Note

that MOS-BC techniques require long series of data from unaltered models (Feddersen

and Andersen, 2005). However, this is guaranteed in this Thesis for using the most com-

prehensive and longest to-date seasonal hindcast from the ENSEMBLES experiment (see

Section 3.4.1).

� The parametric q-q mapping (which will be referred to as QM par henceforth) is

described in detail in Piani et al. (2010). For each location, normalized daily observed

and GCM simulated rainfall intensities (x) are fitted assuming that both are well

approximated by a gamma distribution with shape and scale parameters α and ν,
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respectively:

PDF (x) =
exp(−xν )x(α−1)

Γ(α)να
(5.2)

This method uses the theoretical instead of the empirical distributions. More so-

phisticated versions such as the one proposed by Gutjahr and Heinemann (2013)

combine a gamma and a Generalized Pareto Distribution to better calibrate the

extreme values.

� The empirical q-q mapping (denoted as QM emp hereafter) consists on calibrat-

ing the simulated CDF to the observed one by correcting a number of quantiles,

according to

q∗m = F−1o (Fm(qm)), (5.3)

where qm and q∗m are the simulated original and corrected quantiles, and Fm and

Fo refer to the empirical simulated and observed CDF, respectively. As in Déqué

(2007), the 1-99 percentiles are corrected and linear interpolation is used for the

values between two percentiles in this Thesis. Constant extrapolation is applied for

values outside the calibration range, i.e., the correction function of the last percentile

is applied to all values above it.

Both QM par and QM emp incorporate a frequency adaptation which is thought to

alleviate the problem that arise when the dry day frequency in the raw model output is

larger than in the observations (Themeßl et al., 2012; Wilcke et al., 2013), which would

lead to a strong positive bias after correction —note that q-q mapping is able to correct

automatically the excess of light precipitation frequency (‘drizzle effect’).— In particular,

this frequency adaptation consists in randomly sampling the observational distribution

into the simulated first bin (0-1 mm) in order to generate dry days.

Figure 5.10 shows in blue (green), for the four stations, cross-validation framework and

period considered in the previous examples (Figures 5.4, 5.5, 5.7 and 5.8), the results from

applying the QM par (QM emp) method to correct ERA-Interim precipitation (bi-linearly

interpolated to the points of interest). Note that, strictly speaking, this scheme would not

correspond to the MOS approach since reanalysis precipitation is used here instead of

GCM precipitation (see Section 5.1.2); however, it is considered with illustrative purposes

and for the sake of comparison with the PP methods presented in Section 5.4.1. Left

column displays in red a q-q plot of the 1-99 percentiles —only wet days are considered—

of observed against ERA-Interim raw precipitation, whereas blue (green) shows the q-q
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Figure 5.10: As Figure 5.4 but for the MOS-BC methods considered in this Thesis, QM par
and QM emp. Red (blue/green) corresponds to raw (parametric/empirical corrected)
ERA-Interim precipitation. See the text for details.
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plot of observed against ERA-Interim precipitation corrected by means of the QM par

(QM emp) method. Right column shows the observed (black), ERA-Interim raw (red)

and ERA-Interim corrected (blue/green) precipitation wet distributions.

Although the empirical version performs better, both QM par and QM emp are able to

correct to some extent the bad distributional consistency of ERA-Interim (see the improved

PDF scores), which exhibits a very scarce variability and is not capable of reproducing

high precipitation values. However, neither QM par nor QM emp are able to improve the

correlations attained by the reanalysis (which are in general acceptable); on the contrary,

they deteriorate them.
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Figure 5.11: As Figure 5.6 but for (top row) the QM par and (bottom row) the QM emp
methods.

Top (bottom) row of Figure 5.11 shows the results obtained when applying the QM par

(QM emp) method to correct ERA-Interim at the 42 PAGASA stations. Both methods

perform similarly in reproducing the occurrence event (first and second column) and also

in terms of correlations, yielding better results for all these scores than analogs do (Figure

5.6) and similar ones to those obtained for the deterministic GLM (except for interannual

correlation, which is better in the latter; see the top row of Figure 5.9). In terms of

distributions, the bias and the predicted variance (especially the latter) are better in the

QM emp method, which in turn leads to higher PDFs. On the one hand, the clear over-

estimation of the variance that occurs for the QM par method could indicate an intrinsic

limitation of the method, which, based on Figure 5.10 (only values under the 99 percentile

are plotted), might be most likely related to the presence of wrongly simulated extreme
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values (recall that this method assumes that both simulated and observed precipitation

fit to a gamma distribution, which might not be true). On the other hand, the good

performance of QM emp might be related to certain over-fitting.

The performance for SD of seasonal forecasts of all SDMs presented in Sections 5.4.1

and 5.4.2 will be intercompared for the case study of this Thesis, the Philippines, and

their relative merits and limitations will be discussed in Chapter 9.

5.5 State-of-the-Art of SD in Seasonal Forecasting

SDMs were first applied in short-range weather forecasts (Klein et al., 1959; Glahn

and Lowry, 1972) and later adapted to longer time-horizons, including seasonal forecasts

and climate change projections, being the latter problem the one receiving more attention

in the literature. For instance, a query on the Scopus database (http://www.scopus.

com) searching for publications including statistical downscaling in the “title, abstract and

keywords” results in a total of over 700 papers8 (see the exponential growth in the last

few years in Figure 5.12), 450 of which contained additionally the terms climate change

or climatic change, whereas only 20 included seasonal forecast or seasonal prediction.

Figure 5.12: Yearly number of papers published which include the term statistical down-
scaling in the “title, abstract or keywords”. Extracted from the deliverable D52.1 (Review
of the different statistical downscaling methods for s2d prediction) of the SPECS project,
which is publicly available at http://www.specs-fp7.eu/sites/default/files/u1/

SPECS_D52.1.pdf. Source: Scopus publications database.

8In journals from the following major subject areas: Earth and Planetary Sciences (48%), Environmental
Sciences (27%), Agricultural and Biological Sciences (6%), Engineering (5%) and Mathematics (3%).

http://www.scopus.com
http://www.scopus.com
http://www.specs-fp7.eu/sites/default/files/u1/SPECS_D52.1.pdf
http://www.specs-fp7.eu/sites/default/files/u1/SPECS_D52.1.pdf
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Nevertheless, many of the SDMs that have been developed and used for climate change

applications have also been applied for seasonal forecasting —due to its low computational

cost, SD is especially convenient for seasonal forecasting since it allows to efficiently work

with the enormous volume of data of available hindcasts9.— In order to provide an inven-

tory of the SDMs successfully applied at this particular time-scale, an extensive electronic

bibliographical search was conducted, considering different sources (e.g., Scopus, ISI Web

of Knowledge, Google Scholar). Nearly 30 publications —mainly journal papers, but also

technical reports and thesis— were identified. Table 5.2 shows that most of the SDMs ap-

plied to-date for seasonal precipitation have considered the DEMETER (Development of

a European Multimodel Ensemble system for seasonal to inTERannual prediction) models

(only three of them have a longer than 40-year hindcast period) and work on a month-

ly/seasonal basis. Moreover, MOS is the most popular approach (although there is a lack

of MOS-BC methods) and ERA-40 (Uppala et al., 2005) the most used reanalysis for PP

techniques. Amongst the latter, regression- and analog-based SDMs are the most popular.

This evidences the added value and the novelty character of this Thesis, where the EN-

SEMBLES models (which form the longest to-date and most comprehensive multimodel

seasonal hindcast) are considered, all the SDMs (including MOS-BC ones) are applied on

a daily basis and the latest reanalysis from the ECMWF, ERA-Interim, is used for the

calibration of the different PP techniques. Furthermore, GLM-based methods (rarely used

before in the context of seasonal forecasting) are applied, with overall good results.

9Typical seasonal hindcast databases contain multi-month (6 to 12 months) long multi-member (10 to
50 members) simulations run for several initializations (often once per month) for a number of years (20
to 40).
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Table 5.2: Summary of previous studies applying any form of SD to forecast sea-
sonal precipitation. The nationality and affiliation fields refer to the corresponding au-
thor. The name of a RCM followed by a “/” indicates the RCM/GCM coupling, e.g.,
“RegCM3/ECHAM4.5”. In PP techniques, the reanalysis used for calibration is given in
brackets, e.g. “PP (ERA-40)”. Adapted from the deliverable D52.1 of the SPECS project.



CHAPTER 6

Methodological Aspects for SD in Seasonal Forecasting

There is a number of methodological aspects which are relevant for the SD of seasonal

forecasts and must therefore be carefully analyzed for an appropriate application of the

different SDMs introduced in Chapter 5.

First, as mentioned in Section 5.1.1, for each particular predictand variable and region

of interest, the most time-consuming task in Perfect Prog (PP) schemes is the selection

(screening) of a suitable combination of predictors —defined over a proper geographical

domain,— which should account for a major part of the variability in the predictand and

be realistically reproduced by both reanalyses and GCMs (see, e.g., Wilby et al., 2004).

Typically, this is undertaken by assessing the performance of different predictor–domain

combinations in a cross-validation framework, using to this aim standard validation scores

(e.g., accuracy metrics).

Second, although the calibration phase of the different SDMs is common to seasonal

forecasting and climate change studies, the former case presents a number of particularities

which typically do not apply for the latter. For instance, in seasonal forecasting, the SDMs

can be calibrated using season-specific data, e.g., only JJA training data is considered for

JJA predictions. However, typical applications in a climate change context consider the

entire available yearly predictor dataset for calibration (see, e.g., Gutiérrez et al., 2013).

Both approaches have advantages and limitations and should be tested in order to find

the optimum procedure.

Third, in the PP approach, the different SDMs are sensitive to the GCM biases (as

compared to reanalysis) in the large-scale predictor variables. Therefore, GCM predictors

must be conveniently treated (or harmonized) before entering the SDM in order to make

them compatible with the reanalysis used for calibration (Maraun et al., 2010); otherwise,

93



94 6. METHODOLOGICAL ASPECTS FOR SD IN SEASONAL FORECASTING

misleading results might be obtained. A number of possibilities exist for this task, which

should also be explored.

This chapter addresses all these issues for the case study of this Thesis, seasonal fore-

casting of precipitation in the Philippines, establishing the framework under which the

different SDMs considered (see Chapter 5) will be later applied.

6.1 Predictor Screening

Atmospheric variables describing circulation, temperature and moisture are generally

considered to be among the most informative predictors for SD of precipitation under the

PP approach (see, e.g., Charles et al., 1999; Timbal et al., 2003; Bürger and Chen, 2005;

Haylock et al., 2006; Fowler et al., 2007; Hertig and Jacobeit, 2008; Sauter and Venema,

2011; San-Mart́ın et al., 2016). However, whereas it is known that suitable predictors

for PP should be realistically reproduced by both reanalyses and GCM (Hewitson and

Crane, 1996; Wilby et al., 2004), it is also known that GCMs generally perform better

for circulation and temperature variables than for moisture ones (Räisänen, 2007; Brands

et al., 2011, 2013). Yet, moisture information should be included into the predictor field

in order to improve the statistical link-function, i.e., the predictive potential of the SDM.

Moreover, for climate change applications, measures of humidity are necessary to capture

changes in the water-holding capacity of the atmosphere under global warming, i.e., to

capture the ‘correct’ climate change signal (Goodess and Palutikof, 1998; Wilby et al.,

1998). Note that, although climate change is not the main concern of this Thesis, we deal

with it in Section 8.5.

With these precepts in mind, and after consulting the expertise from local meteorolo-

gists as well as the results from previously published studies (Kang et al., 2007; Chu et al.,

2008; Paul et al., 2008; Chu and Yu, 2010), a set of different predictor combinations were

considered for the screening process for our case (Table 6.1). These combinations consist

of circulation variables alone (in particular the zonal wind component at different verti-

cal levels; P1: U850, U300), circulation and specific humidity (P2: U850, U300, Q850),

circulation and temperature (P3: U850, U300, T850) and circulation, specific humidity

and temperature (P4: U850, U300, Q850, T850). Note that Q850 is used instead of col-

umn integrated water vapour or precipitable water since the latter variables are usually

not provided by the common GCM databases. All the variables listed in Table 6.1 were

obtained from the ERA-Interim reanalysis (Dee et al., 2011) and are also available for the

GCMs which will be used later in this Thesis (e.g. the ENSEMBLES models). To keep

consistency with the latter, daily instantaneous values at 00 UTC were chosen in all cases.

As opposite to the case of MOS-BC, PP methods also require the determination of the

geographical domain where the predictors are considered. Typically, this domain should
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Code Predictor Variables

P1 U850, U300
P2 U850, U300, Q850
P3 U850, U300, T850
P4 U850, U300, Q850, T850

Table 6.1: Predictor combinations considered. U/Q/T corresponds to zonal wind compo-
nent/specific humidity/temperature. The numbers refer to the vertical level considered,
in hPa. For instance, U850 stands for the zonal wind component at 850 hPa.

be large enough to resolve the relevant large-scale circulation patterns affecting the local

meteorology (Feddersen and Andersen, 2005). Moreover, the spatial scale considered for

the predictors usually varies according to the particular time-scale considered. Often,

large-scale quasi hemispheric-like patterns are considered for PP methods operating on

a monthly/seasonal basis, whereas smaller domains (a few thousands of kilometres) are

considered for those operating on a daily basis (see, e.g., Gutiérrez et al., 2004, for further

details). In the former case, ocean-derived variables (mainly SST) and climate oscillation

indices (e.g., ENSO, NAO, etc.) are often additionally considered as predictors. Following

from these considerations, the geographical domain considered for SD in this Thesis is

shown with blue crosses in Figure 6.1 (the 42 PAGASA stations are also displayed in

red). In particular, a regular 2◦ grid is considered, to which ERA-Interim was bi-linearly

interpolated from its native resolution. This domain, which contains 238 grid boxes, is

very similar to the one used by Robertson et al. (2012) for SD in the Philippines and is

large enough to encompass the effect of the ENSO teleconnection affecting the climate of

the region (see Section 7.5.3).

A deterministic GLM-based method1 considering the 15 leading Principal Components

(PCs) was applied to all the predictor combinations listed in Table 6.1. As explained in

Section 5.2 a k -fold cross-validation framework with k = 5 non-overlapping test periods

of five years each covering the entire period 1981-2005 was considered. To circumvent

spurious trend effects, the five years forming each test period were randomly chosen.

Figure 6.2 shows the results obtained. In particular, it displays the Spearman cor-

relation coefficient (rs) between daily observed and downscaled precipitation time-series

for different predictor combinations: in addition to P1-P4, Q850 and T850 alone are also

provided for comparison purposes. In each panel, the results for a specific CT (see Section

4.1) are shown. Along the x-axis, stations are sorted by decreasing latitude (from left to

right). On the right hand side, the CT-averaged rs are indicated with points.

1Deterministic GLMs were shown to provide the best interannual ACC among the different SDMs
considered in this Thesis (see Section 5.4).
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Figure 6.1: Geographical domain considered for SD (blue crosses) and the 42 PAGASA
stations (red points).

In general, the combination of circulation and thermodynamic variables (P4) yields

the highest correlation coefficients in all CTs, whilst the predictive potential is lower

for the case of using circulation variables alone (P1). Moreover, P2 (P3) provides very

similar results to P4 (P1), which points out the scarce importance of T850 to explain

the local-scale climate variability over the area of study, once circulation is taken into

account. Contrarily, adding Q850 to circulation variables improves the statistical link-

function (compare P1 and P2). The little contribution of T850 (as compared to Q850) is

also manifest from comparing the red and blue lines —the former variable alone brings in

the worst results in all CTs.— This in agreement with previous studies which have shown

that the linkage of precipitation with moisture is generally stronger than with temperature

(see, e.g., Beckmann and Buishand, 2002).

In the light of these results, the P4 predictor combination is considered for the PP

methods later applied in this Thesis. Despite providing similar results whilst being sim-

pler, P2 is discarded in favour of P4 since including some temperature in the predictor

field is expected to add some predictive capacity for particular seasons. For instance, in

companion to humidity, temperature describes as well the rush of warm humid air from

maritime equatorial air, which characterizes the southwest summer monsoon. Besides, the

strength of convection is also controlled by temperature (Brandsma and Buishand, 1997).

For spatial detail, Figure 6.3 shows the performance found for P4, when applying the

aforementioned deterministic GLM considering the 15 leading PCs (right column). For
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Figure 6.2: Cross-validated results —as measured by the Spearman correlation coefficient
(rs) between observed and downscaled daily precipitation time-series for the period 1981-
2005— for each CT. Different colors correspond to different predictor combinations (see
the legend) from ERA-Interim. For each CT, results are sorted by the latitude of the
stations (decreasing from left to right). CT-specific spatial average values are shown with
points on the right hand side of each panel.

completeness, results are also shown for a deterministic GLM considering as predictors the

standardized anomalies at the 4 nearest grid boxes (left column). Results are very similar

in both cases, obtaining the highest rs in the northern part of the archipelago and along

the eastern coastline, with a gradual decrease towards the south.

6.2 Season-Specific versus Yearly Data for Calibration

Since seasons may change in the future —e.g., more summer-like days are expected

in Europe (Ruosteenoja and Räisänen, 2013),— calibrating and applying the SDMs sep-

arately for each season (e.g. only JJA training data is considered for JJA predictions)

could have uncontrollable effects in the downscaled results from GCM scenario runs (Im-
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Figure 6.3: Cross-validated results —as measured by the Spearman correlation coefficient
(rs) between observed and downscaled daily precipitation time-series for the period 1981-
2005— for the P4 predictor combination (see Table 6.1) from ERA-Interim. The numbers
indicate the spatial mean value for all the stations (‘all’) and for those stations pertaining
to a specific CT (‘CT1-4’).

bert and Benestad, 2005). Thus, the entire available yearly predictor dataset is typically

used in SD of climate change projections (see, e.g., Gutiérrez et al., 2013), being the use

of season-specific data not recommended. However, the latter approach is suitable for SD

of seasonal forecasts. Therefore, in this case, it is important to assess the performance

of these two alternative procedures, validating to this aim those aspects relevant for sea-

sonal forecasting. In particular, interannual ACC is the key validation metric to take into

account since it summarizes the ability of the SDM to preserve the temporal structure

of the observed interannual anomalies. Figure 6.4 shows the interannual ACC obtained

when considering season-specific and yearly data (solid and dashed lines, respectively) for

calibrating a deterministic GLM using as predictors (left) the 15 leading PCs and (right)

standardized anomalies at the 4 nearest grid boxes (the same cross-validation framework

used in the previous section for the period 1981-2005 was considered here). Following from

the results of that section, the P4 predictor combination was considered for this analysis.

For all 3-month seasons along the year, each line (see colors in legend) shows the average

interannual ACC for the corresponding CT. In general, season-specific data yields better

correlations for all CTs, and especially in the central part of the year (JJA), for which

most of the rainfall occur over the area of interest.
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Figure 6.4: Cross-validated results —as measured by the ACC between observed and
downscaled interannual accumulated precipitation time-series for the period 1981-2005—
when considering season-specific and yearly ERA-Interim predictor data (solid and dashed
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DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
C

C

QM_par

DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
C

C

QM_emp

CT1 CT2 CT3 CT4
seasons seasons

Figure 6.5: As Figure 6.4 but for the two MOS-BC methods used in this Thesis, consid-
ering as only predictor ERA-Interim precipitation.
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For completeness, Figure 6.5 is the equivalent to Figure 6.4 but for the two MOS-

BC methods used in this Thesis, considering as only predictor ERA-Interim precipitation

at the nearest grid box. Differently to the case of PP, MOS-BC methods seem to be

not sensitive to the choice of data (season-specific or yearly) considered for calibration,

providing very similar results in both cases.
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Figure 6.6: Cross-validated results —as measured by the Spearman correlation coefficient
(rs) between observed and downscaled daily precipitation time-series for the period 1981-
2005— obtained for each individual season when using season-specific data for calibrating
a deterministic GLM considering (left column) the 15 leading PCs and (right column) the
standardized anomalies at the 4 nearest grid boxes. The P4 predictor combination (see
Table 6.1) from ERA-Interim is considered. The numbers indicate the spatial mean value
for all the stations (‘all’) and for those stations pertaining to a specific CT (‘CT1-4’).

Hence, based on the results from Figures 6.4 and 6.5, season-specific data is considered

for the calibration of all the SDMs (both PP and MOS-BC) later applied in this Thesis.

For an example complementing Figure 6.3, Figure 6.6 shows the rs between observed and

downscaled daily precipitation time-series obtained for each individual season when using

season-specific data for calibrating a deterministic GLM considering (left column) the 15
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leading PCs and (right column) the standardized anomalies at the 4 nearest grid boxes.

As above, the P4 predictor combination was considered and a 5-fold cross-validation for

the period 1981-2005 was applied. It is seen that both configurations of the SDM yield

very similar results, with rs values which are in general similar to those from Figure 6.3.

However, as compared to the latter figure, changes in the spatial patterns appear for

different seasons. For instance, whilst the north-south gradient of predictive potential is

roughly kept for the rest of the year, it shifts in DJF, when the worst results are found for

the stations in the northwestern part of the archipelago.

6.3 Harmonization of GCM Predictor Data

As shown in Section 3.4.1-2, GCMs exhibit large biases for precipitation. For a more

detailed analysis over our area of interest —the domain considered for SD (Figure 6.1),—

Figure 6.7 displays, for four of the five ENSEMBLES models, the bias —ERA-Interim

was taken as reference— for one-month lead precipitation for DJF, MAM, JJA and SON,

as well as for each of the individual months forming each season (in rows). Thus, within

each particular season, predictions for each target month would correspond to different

lead-times. For instance, for DJF, predictions for December/January/February would

correspond to 1/2/3 months lead-time forecasts.

Beyond the expected differences between models, varying spatial patterns are found

in some cases among the different months forming the same season. To properly take

this model feature into account, different bias correction strategies based on moving-

windows have been applied in the literature. For instance, for the ith day of the year

(i = {1, ..., 365}), the corresponding bias might be corrected based upon the data subset

encompassed by a moving window of a certain width centred around that day. Although

this approach could be equally used for both climate change projections and seasonal

forecasts, it has been only applied in the former case to-date (Table 6.2). Note that,

given the short length of each particular season, very narrow windows would be needed

in seasonal forecasting —for instance, for a one-month moving window, the first and the

last 15 days of the season would not be used,— which would make the process prone

to over-fitting and computationally inefficient. For this reason, the MOS-BC methods

considered in this Thesis (Section 5.4.2) are directly applied on raw GCM precipitation

and are expected to correct it, at a distributional level, based on local observations.

Differently to the MOS-BC methods, as explained in Chapter 5, PP methods need to be

calibrated with reanalysis data before being applied to a GCM (see Section 5.1.1), so they

are sensitive to biases in the GCM predictors (as compared to reanalysis). Noteworthy,

the large biases shown for precipitation in Figure 6.7 suggest that the associated large-
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Reference Window width

Räisänen and Räty (2013) 1, 2, 3 months
Themeßl et al. (2011); Wilcke et al. (2013); Maurer and Pierce (2014) 31 days
Themeßl et al. (2011) 61 days
Boé et al. (2007); Maraun (2013) seasonal (' 90 days)

Table 6.2: Typical window sizes used in previous works (all of them have been undertaken
in climate change conditions). This list is not comprehensive, but provides just a few
illustrative examples.

scale variables might also suffer from important model errors. Figures 6.8 to 6.11 are the

equivalent ones to Figure 6.7 but for the predictor variables listed in Table 6.1. Note that

U300 is replaced here by U200, the most similar variable available for the ENSEMBLES

models.

As in Figure 6.7, varying spatial patterns are found for different months within the same

season, particularly important for some variables and models. Therefore, before entering

any of the PP SDMs considered in this Thesis (Section 5.4.1), every large-scale GCM

predictor is properly harmonized (i.e., made compatible with the counterpart reanalysis

variable used for calibration). To this, we first remove the model bias (the reanalysis

used for calibration is taken as reference) separately for each month rather than for the

entire season. By doing this, we force the GCM to follow the mean and variability of

the reanalysis to some extent. Note that, although more sophisticated strategies as the

aforementioned moving windows applied for precipitation in climate change studies could

be also considered to this aim, this first-class approach adapts better to the case of seasonal

forecasts and is more efficient from a computational point of view. Afterwards, GCM

predictor data is standardized (grid box by grid box) by subtracting the mean and dividing

by the standard deviation of the reanalysis used for calibration. On the one hand, these

standardized fields are used as input data for those SDMs considering anomalies at nearby

grid boxes. Note that standardization brings the first and second order moments of the

reanalysis and GCM into agreement and thereby provides a better approximation for the

assumption of ‘perfect’ GCM performance than using untransformed data. Moreover, it

prevents from the negative effects related to the distinct ranges of the different predictor

variables considered. On the other hand, for the SDMs considering PCs as predictors,

the PCs of the GCM are obtained by projecting the standardized GCM fields onto the

Empirical Orthogonal Functions (EOFs) of the reanalysis used for calibration.
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Figure 6.7: For each of the ENSEMBLES models, panels show the bias —with respect
to ERA-Interim— for precipitation for DJF, MAM, JJA and SON (one-month lead pre-
dictions are considered) and for each of the individual months forming the corresponding
season (in rows).
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Figure 6.8: As Figure 6.7 but for U850.
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Figure 6.9: As Figure 6.7 but for U200.
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Figure 6.10: As Figure 6.7 but for Q850.
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Figure 6.11: As Figure 6.7 but for T850.
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CHAPTER 7

Validation of Global Seasonal Precipitation Forecasts

Nowadays, one of the limiting factors that still hinder the practical use of seasonal fore-

casts (see, e.g., Goddard et al., 2010) is that predictability at this particular time-scale

strongly varies with the target variable, region and season (see, e.g., Halpert and Ro-

pelewski, 1992; van Oldenborgh, 2004; Barnston et al., 2010; Doblas-Reyes et al., 2010).

Hence, in order to properly communicate the uncertainties related to global seasonal pre-

cipitation predictions, it is needed to develop a comprehensive assessment of the per-

formance of the different forecasting models worldwide. Nevertheless, the majority of

verification studies for this variable have been conducted over limited areas of the world

and for concrete seasons (see, e.g., Batté and Déqué, 2011; Lim et al., 2011; Kim et al.,

2012a; Landman and Beraki, 2012). A few studies have also been conducted worldwide

(van Oldenborgh et al., 2005; Wang et al., 2009; Barnston et al., 2010; Doblas-Reyes et al.,

2010) using different validation scores; however, the limited hindcast period available in

the latter works does not ensure a robust statistical validation. For instance, Doblas-Reyes

et al. (2010) analyzed the ENSEMBLES multimodel seasonal dataset computing averaged

scores over six large-scale regions of the world for the period 1991-2005.

This chapter aims to fill the lack of a user-oriented validation of global seasonal precip-

itation forecasts for a long enough period (1961-2000) which allows for robustly identifying

those regions of the world with significant seasonal skill. To this, we consider the ENSEM-

BLES multimodel seasonal hindcast (see Section 3.4.1) and apply a simple tercile-based

probabilistic validation scheme, obtaining worldwide maps of ROC Skill Score (ROCSS), a

score which is recommended by the SVS-LRF for the verification of probabilistic seasonal

forecasts (see Section 3.5). Additionally, since ENSO is known to be the major driving

factor for seasonal predictability (see Chapter 3), we also analyze its role on the seasonal

skill.
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Figure 7.1: Mean climatology and interannual standard deviation (left and right column,
respectively) of seasonal accumulated precipitation from VASClimO v1.1 for the four stan-
dard seasons (in rows) within the period 1961-2000.

7.1 Data Used

VASClimO v1.1 (Beck et al., 2005) was considered as reference observations for valida-

tion. This gauge-based product provides monthly precipitation totals on a 2.5◦ resolution

grid for the global land areas (except the Antarctica) for the period 1951-2000. Figure 7.1

shows the mean seasonal totals and the corresponding interannual standard deviation for

this dataset for the period of study: 1961-2000.

In order to test the sensitivity to the reference data in the validation process, all cal-

culations were also done for an alternative precipitation dataset, the Global Precipitation

Climatology Centre full data reanalysis version 6 (GPCC v6) (Becker et al., 2013). The

results obtained in both cases were very similar. Thus, only VASClimO v1.1 is considered

hereafter.
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Predictions were obtained from the most comprehensive and longest-to-date multi-

model seasonal hindcast, provided by the EU project ENSEMBLES (see Section 3.4.1).

For each of the five contributing models, seven-month long runs were issued four times a

year within the period 1960-2005, starting the first of February, May, August and Novem-

ber (see Weisheimer et al., 2009, for more details about the experiment). Therefore, the

seasons considered for validation were the standard boreal winter (DJF), spring (MAM),

summer (JJA) and autumn (SON), since this allows to analyze one- and four-month lead

predictions —e.g., the initializations of August and May can be used to forecast SON.—

Note that although alternative three–month seasons could be more informative in particu-

lar regions of the world, there would be a single lead-time available for them, thus limiting

the study. The validation period considered was 1961-2000, common to VASClimO v1.1

observations and the ENSEMBLES models. All the models were bi-linearly interpolated

to the grid of the observations —similar results were obtained using the nearest grid box

interpolation technique (not shown).—

7.2 Validation Methodology

The validation methodology used is a tercile-based probabilistic approach previously

applied in other studies (see, e.g., Fŕıas et al., 2010; Vellinga et al., 2013). For each partic-

ular grid box and each particular model, member and season, the forty-year interannual

series of predicted seasonal precipitation were classified into three categories (dry, normal

and wet), according to their respective climatological terciles within the period 1961-2000.

Then, a probabilistic forecast was computed year by year by considering the number of

members falling within each category, out of a total of n = 9 members. The terciles

were defined independently for each model, considering the interannual series of its nine

members (a total of 40× 9 = 360 values) —terciles were not computed at a member-level

since no significant overlap among the dry and wet terciles of the nine members was found

applying a Student’s t-test.— In the case of the multimodel (MM), n = 45 members were

used to compute the probabilistic forecasts, thus assuming equal weights for all the models.

The terciles for the MM were computed independently for each model. Note that working

with precipitation categories instead of with raw values implicitly entails a bias correction

grid box by grid box, so the different region- and season-dependent biases shown by the

ENSEMBLES models in Section 3.4.1-2 do not affect the results obtained here.

Rather than using deterministic scores (e.g., van Oldenborgh et al., 2005; Batté and

Déqué, 2011; Lim et al., 2011; Li et al., 2012; Singh et al., 2012), the forecast performance

is assessed in terms of the probabilistic ROCSS. The statistical significance of this score

was obtained by bootstrapping (Mason and Graham, 2002) with 1000 samples, i.e., by
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Figure 7.2: One-month lead probabilistic predictions from the five ENSEMBLES models
and the MM (in bold) for SON in an illustrative grid box in (top panel) the Malay
archipelago —11.25◦ S, 151.25◦ E— and (bottom panel) Europe —48.75◦N, 16.25◦ E.—
For each tercile —d, n and w stand for dry, normal and wet, respectively,— probabilities
are displayed in a white (0)-to-black (1) scale. Red/blue/green points mark the observed
tercile in El Niño/La Niña/neutral years. Numbers on the right show the ROCSS for each
model and each tercile. Asterisks indicate significant values (α = 0.05).
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generating 1000 time series of probabilistic forecasts by randomly resampling the original

1961-2000 sequence. As an illustrative example of the validation scheme followed, Figure

7.2 shows the 1961-2000 interannual time-series of probabilistic predictions from the five

models and the MM as well as the binary occurrence/non occurrence for the three terciles

in two particular grid boxes —one in the Malay archipelago (top panel) and the other in

Europe (bottom panel)— at one month lead-time for SON. Although varying from year

to year and from model to model, predictions exhibit a higher resolution (probabilities far

from 1/3) in the former point. Furthermore, in this case resolution increases in general

in El Niño and La Niña conditions (marked with red and blue arrows, respectively),

suggesting the existence of a predictability signal linked to ENSO in this region of the

world for this season. Numbers on the right correspond to the ROCSS for the different

models and terciles. High skill (over 0.7 in most of the cases) is found for the dry and wet

terciles for the point in the Malay archipelago. On the contrary, almost no skill (i.e., non

significant ROCSS) is found for the point in Europe.

7.3 Overall Skill (Worldwide)

The above described methodology was applied worldwide, grid box by grid box, in

order to compute the ROCSS (and its corresponding significance) for the five models and

the MM within the period 1961-2000, thus obtaining a measure of overall skill. As a

summary of the results obtained, Figure 7.3(a-d) shows the percentage of grid boxes with

significant (α = 0.05) skill in the tropical —region between 23.5◦N and 23.5◦ S latitudes—

and the extratropical land areas, for both one- and four-month lead predictions. Although

predictability varies with region, season, model and lead-time, several general conclusions

can be obtained. First, the skill concentrates in the extreme (wet and dry) terciles, whereas

almost no skill is obtained for normal conditions (note that the percentage of significant

grid boxes is around 5% in this case, which can be explained by chance according to the

significance level considered). This lack of skill for the near normal category is in agreement

with previous studies (see, e.g., Van Den Dool and Toth, 1991). Second, predictability

is mainly located in the tropics (with 20 to 40% of total land areas showing significant

skill) rather than in the extratropics (only 10%), which is also in agreement with previous

studies (see, e.g., van Oldenborgh et al., 2005). Furthermore, SON (MAM) is in general

the most (least) skillful season. Third, all models yield similar results for a concrete region,

season and lead-time, with the MM outperforming any of them in all cases, which is also in

agreement with previous studies (see, e.g., Doblas-Reyes et al., 2009; Bundel et al., 2011;

Ma et al., 2012). Finally, the spatial coverage of the skillful areas decays at four months

lead-time (particularly in JJA), although not sharply. This general low decrease in skill



116 7. VALIDATION OF GLOBAL SEASONAL PRECIPITATION FORECASTS

0

10

20

30

40

50

S
ig

ni
fic

an
t R

O
C

S
S

 (%
 a

re
a)

 

 

0

10

20

30

40

50

 

 

 

 

 

 

0.35

0.40

0.45

0.50

0.55

S
ig

ni
fic

an
t R

O
C

S
S

 (m
ea

n)
 

 

 

 

 0.60 (e) Tropics: 1-month lead (f) Tropics: 4-month lead

ECMWF UKMO IFM-GEOMAR CMCC-INGV MF MM

MAM JJA SONDJF MAM JJA SONDJF

dry wetnormaldry wetnormal dry wetnormal dry wetnormaldry wetnormal dry wetnormal dry wetnormaldry wetnormal dry wetnormal dry wetnormaldry wetnormal dry wetnormal

dry wetnormaldry wetnormal dry wetnormal dry wetnormaldry wetnormal dry wetnormal dry wetnormaldry wetnormal dry wetnormal dry wetnormaldry wetnormal dry wetnormal

dry wetnormaldry wetnormal dry wetnormal dry wetnormaldry wetnormal dry wetnormal dry wetnormaldry wetnormal dry wetnormal dry wetnormaldry wetnormal dry wetnormal

MAM JJA SONDJF MAM JJA SONDJF

MAM JJA SONDJF MAM JJA SONDJF

(c) Extra-tropics: 1-month lead (d) Extra-tropics: 4-months lead

(a) Tropics: 1-month lead (b) Tropics: 4-month lead

Figure 7.3: Percentage of land areas with significant (α = 0.05) ROCSS for one- and four-
month lead predictions (left and right column, respectively) from the five ENSEMBLES
models and the MM (see colors in legend) in (a,b) the tropics and (c,d) the extratropics.
(e,f) Mean value of the significant ROCSS in the tropics at one and four months lead-time.

with lead-time was also found by Barnston (1994), who attributed it to a persistent ENSO

signal. For a full interpretation of the previous results, Figure 7.3(a-b) should be analyzed

jointly with Figure 7.3(e-f), which displays the mean value of the significant ROCSS in

the tropics at one and four months lead-time. Note that there is a clear correspondence

between Figure 7.3(e-f) and Figure 7.3(a-b), so all the previous comments apply.

In order to further analyze the above results in the different regions of the world, global

spatial maps of ROCSS were obtained for the five models and the MM. For conciseness,

and given its better performance, only results for the MM are shown. Figures 7.4 and

7.5 show the significant skill for the dry (left column) and wet (right column) terciles at

one and four months lead-time, respectively, by seasons (in rows). It can be seen that

significant skill is mainly located over the tropics. Moreover, there is clear symmetry for

dry and wet terciles. In addition, although both the signal and spatial coverage of the

skillful areas slightly reduce at four months lead-time (as compared to the one-month lead

case) the skill patterns are broadly preserved, particularly in DJF and SON.
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By seasons, the main skillful regions at one month lead-time in DJF are the Gulf of

California, northern South America, central and southern Africa, western Australia and

the Pacific islands of Oceania in Melanesia, Micronesia and Polynesia. Except in Africa,

where the predictability signal weakens, most of this skill remains at four months lead-

time. In MAM, skill at one month lead-time is located over parts of western U.S.A.,

northeastern Brazil, southern Africa, parts of the Arabic peninsula, Indochina and the

Malay archipelago. Most of this predictability vanishes at four months lead-time over

Africa and the Arabic peninsula. In JJA, central America, northern Brazil, the Gulf

of Guinea, the Malay archipelago, eastern Australia and the Pacific islands of Oceania

are the main skillful regions at one month lead-time. However, most of this skill is only

maintained in the Malay archipelago and the Pacific islands of Oceania at four months

lead-time. Finally, one-month lead skill in SON is located over northern South America, a

belt in central Africa (especially in the Somali peninsula), parts of Middle East, the Malay

archipelago, Australia and the Pacific islands of Oceania. Moreover, this skill remains

almost unaltered at four months lead-time for all the aforementioned regions except the

Somali peninsula, thus indicating a persisting predictability signal.

In the light of the previous results, northern South America and the Malay archipelago

seem to be the most skillful regions of the world for seasonal forecasting of precipitation.

Note that seasonal predictability in these regions has been analyzed in previous studies

(Haylock and McBride, 2001; Aldrian et al., 2007), considering also its derived socio-

economic impacts (Kirono and Tapper, 1999).

7.4 Overall Skill (in the Philippines)

Both MOS-BC and PP methods are limited by the quality of the driving GCM in sim-

ulating the needed predictors; precipitation in the former case and large-scale circulation

variables in the latter. Therefore, when assessing the potential to downscale precipitation

it is important to first evaluate the skill of the GCMs considered over the region of interest

(Maraun et al., 2010). For the case of the Philippines, a simple deterministic validation in

terms of bias and interannual ACC (Figures 4.4 and 4.5, respectively) indicated that the

ENSEMBLES models poorly represent local precipitation —particularly for certain key

seasons and regions,— which might be related to the known errors of GCMs in simulat-

ing important large-scale phenomena like ENSO (Latif et al., 2001; Leloup et al., 2007),

monsoonal circulation and tropical and extratropical cyclones (Meehl et al., 2007). In

this section, we extend these results by applying the same tercile-based probabilistic val-

idation conducted worldwide (previous section), but locally for the 42 PAGASA stations

of Figure 4.1b over the period 1981-2005, gaining thus regional detail. Figure 7.6 shows
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at one month lead-time for the period 1961-2000, by seasons (in rows). Only significant
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the results obtained for four of the ENSEMBLES models. Only one month lead-time

predictions are shown (results for the four-month lead case are very similar). Significant

(α = 0.05) ROCSS are indicated with a black dot (as in Figures 7.4 and 7.5, significance

was computed upon bootstrapping with 1000 samples). As found for the interannual ACC

in Figure 4.5, although results vary among models, seasons and also from region to region,

acceptable ROCSS are found throughout the year (especially in DJF and MAM) except

for JJA, which points out the potential of the selected area for SD. Remarkably, SDMs

might be particularly beneficial to overcome the limited skill found in JJA, especially for

the CT1 region, where most of the annual rainfall is received due to the presence of the

southwest monsoon. This possibility will be analyzed in detail in Chapter 9 by applying

different PP and MOS-BC methods.
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Figure 7.6: ROCSS maps for four of the ENSEMBLES models (dry and wet terciles) for
the 42 PAGASA stations of Figure 4.1b at one month lead-time for the period 1981-2005,
by seasons (in rows). Significant (α = 0.05) values are indicated with a black dot.
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7.5 ENSO-Driven Skill

Despite the important achievements reached in seasonal forecasting in the last ten

years, significant levels of skill for precipitation are only generally found over regions

connected with ENSO (see, e.g., Coelho et al., 2006; Barnston et al., 2010; Arribas et al.,

2011; Lim et al., 2011; Kim et al., 2012a,b; Landman and Beraki, 2012), which is known

to be the dominant mode of seasonal variability (see, e.g., Goddard and Dilley, 2005;

Doblas-Reyes et al., 2010). Therefore, in this section we analyze both the direct (through

the SST anomalies in El Niño 3.4 region) and indirect (through its associated atmospheric

teleconnections) influence of ENSO on the skill obtained for precipitation in Sections 7.3

and 7.4.
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Figure 7.7: Mean observed SST anomaly in El Niño 3.4 region for the (red) El Niño and
(blue) La Niña events considered. Observations come from the ERSST v3b dataset (Smith
et al., 2008).

7.5.1 Sea Surface Temperature in El Niño 3.4 Region

Although alternative indices for the definition of warm (El Niño) and cool (La Niña) ENSO

events have been proposed, the Oceanic Niño Index (ONI) —based on the SST anomalies

in El Niño 3.4 region (5◦N-5◦S, 120◦W-170◦W)— has become the de-facto standard used

by the National Oceanic and Atmospheric Administration of the United States (NOAA:

http://www.noaa.gov). According to this index, an El Niño (La Niña) event is defined

when the SST anomalies in five consecutive overlapping 3-month seasons remain equal or

above (equal or below) the 0.5◦C (−0.5◦C) threshold. Here, we adopted this definition and

analyzed the 18-month period spanning from the spring of the onset year to the summer

of the decay year —as indicated by the shading in Figure 7.7.— Note that this period

is centered in SON and DJF, when the SST anomalies reach their maximum (minimum)

http://www.noaa.gov
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value. The following (decay) years were considered for El Niño (La Niña) events: 1964,

1966, 1969, 1970, 1973, 1977, 1978, 1983, 1987, 1988, 1992, 1995 and 1998 (1965, 1971,

1972, 1974, 1975, 1976, 1984, 1985, 1989, 1996, 1999, 2000 and 2001). In the following,

we use the notation MAM-1 and JJA-1 (MAM and JJA) to refer to the seasons of onset

(decay) year of the event.

In order to assess the performance of the different models to predict ENSO, we com-

puted the correlation between the observed (ERSST v3b) and the simulated SST in El

Niño 3.4 region during the above El Niño and La Niña episodes. Figure 7.8 shows the

results for (left) one- and (right) four-month lead predictions. The poorest skill is obtained

for summer (both JJA-1 and JJA), when correlations decrease substantially from one to

four months lead-time. Note that this is in agreement with the spring predictability bar-

rier for ENSO documented in previous studies (see, e.g., Zheng and Zhu, 2010; Tippett

et al., 2011; Yan and Yu, 2012; Duan and Wei, 2013).

However, to properly disentangle the role of ENSO in the overall skill it is needed to

analyze not only the models’ ability to forecast the phenomenon itself (as characterized

by the SST in El Niño 3.4 region), but also the remote effect of its associated atmospheric

teleconnections —carrying the predictability signal to the different regions of the world

(time-lagged in some cases).—
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Figure 7.8: Correlation between the observed (ERSST v3b) and simulated SST in El Niño
3.4 region during El Niño and La Niña episodes for the five ENSEMBLES models and the
MM (see colors in legend), at (a) one and (b) four months lead-time.

7.5.2 ENSO Teleconnections (Worldwide)

ENSO teleconnections with precipitation were calculated, following a tercile-based ap-

proach, in terms of the frequency of occurrence of each category (dry, normal and wet)

in El Niño and La Niña events considered —as compared to the expected climatologi-

cal frequency 1/3.— A chi-square test for equality of proportions was applied to detect
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those frequencies significantly higher (lower) than 1/3, which were considered as significant

positive (negative) ENSO teleconnections.

Figure 7.9 shows the percentage of areas exhibiting significant (α = 0.05) El Niño (red)

and La Niña (blue) teleconnections in (a) the tropics and (b) the extratropics, by seasons.

Tropical teleconnections are stronger than extratropical ones, with different influence of El

Niño and La Niña for different seasons; particularly in MAM, when La Niña has a greater

effect than El Niño. Thus, in the following we restrict the analysis to the tropics.
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Figure 7.9: Percentage of areas showing significant (red) El Niño and (blue) La Niña
teleconnections with precipitation in (a) the tropics and (b) the extratropics, by seasons.

Figure 7.10 shows the maps of ENSO teleconnections in this region for the different

seasons (in rows). Red/blue colors indicate high/low frequency of occurrence of the cor-

responding dry (left) and wet (right) terciles during El Niño (top panel) and La Niña
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(bottom panel) events. Notice that El Niño and La Niña —as opposite phases of the

same underlying phenomenon— tend to yield similar patterns but with opposite signals,

although there are some exceptions —e.g., the Malay archipelago and northern Australia

are teleconnected in MAM with La Niña but not with El Niño.— Overall, the results are in

agreement with previous studies (see, e.g., Ropelewski and Halpert, 1987; van Oldenborgh

et al., 2000; Kayano et al., 2009; Shaman and Tziperman, 2011; Zhang et al., 2012; Yadav

et al., 2013; Zhang et al., 2013).
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periods, for the different seasons (in rows). Red (blue) colors correspond to values above
(below) 1/3 —the expected climatological frequency.— Only significant (α = 0.05) tele-
connections, according to a chi-square test, are displayed. Black crosses indicate grid
boxes where precipitation categories can not be properly defined (series with less than
three different values).
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Comparison of Figure 7.10 with Figures 7.4 and 7.5 reveals that, in general, the skillful

zones are significantly teleconnected with ENSO —e.g. northern South America in DJF

and SON and the Malay archipelago in JJA and SON.— This suggests that the seasonality

and the spatial distribution of the overall skill could be explained by this phenomenon

through its associated teleconnections. Therefore, it is important to assess the ability of the

models to properly reproduce El Niño and La Niña precipitation teleconnections. Figure

7.11 shows the spatial correlation between the observed and simulated El Niño and La

Niña teleconnections patterns —as given by the maps of terciles frequencies,— considering

one- (left) and four-month (right) lead predictions from the five single models and the MM

(see colors in legend), over their corresponding skillful regions within the tropics. Note

that, although a similar analysis has been done in Yang and Delsole (2012), who compared

observed and simulated ENSO teleconnections using a field regression analysis, they did

not assess the predictive skill of the teleconnections found, which is the aim here. As can

be seen, the agreement is good for both lead-times, with correlations over 0.8 in some

seasons. On the one hand, the observed patterns —for both El Niño and La Niña— are

best reproduced in SON-1 and DJF, the central seasons of the phenomenon. On the other

hand, they are worst reproduced in MAM-1 in all cases.

Notice that in spite of the aforementioned spring predictability barrier for ENSO (Fig-

ure 7.8), the models exhibit a relative good performance in reproducing the existing —both

El Niño and La Niña— teleconnections in summer (particularly in JJA-1), which could

explain the overall skill found for precipitation in this season (Figure 7.3).
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Figure 7.11: Spatial correlation between the observed and predicted (a-b) El Niño and (c-
d) La Niña teleconnection patterns for the tropical regions showing significant skill at one
and four months lead-time (left and right column, respectively), for the five ENSEMBLES
models and the MM (see colors in legend).
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7.5.3 ENSO Teleconnections (in the Philippines)

The methodology introduced in the previous section was also applied for a regional study

of ENSO teleconnections in the Philippines, considering observed precipitation at the 42

PAGASA stations for the period 1981-2005. In this case, the El Niño (La Niña) years

considered were: 1983, 1987, 1988, 1992, 1995, 1998, 2003 and 2005 (1984, 1985, 1989,

1996, 1999, 2000 and 2001). In agreement with previous results from Lyon et al. (2006),

Figure 7.12 highlights the strong influence of ENSO on the climate of this country (Koide

et al., 2012), bringing in general below (above) normal rainfall during El Niño (La Niña),

except for JJA, when the signal reverses (being the latter clearer for El Niño tan for la

Niña episodes). Note that the weakest teleconnections are found for summer (both JJA-1

and JJA), the season for which the models exhibit the poorest skill (Figure 7.6).

To better understand the results obtained for this region, Figure 7.13 shows the ob-

served interannual variability of spatial average precipitation totals for each CT (in col-

ors), by seasons. The red (blue) vertical lines mark the above indicated El Niño (La

Niña) years. Note that the low year-to-year observed variability found in JJA (with the

exception of CT1) is associated with the aforementioned weaker effect of ENSO in this

season —ENSO amplifies the local observed interannual seasonal climate variations in

teleconnected regions.—

7.5.4 Contribution of ENSO to the Overall Skill

All the previous results suggest the idea that the seasonality and the spatial distribution

of the overall skill found in Sections 7.3 and 7.4 may be mainly driven by the indirect

effect ENSO through its associated atmospheric teleconnections and therefore limited by

the ability of the different models to reproduce the observed El Niño and La Niña telecon-

nections with precipitation. Thus, to further assess the role of ENSO on the global skill for

each particular model (and the MM) we computed the spatial correlation between the cor-

responding ROCSS maps for 1) the full period 1961-2000 —shown in Figures 7.4 and 7.5

for the MM— and 2) the twenty-six El Niño and La Niña events considered. Figure 7.14

shows the results obtained for one- (left) and four-month (right) lead predictions in the

tropics for JJA-1, SON-1, DJF, and MAM, the seasons with the strongest teleconnections

(Figure 7.9).

Correlations are very high (over 0.85) in most of the seasons at both one- and four-

month lead, which confirms that the overall (1961-2000) skill attained in this region may

be mainly explained by the contribution of El Niño and La Niña years.
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Figure 7.12: As Figure 7.10 but for observed precipitation at the 42 PAGASA stations for
the period 1981-2005. Significant (α = 0.05) teleconnections, according to a chi-square
test, are marked with a black dot.
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Figure 7.13: Interannual variability of spatial average precipitation totals for each CT (see
colors in the legend) for the period 1981-2005, by seasons. The red (blue) vertical lines
mark the El Niño (La Niña) years.
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Figure 7.14: Spatial correlation between the ROCSS maps for the forty-year period (1961-
2000) and those for the twenty-six El Niño and La Niña events at (a) one- and (b) four-
month lead for the JJA-1, SON-1, DJF and MAM seasons (see Figure 7.7 for further
details on the definition of seasons). Results are shown for each model and the MM (see
colors in legend).



CHAPTER 8

The Effect of Reanalysis Uncertainty on Perfect Prog

In previous chapters it was shown that the skill of global seasonal forecasts to reproduce

local precipitation in the Philippines was limited for certain key seasons and regions (see

Figures 4.4, 4.5 and 7.6). SD might be suitable to overcome these shortcomings. However,

as mentioned in Chapter 4, SDMs have been developed and applied almost exclusively

for extratropical regions since manifold problems still hinder their successful application

in the tropics (Hewitson et al., 2014). In particular, the success of PP methods in the

extratropics relies on the fact that a large fraction of local-scale climate variability can

be described by atmospheric phenomena operating on spatial scales of the order of thou-

sands of kilometres, typically having a lifetime of several days. At this scale, reanalyses

are known to be skillful, in the sense that their spatio-temporal resolution captures the

relevant processes such as extratropical cyclones and the associated fronts (Grotch and

MacCracken, 1991; Widmann et al., 2003). At lower-latitudes, however, the atmospheric

drivers of local climate variability operate on much finer spatial and temporal scales and

are generally poorly captured by reanalyses. Moreover, observational coverage is gener-

ally sparse in the tropics, leading to considerable differences between distinct reanalyses

(Trenberth et al., 2001; Sterl, 2004; Brands et al., 2012, 2013) and errors with respect to

observational records (Manzanas et al., 2014a), which in turn, can complicate the detec-

tion of a proper predictor-predictand relationship. As a result from these considerations,

reanalysis choice could be a source of uncertainty (or error) for the application of the

PP methods considered in this Thesis (note that MOS-BC methods do not use reanalysis

data and, therefore, are not affected by this issue). Thus, focussing on the Philippines,

this chapter assesses the impact of the choice of reanalysis on the downscaled results,

both in ‘perfect’ (i.e., in cross-validation mode using reanalysis predictor data for both

129
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the calibration and the prediction phase) and ‘non-perfect’ conditions. In the latter case,

the statistical models calibrated with different reanalyses are applied to GCM predictors

and the differences in the downscaled results are quantified, characterizing the sensitivity

of the method considered to the choice of reanalysis used for calibration. Two different

time-horizons are considered: seasonal forecasts (for the period 1981-2005) and climate

change projections (up to the end of the 21st century). Note that, although climate change

is not the main concern of this Thesis, the results found allow to better understand the

influence of the choice of reanalysis on SD, which is shown to be of minor importance for

seasonal forecasting, as compared to the case of climate change.

8.1 Data and SD Method Used

For this chapter, the predictor variables listed in Table 6.1 were obtained from two

distinct reanalyses —ERA-Interim1 (Dee et al., 2011) and JRA-252 (Onogi et al., 2007),—

four out of the five ENSEMBLES models (see Section 3.4.1) and the Max Planck Institute

(MPI) ECHAM53 model (Giorgetta et al., 2006). For the latter, control and A1B scenario

data from the 3rd transient run developed within the ENSEMBLES project were retrieved.

To keep consistency between the time-steps available for both reanalyses and the different

GCMs considered, daily instantaneous values at 00 UTC were chosen in all cases. Due

to the distinct native resolutions, predictor data from all sources were regridded onto the

regular 2◦ grid shown in Figure 6.1 (the domain considered for SD in this Thesis) by means

of bi-linear interpolation. For each of the 42 PAGASA gauges (red points in Figure 6.1),

the standardized anomalies at the 4 nearest grid boxes were considered as predictor data for

a deterministic GLM (see Section 5.4.1-2). For the case of the ENSEMBLES models and

the MPI-ECHAM5, predictor data was properly harmonized as explained in Section 6.3

before entering the SDM. Finally, for the MPI-ECHAM5, scenario data was standardized

by removing the mean of the control period from the mean of the corresponding scenario

period and dividing by the standard deviation of the control period.

8.2 Reanalysis Uncertainty (in the Philippines)

Figure 8.1 shows a comparison between ERA-Interim (taken as reference) and JRA-25

reanalyses —see http://reanalyses.org/atmosphere/comparison-table for details of

both reanalyses— for the four daily predictor variables in Table 6.1 over the CORDEX-

East Asian domain (http://wcrp-cordex.ipsl.jussieu.fr/images/pdf/cordex_regions.

1http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
2http://jra.kishou.go.jp/JRA-25/index_en.html
3http://cera-www.dkrz.de/WDCC/ui

http://reanalyses.org/atmosphere/comparison-table
http://wcrp-cordex.ipsl.jussieu.fr/images/pdf/cordex_regions.pdf
http://wcrp-cordex.ipsl.jussieu.fr/images/pdf/cordex_regions.pdf
http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
http://wcrp-cordex.ipsl.jussieu.fr/images/pdf/cordex_regions.pdf
http://jra.kishou.go.jp/JRA-25/index_en.html
http://wcrp-cordex.ipsl.jussieu.fr/images/pdf/cordex_regions.pdf
http://cera-www.dkrz.de/WDCC/ui
http://wcrp-cordex.ipsl.jussieu.fr/images/pdf/cordex_regions.pdf
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pdf) for the period 1981-2005. For regional detail, the top panel of Figure 8.2 is limited

to the domain considered for SD (Figure 6.1).

The left column shows the mean difference (bias) between both reanalyses —expressed

in % of ERA-Interim’s standard deviation.— The middle column displays the ratio of

variances (RV ) —defined as σ2J/σ
2
E ,— where σ2J (σ2E) is the variance of JRA-25 (ERA-

Interim), respectively. In the right column, the Pearson correlation coefficient (r) between

the two reanalyses is depicted.

There are appreciable differences (systematically lower for U850 and U300 than for

Q850 and T850) between both reanalyses for the three validation measures considered,

indicating that the PP assumption (reanalysis data reflecting ‘real’ large-scale atmospheric

conditions) does not hold for the area under study. In particular, uncertainty is high

over the Tibetan Plateau —probably due to different orography representations— and

generally increases towards the Equator, affecting the Philippines. Nevertheless, with

respect to their application for SD, recall that the reanalysis time-series are standardized

to have zero mean and unit variance. Consequently, differences in the mean and variance

between the two reanalyses (left and middle columns) do not affect the downscaled results,

whereas differences in the third and fourth order moments —i.e., skewness and kurtosis,

(see, e.g., Brands et al., 2011)— and in day-to-day variations (right column) remain and

are expected to affect them.

Additionally, in the bottom panel of Figure 8.2, the zonally averaged r between the

predictor time-series from JRA-25 and ERA-Interim is displayed for the specific case of the

Philippines. The grid box coordinates are mapped on the left hand side and r as a function

of latitude is displayed on the right hand side. Noticeably, U850 exhibits values around

0.95 at all latitudes, which indicates that both reanalyses are in nearly perfect agreement

for this variable. However, a north-south gradient is found for the remaining variables. In

particular, correlations for T850 and Q850 drop from 0.95 to 0.70 and from 0.75 to 0.50,

respectively, which probably reflect the increasing influence of sub-grid processes —subject

to reanalysis/model-dependent parametrization schemes— towards the Equator.

8.3 Sensitivity to Reanalysis Choice in Cross-Validation Mode

To assess the effect of the reanalysis uncertainty found in the previous section, the

SDM considered is separately calibrated with ERA-Interim and JRA-25 data in order to

downscale daily precipitation for the 42 PAGASA stations for the period 1981-2005. As in

previous chapters, the 5-fold cross-validation introduced in Section 5.2 is used. Similarly

as in Figure 6.2, Figure 8.3 displays the Spearman correlation coefficient (rs) between

daily observed and downscaled precipitation time-series over the period 1981-2005 for four

http://wcrp-cordex.ipsl.jussieu.fr/images/pdf/cordex_regions.pdf
http://wcrp-cordex.ipsl.jussieu.fr/images/pdf/cordex_regions.pdf
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Figure 8.1: Comparison between ERA-Interim (taken as reference) and JRA-25 for the
four daily predictor variables in Table 6.1 (in rows) over the CORDEX-East Asian domain
for the period 1981-2005. The metrics considered (in columns) are explained in the text.
The dashed lines in the maps indicate the Equator.
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Figure 8.2: Top: As Figure 8.1 but limited to the geographical domain considered for
SD (Figure 6.1). Bottom right: Pearson correlation coefficient between the two reanalysis
daily time-series, as a function of latitude (displayed are zonal averages) for the Philippines.
Different colors indicate different predictor variables. Bottom left: Grid box coordinates
used for computing the zonal averages.
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illustrative predictor combinations —in particular, the simplest (most complete) P1 (P4)

plus Q850 and T850 alone— but for the case of considering predictor data from both

ERA-Interim and JRA-25 (solid and dashed lines, respectively). In each panel, the results

for a specific CT (see Section 4.1) are shown. Along the x-axis, stations are sorted by

decreasing latitude (from left to right). On the right hand side, the CT-averaged rs are

indicated. Points (asterisks) correspond to ERA-Interim (JRA-25) predictor data.
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Figure 8.3: Cross-validated results for each CT, as measured by the Spearman correlation
coefficient between observed and downscaled daily precipitation amount (period: 1981-
2005). Different colors correspond to different predictor combinations (see the legend)
and solid (dashed) lines refer to the results obtained from using ERA-Interim (JRA-25)
predictor data. For each CT, results are sorted by the latitude of the stations (decreasing
from left to right). CT-specific spatial average values are shown on the right hand side of
each panel; points (asterisks) correspond to ERA-Interim (JRA-25).

For the sole use of circulation variables (P1), the downscaled results are generally

not sensitive to reanalysis choice, except for the stations situated in the south (CT4).

This is in agreement with the small differences found between ERA-Interim and JRA-25

for U850 and the slight north-south uncertainty gradient detected for U300 (see Figure

8.2). However, for Q850 and T850, appreciable reanalysis-induced differences are found. In

particular, Q850 from ERA-Interim yields better results than Q850 from JRA-25, whereas
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the opposite is the case for T850 (with the exception of CT1). This indicates that the

‘real’ statistical relationship between Q850 (T850) and local-scale precipitation is more

accurately captured by ERA-Interim (JRA-25). Moreover, when considering the best

predictor combination (P4), results are systematically better for ERA-Interim than for

JRA-25. Notably, the southward loss of predictive potential occurring in all CTs except

CT2 is in agreement with the southward increase of reanalysis uncertainty found (compare

Figure 8.3 with Figure 8.2).

For a geographical overview of these results, Figure 8.4 shows the mean point-wise

cross-validated rs when considering ERA-Interim (left column) and JRA-25 (middle col-

umn) predictor data, for the P1-P4 predictor combinations (in rows). The corresponding

differences —JRA-25 minus ERA-Interim— are displayed in the right column, so positive

(negative) values indicate that JRA-25 (ERA-Interim) is more appropriate for SD. Due

to the lower predictive potential described above, results for the single predictor variables

(Q850 and T850) are not included in this figure.

For circulation predictors only, both reanalyses perform similarly (first row). However,

as shown in the second (third) row, if Q850 (T850) is added to circulation, better results

are obtained for ERA-Interim (JRA-25). Notably, for the case of including T850, the

advantage of JRA-25 over ERA-Interim is most obvious along the eastern coastline. When

considering the full predictor combination (P4), ERA-Interim systematically outperforms

JRA-25 at all stations.

To further assess the increase in predictive potential from adding temperature and

moisture information to circulation, Figure 8.5 shows the difference in rs —δ(rs)— ob-

tained when adding Q850 and T850 separately (P2 and P3, respectively) and in combina-

tion (P4) to the basic circulation variables (P1). Results for calibrating with ERA-Interim

and JRA-25 are given in the left and middle column, respectively. Additionally, the corre-

sponding performance differences —JRA-25 minus ERA-Interim— are shown in the right

column. Positive (negative) values indicate a larger increment for JRA-25 (ERA-Interim).

In congruence with Figures 8.2 and 8.3, the performance improvement attained when

adding Q850 (T850) is larger for ERA-Interim (JRA-25) than for JRA-25 (ERA-Interim).

Moreover, when including Q850 + T850 to the basic circulation-based predictor, the im-

provement is larger for ERA-Interim than for JRA-25. These results prove that reanalysis

uncertainty can slightly affect the results from SD in cross-validation mode. In particular,

for the case of the Philippines, up to 0.1 correlation points can be missed for particular

locations depending on the choice of reanalysis if climate change signal bearing variables

such as temperature and/or humidity are included in the predictor field.
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Figure 8.4: Spearman correlation coefficient between observed and downscaled daily
precipitation amount for different predictor combinations (in rows), when considering pre-
dictor data from ERA-Interim (left column) and JRA-25 (middle column). Performance
differences (JRA-25 minus ERA-Interim) are shown in the right column. For each specific
predictor combination, black borders indicate the best performing reanalysis. The num-
bers in each panel indicate the spatial mean value for all the stations (‘all’) and for those
stations pertaining to a specific CT (‘CT1-4’).
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Figure 8.5: Performance improvement (with respect to P1) for different predictor com-
binations (in rows), when considering predictor data from ERA-Interim and JRA-25 (left
and middle column, respectively). For each row, the black border indicates the best
performing reanalysis. The performance improvement differences (JRA-25 minus ERA-
Interim) are shown in the right column. The numbers in each panel indicate the spatial
mean value for all the stations (‘all’) and for those stations pertaining to a specific CT
(‘CT1-4’).
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8.4 Sensitivity to Reanalysis Choice in Seasonal Forecasts

In order to assess the extent to which reanalysis uncertainty affects the results from

SD of seasonal forecasts, the deterministic GLM used in the previous section was indepen-

dently calibrated with ERA-Interim and JRA-25 predictor data using the period 1981-2005

and the regression coefficients learnt from both reanalyses were subsequently applied to

predictor data from four of the ENSEMBLES models. As discussed in Section 6.2, this

calibration was done separately for DJF, MAM, JJA and SON, considering season-specific

data. Based on the results from Sections 6.1 and 8.3, where P4 (Table 6.1) was shown to

provide the best performance in cross-validation mode, only the combination U850-U200-

Q850-T850 —a minor variation of P4 in which U300 is replaced by U200, the most similar

variable available for the ENSEMBLES models— was considered. SD is carried out for

each ensemble member individually, thus obtaining nine downscaled time-series for each

model. Afterwards, these nine series are averaged to get a unique downscaled time-series

per model.

Figure 8.6 shows the Spearman correlation coefficient between the daily downscaled

predictions obtained when applying the regression coefficients calibrated with ERA-Interim

and JRA-25 reanalyses to one-month lead predictor data (similar conclusions were ob-

tained for four-month lead predictors; not shown) from the four ENSEMBLES models

(in columns) for the period 1981-2005, by seasons (in rows). In all cases, the numbers in

each map indicate the spatial mean Spearman correlation for all the stations (‘all’) and

for those stations pertaining to a specific CT (‘CT1–4’).

In agreement with the north-south gradient of reanalysis uncertainty shown in Sec-

tion 8.2 for Q850 and T850, smooth differences appear towards the south. However, the

agreement between the downscaled results obtained when using ERA-Interim and JRA-25

predictor data for calibration is very high for all models, seasons and CTs (correlations

around 0.9 in most of cases), which suggests that the issue of reanalysis uncertainty is not

of special relevance in seasonal forecasting. Therefore, and given that ERA-Interim yields

overall better results than JRA-25 in cross-validation mode (Section 8.3), only the former

is considered for the calibration of the different PP methods applied in this Thesis.

For completeness, Figure 8.7 is the equivalent to Figure 8.6 but for a deterministic

GLM considering the 15 leading PCs as predictors instead of standardized anomalies at

nearby grid boxes. Results are overall very similar to those from Figure 8.6. However,

the use of PCs is slightly less sensitive to reanalysis uncertainty than nearby grid boxes,

especially for a few particular points in which the local character of standardized anomalies

lead to larger differences.
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8.5 Sensitivity to Reanalysis Choice in Climate Change Projections

Differently to the case of seasonal forecasting, we show in this section that local-scale

climate projections obtained by means of PP methods are highly sensitive to the choice of

reanalysis used for calibration. To this aim, the regression coefficients obtained from sep-

arately calibrating the deterministic GLM used in the previous sections (which considers

as predictors the standardized anomalies at the 4 nearest grid boxes) with either ERA-

Interim or JRA-25 are applied to predictor data from the MPI-ECHAM5, both for the

reference period 1981-2000 (using control run data) and for three different future periods

(2011-2040, 2041-2070 and 2071-2100), using scenario run data (A1B, run 3). The under-

lying assumption of this procedure is that the predictor-predictand relationships obtained

in present climate conditions remain stationary in time (Vrac et al., 2007). To calculate

the projected climate change signals we apply the ‘delta-method’, i.e., the reference/con-

trol period’s mean is subtracted from the mean of the particular target scenario period

(Räisänen, 2007). Deltas are shown as relative (%) deviations from the mean in the refer-

ence period (0% = no deviation). For the sake of comparison with the results obtained in

cross-validation mode (Section 8.3), we consider here all the predictor combinations listed

in Table 6.1 (P1 to P4).

Figure 8.8 shows three panels, one for each of the future periods considered. In each

panel, the deltas projected by applying the coefficients learnt from ERA-Interim (JRA-25)

are shown in the left (middle) column, while the corresponding differences (JRA-25’s delta

minus ERA-Interim’s delta) are given in the right column —each row corresponds to a

particular predictor combination.— The numbers in each map indicate the spatial mean

value for all the stations (‘all’) and for those stations pertaining to a specific CT (‘CT1-4’).

Independently from the reanalysis used for calibration, negligible deltas are found for

any future period if precipitation is downscaled from circulation variables alone (first row).

However, if Q850 and/or T850 are added to circulation (second, third and forth rows),

increasing precipitation is projected across the entire country (with deltas increasing as

a function of forecast-time). Moreover, the magnitude of the projected deltas seems to

be related to the cross-validated results of Section 8.3. In particular, larger deltas are

obtained when the ‘better’ performing reanalysis is considered for calibration, i.e., ERA-

Interim (JRA-25) in case Q850 (T850) is added to circulation. This suggest that regional

climate change projections obtained by means of PP methods might be not accurate if the

reanalysis used for calibration is not able to properly capture the relationship between the

predictors considered and the local target predictand.
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Figure 8.6: Spearman correlation between the daily downscaled predictions obtained when
applying the regression coefficients calibrated with ERA-Interim and JRA-25 reanalyses
to one-month lead predictor data from the four ENSEMBLES models (in columns) for
the period 1981-2005, by seasons (in rows). A deterministic GLM using the stardardized
In all cases, the numbers in each map indicate the spatial mean value for all the stations
(‘all’) and for those stations pertaining to a specific CT (‘CT1–4’).
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Figure 8.7: As Figure 8.6 but for a deterministic GLM considering the 15 leading PCs as
predictors.
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Importantly, the reanalysis-induced differences detected in the downscaled results in

present climate conditions (see Figures 8.3 and 8.4) are considerably amplified, leading

to ‘delta-change’ estimates which strongly differ depending on the reanalysis used for

calibration. In particular, the downscaled results are especially sensitive to reanalysis

choice when Q850 is included among the predictors. For instance, for the P2 combination,

the reanalysis-induced delta differences reach 35% (45%) for the entire country (CT1) for

the end of the century (2071-2100).

Finally, Figure 8.9 shows the mean value —as simulated by the MPI-ECHAM5 (A1B

scenario, run 3)— for each of the predictor variables in Table 6.1 over the domain consid-

ered for SD (Figure 6.1) for the three future periods considered: 2011-2040, 2041-2070 and

2071-2100. This figure suggests that the reanalysis-induced differences in the downscaled

projections are proportional to the climate change signal imposed by the GCM considered

(compare Figure 8.8 to Figure 8.9). For instance, the negligible deltas found if circulation

variables alone are considered as predictors would be in agreement with the time evolution

of U850 and U300, which is virtually constant throughout the whole 21st century, indicat-

ing that the large-scale circulation —as simulated by the MPI-ECHAM5— over the target

region is not sensitive to climate change.

In the light of the previous results, the choice of reanalysis used for calibration in SD

is shown to be an important uncertainty source for the case of local-scale climate change

projections —for which it should be treated with equal care as other, well-known, uncer-

tainty sources such as the choice of GCM or downscaling method (Dibike and Coulibaly,

2005; Chen et al., 2012),— whereas it is not of special relevance in the context of seasonal

forecasting —an issue which, to the author’s knowledge, had not been assessed before this

Thesis.— Albeit these conclusions have been deduced for a specific region (the Philip-

pines), they are likely to hold valid for the entire tropics since previous studies point out

that reanalysis uncertainty is a general problem at low-latitudes —especially for climate

change signal bearing predictor variables on the daily time-scale (Brands et al., 2012,

2013).—

Additionally, apart from being relevant for SD under the PP approach, reanalysis

uncertainty is expected to be also relevant for recent MOS downscaling schemes operating

on a daily time-scale, in which GCMs have been nudged to reanalysis data in order to

force them to follow the ‘real’ large-scale variability (Eden et al., 2012). Here, it has

been shown that the ‘real’ large-scale atmospheric variability in the tropics is likely to be

misrepresented by reanalyses and, consequently, also by the aforementioned nudged GCMs.

Likewise, since RCMs can be nested into either different reanalyses or bias corrected (using

reanalysis data) GCMs, reanalysis uncertainty is also likely to affect the results from

dynamical downscaling (Park et al., 2013).
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Figure 8.8: Precipitation deltas for three future periods: 2011–2040, 2041–2070 and 2071–
2100 (all with respect to the control period 1981-2000). For each of these periods, the left
(middle) column shows the deltas obtained from applying the regression coefficients learnt
from ERA-Interim (JRA-25) to predictor data from the MPI-ECHAM5, whereas the right
column displays the difference between the JRA-25’s delta and ERA-Interim’s delta. The
numbers within each map indicate the spatial mean value for all the stations (‘all’) and
for those stations pertaining to a specific CT (‘CT1-4’).
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Figure 8.9: Mean value —as simulated by the MPI-ECHAM5 (A1B scenario, run 3)—
for each of the predictor variables listed in Table 6.1 (in rows), for the three future periods
considered (2011-2040, 2041-2070 and 2071-2100, in columns).



CHAPTER 9

SD Methods for Seasonal Forecasting: Advantages and

Limitations

As explained in previous chapters, the coarse spatial resolution of seasonal GCMs and

their systematic biases (see Section 3.4.1-2) hamper their direct application in local impact

studies. To overcome this, SD is nowadays routinely used. Nevertheless, whereas the wide

range of existing approaches and techniques (see Chapter 5) have been extensively used

and critically assessed in climate change applications, their advantages and limitations

for seasonal forecasting are not well understood yet (Feddersen and Andersen, 2005).

Moreover, despite most of the skill for seasonal precipitation forecasts concentrates in

the tropics (see Chapter 7), these techniques have been developed and applied almost

exclusively for extratropical regions (Hewitson and Crane, 1996; Wilby and Wigley, 1997;

Hanssen-Bauer et al., 2005; Fowler et al., 2007; Maraun et al., 2010; Gutiérrez et al., 2013).

In particular, studies under the PP approach are rare to-date for low-latitudes because

manifold problems still hinder its successful application in these regions (Hewitson et al.,

2014). As a consequence, the MOS approach, and in particular MOS-BC methods —

which do not require a predictor screening process and do not need reanalysis data for

calibration (see Section 5.1.2)— have emerged as an alternative for SD purposes, even

though several limiting problems have been identified (see, e.g., Ehret et al., 2012). Yet,

a key problem in the context of seasonal forecasting is whether SD can serve to improve

the skill of the raw model precipitation forecasts beyond reducing their systematic biases

(see Section 3.4.1-2).

In this chapter, we analyze this matter for the Philippines, a challenging region affected

by different large-scale phenomena where the use of SDMs may be especially relevant since
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GCMs are not expected to capture the fine-scale forcings of mountains and land-sea con-

trasts which determine local rainfall (Robertson et al., 2012). To this, we apply two

MOS-BC and two PP methods —representative of the different families introduced in

Chapter 5— to four of the ENSEMBLES models (those listed in Table 6.1, with the ex-

ception of the UKMO model), comparing the downscaled results against the corresponding

raw model precipitation at the 42 PAGASA stations for the period 1981-2005, focusing on

accuracy and reliability aspects.

Notice that all the SDMs applied in this Thesis work on a daily basis. The reader

interested in the application of seasonal MOS techniques for the Philippines is referred to

the existing literature (Kang et al., 2007; Robertson et al., 2012).

9.1 SD Methods Used

As representative of the MOS-BC approach, we considered the two distributional q-

q methods introduced in Section 5.4.2 (QM par and QM emp). These methods were

calibrated and applied following the same 5-fold cross-validation introduced in Section

5.2, using as only predictor one-month lead precipitation from the ENSEMBLES models

at the nearest grid box for each of the 42 gauges.

In addition, based on the results of Section 5.4, the GLM det and the AN det meth-

ods (belonging to the transfer functions and weather typing families, respectively) were

considered as representative of the PP approach. For the AN det method, only the clos-

est analog was considered. Following from the screening process carried out in Section

8.3, a minor variation of P4 in which U300 is replaced by U200 (denoted as P4* here-

after), defined over the domain shown in Figure 6.1, was considered as predictor data for

both methods. In order to minimize the effect of reanalysis uncertainty, the 30 leading

PCs were considered (see Section 8.4). Building on the results from Sections 6.2 and 8.3,

season-specific data from the ERA-Interim reanalysis were used for the calibration phase.

For the prediction phase, predictor data from the ENSEMBLES models (one-month lead

predictions were considered) were properly harmonized as explained in Section 6.3. For

coherence, 1981-2005 was considered for both the calibration and the prediction phases.

The two MOS-BC and the two PP methods were separately applied to each of the

nine available ensemble members for each model. In addition to the results obtained for

each of the four individual models, a multimodel (MM) time-series was constructed by

considering the 36 (4 models x 9 members) downscaled predictions, thus giving equal

weights to all models and members. Note that, for the computation of probabilistic MM

forecasts, precipitation categories (e.g. terciles) were computed independently for each

model.
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9.2 Results for Reanalysis Predictors

Solid (dashed) lines in Figure 9.1 (a composition of Figures 6.4 and 6.5) show the

cross-validated results —as measured by the ACC between observed and downscaled in-

terannual precipitation totals for the period 1981-2005— obtained when applying the

GLM det (QM emp) method using ‘perfect’ (reanalysis) predictors under the 5-fold cross-

validation framework introduced in Section 5.2. Note that the P4* combination defined

over the domain shown in Figure 6.1 (precipitation at the nearest model grid box) from

ERA-Interim was considered as predictor data for the GLM det (QM emp) method.
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Figure 9.1: Composition of Figures 6.4 and 6.5: cross-validated results —as measured by
the ACC between observed and downscaled interannual accumulated precipitation time-
series for the period 1981-2005— when applying the GLM det (QM emp) method using
‘perfect’ predictors, i.e., considering large-scale variables (precipitation) from ERA-Interim
as predictors, as represented by the solid (dashed) lines. For all 3-month seasons along the
year (x -axis), each line shows the average correlation for the corresponding CT (see colors
in the legend). Significant —α = 0.1 (α = 0.05)— values are those above the gray (black)
dashed lines. A Student’s t-distribution with N − 2 degrees of freedom (N = number of
years) was considered to compute this significance.

Recall that all the SDMs applied in this Thesis work on a daily basis (the predictor-

predictand statistical links are established based on daily data) so all of them have an

intrinsic error to reproduce the daily observed time-series. This figure shows how this

error is propagated to the relevant time-scale for seasonal forecasting, thus representing

the upper-limit of local interannual seasonal predictability that can be obtained from SD in

this region (i.e., the extent to which the SDMs preserve the observed interannual seasonal

variability). The GLM det method provides better results than the QM emp for all CTs
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and seasons, especially for JJA (note that the correlations obtained from the QM emp in

this season are not significant).

To give more insight on the results found, Figure 9.2 shows the observed interannual

variability of spatial average precipitation totals for each CT (in colors) for the period

1981-2005, by seasons. The poor local predictability obtained from SD for JJA (Figure

9.1) may be related to the low year-to-year observed variability in this season (with the

exception of CT1), since the negative impact of the day-to-day error from the SDMs is

in turn amplified. At the same time, as explained in Section 7.5.3, this low year-to-year

observed variability is associated with the weaker effect of ENSO in this region for this

season (note that the ENSO phenomenon amplifies the local interannual seasonal climate

variations in teleconnected regions).
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Figure 9.2: Interannual variability of spatial average precipitation totals for each CT (see
colors in the legend) for the period 1981-2005, by seasons.

Although the pattern found in Figure 9.1 may change when substituting the ‘perfect’

(reanalysis) by ‘non-perfect’ (GCM) predictors —in particular, the local predictability

from SD is expected to diminish,— these results suggest that PP methods might provide

better results than simpler and more pragmatic MOS-BC ones, especially for JJA. The

potential usefulness of PP methods for this season might be explained by situations in

which the large-scale predictor variables are better simulated by the model than the target

precipitation. We will further explore this hypothesis in the following sections.
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9.3 Results for GCM Predictors

In order to validate the skill of the raw seasonal precipitation forecasts from the EN-

SEMBLES models and the (possible) added value of the corresponding downscaled results,

we considered the following metrics: ACC —as a simple measure of accuracy for the de-

terministic ensemble mean forecasts— and a measure of reliability based on the different

categories introduced in Section 3.5.1 for tercile-based (T1: dry, T2: normal, T3: wet)

probabilistic forecasts. Note that both ACC and reliability were calculated upon the in-

terannual anomalies of seasonal precipitation totals for the period 1981-2005, which were

derived from the daily time-series. Note also that, as opposite to mean squared skill scores,

the two validation metrics considered are not sensitive to biases in the mean and the am-

plitude of the predictions. Therefore, we assess the relevant (temporal) aspects which can

provide added value for seasonal forecasting and refer the reader to some comprehensive

validation experiments for further information on the performance of the different SDMs

from the point of view of biases and marginal statistics (Maraun et al., 2015).

9.3.1 Accuracy

For the different seasons (in rows) and CTs (in columns), panels in Figure 9.3 show the

interannual ACC values obtained for each of the ENSEMBLES models (see the colors

in the legend). Boxplots display the results along the 42 stations for the Direct Model

Output (DMO; indicated by a light gray shadow) at the nearest model grid box and the

QM par, QM emp, GLM det and AN det methods (denoted hereafter as BC1, BC2, PP1

and PP2, respectively).

Overall, results vary mainly among seasons, but also among CTs, models and down-

scaling methods. For the latter, results are more sensitive to the approach considered

(MOS-BC or PP) than to the particular SDM used within each approach. As already

shown in Figure 7.6, the highest scores for the DMO are obtained for DJF and MAM

whereas the worst results are found for JJA, with no significant correlations for any model

except for the ECMWF in the CT1 region. In general, neither MOS-BC nor PP methods

yield relevant accuracy improvements (with respect to the DMO) for DJF and MAM —

the most skillful seasons (see Figures 4.5 and 7.6),— which suggests that the added value

that can be obtained by means of SD is limited in those cases when the models properly

simulate precipitation. However, whereas MOS-BC methods do not clearly improve (or

even worsen) the accuracy of the DMO in JJA and SON, PP methods provide in general

better (worse) results than the DMO in the former (latter) season. In particular, notice

that PP methods yield large accuracy improvements in JJA for the stations pertaining to

CT1 for all models (with the exception of the ECMWF), which exhibit nearly-zero ACC

values in this season.
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Besides this general good (bad) performance in JJA (SON), there are a few interesting

cases for DJF and MAM in which PP methods can add value to the DMO.

First, it is found that PP methods can improve raw precipitation from the relatively

bad performing models —those exhibiting small ACC values, as compared to the rest of

models— in these seasons. This is the case for the MF model in DJF (CT4) and the

IFM-GEOMAR model in MAM (CT1), indicated by a black dashed border in Figure 9.3.

Second, there are also cases in which PP methods can still improve the accuracy of raw

model precipitation despite its good performance, as occurs for the MF model in DJF

(CT1), the ECMWF model in MAM (CT1) and the IFM-GEOMAR model in MAM

(CT2), marked with a blue dashed border in Figure 9.3.

Third, PP methods can add important local value for particular outlier stations (i.e., sta-

tions where the accuracy of raw model precipitation drops, as compared with the rest of

locations). This occurs for the MF model in DJF (CT3) and the CMCC-INGV model in

MAM (CT2 and CT3), indicated by a green dashed border in Figure 9.3. Notice that, as

opposite to the DMO and the MOS-BC methods —which depend on model precipitation

at the nearest grid box and can be affected by local features such as wrong orographical

gradients, land-sea interfaces, etc.,— PP methods rely on large-scale predictors to infer lo-

cal precipitation and allow thus to properly reproduce the observed interannual variability

in these cases.

As mentioned, the results obtained are more sensitive to the approach considered

(MOS-BC or PP) than to the particular SDM used within each approach. Therefore,

in order to gain insight on the advantages and limitations of the two approaches whilst

keeping the analysis simple, we considered the ensemble mean of the two SDMs applied

for each approach. In particular, the downscaled predictions from BC1 and BC2 (PP1 and

PP2) were averaged into a single time-series —denoted as BCens (PPens)— which was

compared against the DMO. For each season (in rows) and model (in columns), panels

in Figure 9.4 show the percentage of stations exhibiting significant (α = 0.1) ACC values

for the DMO and the BCens (yellow and blue bars, respectively) in the different CTs.

Moreover, within each yellow (blue) bar, a thinner black bar indicates the percentage of

stations in which the ACC obtained for the DMO (BCens) outperforms in a 25% the ACC

obtained for the BCens (DMO). Figure 9.5 is the equivalent to Figure 9.4 but for the

PPens instead of the BCens (note that yellow bars are the same in both figures). These

two figures provide a good summary of the results presented in Figure 9.3.
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Figure 9.3: Interannual ACC obtained for each season (in rows) and CT (in columns). In
each panel, results from each model are shown in different colors (see the legend). From
left to right, boxplots display the correlations obtained along the 42 PAGASA stations for
the DMO (indicated by a light gray shadow) and the BC1: QM par, BC2: QM emp, PP1:
GLM det and PP2: AN det methods. Significant (α = 0.1) values are those above the red
dashed lines. A Student’s t-distribution with N − 2 degrees of freedom (N = number of
years) was considered to compute this significance.
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Figure 9.5: As Figure 9.4 but for PPens instead of BCens.
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Figure 9.4 shows that the DMO outperforms in general the BCens. Moreover, results

for the latter are limited by the quality of the model: note that the best (worst) accuracy

for the BCens is found for DJF and MAM (JJA), the seasons with the (highest) lowest

precipitation skill (Figures 4.5 and 7.6). Note also that the gain in accuracy found for the

BCens in some cases is limited to a few stations and is counteracted by the loss found in

others. As a result, no robust signal of added value is obtained for the MOS-BC approach

(see the corresponding boxplots in Figure 9.3).

Nonetheless, Figure 9.5 evidences that the PPens can either improve or spoil the ac-

curacy of the DMO, depending on the case. In particular, the above mentioned cases in

which PP methods can add value to the DMO in DJF and MAM are reflected in this

figure. Also, the accuracy improvements found in CT1 for JJA for all models (with the

exception of the ECMWF) and the worsening obtained in SON are clear from this figure.

To further assess the results for this interesting case (which will be later analyzed with

care) at a local level, the top (bottom) row of Figure 9.6 shows the interannual ACC dif-

ferences between the DMO —taken as reference— and BC1/BC2/BCens (columns 1/2/3)

and PP1/PP2/PPens (columns 4/5/6) for the MM at the 13 stations pertaining to CT1,

for JJA (SON). Notice from the large differences obtained at some locations that the choice

of an appropriate SD approach can have important implications for local applications.
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Figure 9.6: Interannual ACC differences between the DMO —taken as reference— and
BC1/BC2/BCens (columns 1/2/3) and PP1/PP2/PPens (columns 4/5/6) for the MM in
the 13 stations pertaining to the CT1, for JJA and SON (top and bottom row).
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9.3.2 Reliability

The methodology proposed by Weisheimer and Palmer (2014) is used here to assess the

reliability of the tercile-based probabilistic forecasts obtained from the DMO and the

different SDMs applied. As explained in Section 3.5.1, this methodology allows to differ-

entiate between five reliability categories —perfect (green), still useful (blue), marginally

useful (yellow), not useful (orange) and dangerous (red)— based on the relative position

of the weighted reliability line with respect to the perfect reliability (diagonal), no-skill

and no-resolution lines, as well as on the uncertainty range around it (as obtained from

bootstrapping). Recall from Section 3.5.1 that a 50% of the total range in used here —

instead of the 75% used in Weisheimer and Palmer (2014)— since it is more suitable for the

ensemble size of the ENSEMBLES models considered for this Thesis. Additionally, within

the marginally useful (yellow) category, we differentiate those cases in which the reliability

line falls within the skill region but the uncertainty range around it is not fully contained

(they are identified with the dark yellow color here). These two slight adaptations were

found to provide further insight for regional analysis such as the one undertaken here

—the original classification was developed for the 21 global land-areas defined in Giorgi

and Francisco (2000).— For illustrative purposes, Figure 9.7 shows examples of this clas-

sification for some raw model precipitation forecasts and the corresponding MOS-BC and

PP downscaled values.

Figure 9.8 shows the reliability categories (in colors) obtained from applying the above

described methodology for the different models (in columns), and the different seasons and

CTs (in rows). Each block shows the results for the DMO, the two MOS-BC (BC1 and

BC2) and the two PP (PP1 and PP2) methods considered, for the three terciles. Overall,

this figure is in good agreement with the results found for accuracy in the previous section,

with the best reliability obtained in DJF and MAM and the worst in JJA. Moreover, the

results for the two MOS-BC methods are very similar to those for the DMO, with slight

differences due to spurious changes of category (as illustrated in the top row of Figure

9.7). However, the two PP methods exhibit major reliability differences with respect

to the DMO, especially for JJA and SON. In particular, both PP1 and PP2 improve

the results of the DMO in the former season, especially for the CT1, where marginally

useful categories are obtained instead of not useful and dangerous ones. Nevertheless,

the opposite situation is found for SON. Additionally, in agreement with the conclusions

from Chapter 7, the best results are obtained for the extreme terciles (in contrast with

the normal one) and for the MM, which generally outperforms any single model.
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Figure 9.7: Reliability diagrams for the DMO, the BC1 and the PP1 method (in columns),
for three different illustrative examples of seasonal forecasts in MAM, JJA and SON (in
rows), for different CTs and models (see the labels on the left-hand side). The gray
area defines the region contributing positively to the BSS. Colors correspond to the six
categories used, which are based on the original scale proposed by Weisheimer and Palmer
(2014) (see the text for details). Note that the diagrams are calculated considering the
joined series of predictions of the different stations falling within each CT. Numbers in the
upper left corner shows the sample size used in each case (the effective sample size would
be lower due to the spatial dependence between the stations).
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Figure 9.8: Reliability categories obtained for the different ENSEMBLES models (in
columns) along the different seasons and CTs (in rows). Each block shows the results
obtained for the DMO, the two MOS-BC (BC1 and BC2) and the two PP (PP1 and PP2)
methods considered, for the three terciles. Colors correspond to the six categories used,
which are based on the original scale proposed by Weisheimer and Palmer (2014) (see the
text for details).
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In order to summarize the results from Figure 9.8 and to better quantify the added

value of the different approaches for SD, Figure 9.9 shows in stacked bar charts the per-

centage of reliability categories obtained from the DMO and the different downscaling

methods for the different seasons (panels a-d) and CTs (panels e-h). Note that, for each

approach (MOS-BC and PP), a joined analysis containing the two methods considered

(BC1–BC2 and PP1–PP2) is performed. For clarity, the results from the MM and from

the normal tercile are excluded from this analysis.

This figure shows that MOS-BC methods do not provide clear added value (or even

worsen the DMO), neither for a particular season nor for a particular CT. However, PP

methods yield substantial added value for JJA, leading to marginally useful categories

in over 50% of the cases, as compared to less than 10% for the DMO (and for MOS-BC

methods). Note that the opposite situation is found for the PP methods in SON, with

not useful or dangerous categories obtained in nearly 50% of the cases (as compared with

10% for the DMO). Regarding the different CTs, PP methods exhibit a reduced fraction

of useful results in CT4.

Remarkably, the good alignment between the results found for reliability in this section

and those found for accuracy in the previous one points out the suitability and usefulness

of the methodology proposed by Weisheimer and Palmer (2014) —slightly modified here—

for regional studies (beyond its use for global areas).

9.4 The Added Value of PP Methods

As explained in Chapter 5, PP methods rely on large-scale predictors to infer local

precipitation. As such, the above presented cases leading to a gain (loss) of skill for the

PP approach could be explained by situations where large-scale variables, defined over

a synoptic domain, are better (worse) predicted by the model than precipitation, which

is more affected by particular local features. In order to check this premise, we focus

on the 13 stations pertaining to the CT1, where PP methods were shown to improve

(deteriorate) in general the skill of the DMO in JJA (SON). Figure 9.10 displays the ACC

values between observed interannual precipitation at the 13 stations and the corresponding

ERA-Interim and ENSEMBLES models outputs —the nearest grid box is considered—

for precipitation (PR) and the different predictors used (U850, U200, Q850, T850) for the

period 1981-2005.

The gain of skill found in JJA for all models except the ECWMF (Figures 9.3 and

9.8) is in agreement with the results found in the top panel, which shows significant

ACC values (similar to the benchmark provided by ERA-Interim) for precipitation for

this model. However, when analyzing the different predictors used by the PP methods
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Figure 9.9: Stacked bar charts with the percentage of reliability categories (in colors) for
the DMO and the MOS-BC and PP approaches (within each approach, the two methods
considered are jointly analyzed) for different (a-d) seasons and (e-h) CTs. For clarity,
results from the MM and from the normal tercile are excluded from this analysis.
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Figure 9.10: ACC values between observed interannual precipitation at the 13 stations
pertaining to CT1 and the corresponding ERA-Interim and ENSEMBLES models outputs
—the nearest grid box is considered— for precipitation (PR) and the different predictors
used (U850, U200, Q850, T850) for (top) JJA and (bottom) SON over the period 1981-
2005. Significant —α = 0.1— positive (negative) values are those above (below) the upper
(lower) red dashed line.

—in particular U850 and T850, the most correlated ones with observed precipitation, as

given by ERA-Interim— the results are similar for all models and are in agreement with

ERA-Interim, indicating a good model performance for these variables. This suggests

that PP methods might be able to exploit the models’ ability for reproducing the large-

scale predictor variables to indirectly obtain more skillful local precipitation forecasts (as

compared to the DMO).

The opposite situation is found for SON (bottom panel). In this case, the ACC values

found for precipitation are significant (although smaller than the benchmark provided by

ERA-Interim) in most cases. However, the results for the large-scale predictors are not

significant in general. Moreover, opposite correlations with observations (as compared to

ERA-Interim) are found in some cases. The joint effect of these errors might lead to wrong

downscaled predictions —as occurs for the ECMWF model— exhibiting negative ACC

values with observed interannual precipitation (see Figure 9.3) and dangerous reliabilities

(extreme terciles in Figure 9.8).
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Finally, the negligible added value found for the MOS-BC methods might be con-

sequence of their lack of a physical basis (Haerter et al., 2011), which often spoils the

merits of the different GCMs by altering their spatio-temporal field consistency (Ehret

et al., 2012). Notice that the MOS-BC are limited since the temporal structure is still

determined by the dynamics represented in the model grid box and do not describe local

phenomena (Hempel et al., 2013).
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CHAPTER 10

Conclusions, Achievements and Future Work

10.1 Main Conclusions

This section aims to summarize what has been done in order to achieve the three main

objectives of the Thesis (which were identified in Section 2.2) as well as to briefly expose

the most important conclusions which have been obtained in relation to them.

1. Regarding the first objective, the skill of global seasonal precipitation forecasts was

assessed worldwide (grid box by grid box) for the forty-year period 1961-2000 in

Chapter 7. To this, we considered the ENSEMBLES models (see Section 3.4.1)

and applied a tercile-based probabilistic approach in terms of the ROC Skill Score

(ROCSS). Although predictability varies with the region, season and lead-time con-

sidered, results indicate that 1) significant skill is mainly located in the tropics —20

to 40% of the total land areas,— 2) overall, SON (MAM) is the most (least) skillful

season, and 3) the skill weakens (with respect to the one-month lead case) at four-

month lead —especially in JJA,— although the ROCSS spatial patterns are broadly

preserved —particularly in northern South America and the Malay archipelago.—

Additionally, since ENSO is known to be the major driver of seasonal predictability

(see, e.g., Goddard and Dilley, 2005; Doblas-Reyes et al., 2010), the role that this

phenomenon plays on the skill was also analyzed. Results from a conditioned —

restricted to El Niño and La Niña events— validation (also in terms of the ROCSS)

and a study of El Niño and La Niña teleconnections with precipitation (see also Sec-

tions 3.2 and 3.4.1-1) suggested that the seasonality and spatial distribution of the

skill found may be not only determined by the direct effect of ENSO —and therefore

by the skill of the different models to predict the SST in El Niño 3.4 region,— but
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rather by its indirect effect through its associated El Niño and La Niña teleconnec-

tions —and consequently limited by the models’ ability to simulate the observed

teleconnection patterns.—

Moreover, following the same methodologies used for the worldwide study, a regional

probabilistic validation and a regional study of ENSO teleconnections were carried

out over the Philippines, considering in this case observed precipitation at the 42

PAGASA stations (see Section 4.1) over the period 1981-2005. In agreement with

the results obtained for the deterministic validation presented in Section 4.2, the

lowest skill in this region is found for JJA, the season exhibiting the weakest ENSO

teleconnections.

2. With respect to the second objective, Chapter 5 provides a comprehensive descrip-

tion of the different approaches and techniques available for SD, as well as a detailed

analysis of the SD methods which are considered throughout the Thesis. In order to

optimize the configuration chosen for each technique, as well as for intercomparison

purposes, the different techniques were applied in ‘perfect’ conditions (i.e., consid-

ering predictors from reanalysis for both the calibration and the prediction phase)

over four illustrative PAGASA stations —representative of the four different climate

types present in the Philippines (see Section 4.1),— under a cross-validation frame-

work for the period 1981-2005 (see the chapter for details). These were the most

relevant conclusions obtained:

� As representative of the PP approach (see the chapter for details), we considered

the analog technique and Generalized Linear Models (GLMs). For the former,

a deterministic version considering only the closest analog and a stochastic one

in which the prediction is given by random selection among the observations

corresponding to the 15 closest analogs were considered. Both SDMs perform

alike in terms of distributional similarity. In particular, both predict less rainy

days than observed (which in turn leads to a little dry bias) and underestimate

the variance to a small extent. However, the deterministic version yields slightly

better correlations than the stochastic does, and is therefore the only used in

this Thesis.

Regarding the GLMs, we considered a deterministic configuration in which pre-

dictions are obtained from the estimated expected values and a stochastic one

in which a simulation procedure is introduced in both GLMo and GLMa (see

Section 5.4.1-2 for details). The deterministic version is not able to predict

light precipitation amounts. Furthermore, it greatly underestimates the ob-

served variance —with most of the predicted rain values in a small range,—
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which leads to a wet bias (over a 10%) and a very low distributional similar-

ity. Differently, bias is centred around zero and the predicted variance matches

better the observed one in the stochastic version —simulating allows to predict

the full range of observed precipitation values,— greatly improving the distri-

butional similarity. Nevertheless, correlations strongly decay in the stochastic

version as an effect of the simulation introduced, which implies a reduction of

the predictive capacity of the method. Based on their better performance in

terms of distributional consistency, stochastic GLMs are needed for SD of cli-

mate change projections. However, in seasonal forecasting it is key to assess

the accuracy of the predictions and, hence, it is important to keep the deter-

ministic signal isolated from the stochastic one. Therefore, the GLMs used in

this Thesis are deterministic, i.e., predictions are based on the expected val-

ues. As compared to the analog methods, the correlations exhibited by the

deterministic GLM are clearly higher.

� With regard to the MOS-BC approach (see the chapter for details), two com-

mon distributional methods (one parametric and one empirical) were consid-

ered. Both methods allow to improve the bad distributional similarity exhib-

ited by ERA-Interim precipitation (being the empirical one better). However,

neither the parametric nor the empirical version improves the correlations at-

tained by the reanalysis; on the contrary, they deteriorate them. In addition,

both perform similarly in reproducing the occurrence event and also in terms

of correlations, yielding better results than analogs do and similar ones to those

obtained for the deterministic GLM (with the exception of interannual correla-

tion, which is better in the latter). In terms of distributions, the bias and the

predicted variance (especially the latter) are better in the empirical method.

Whilst the clear overestimation of the variance that occurs for the parametric

method could indicate an intrinsic limitation to simulate extreme values (this

method assumes that both simulated and observed precipitation fit to a gamma

distribution, which might not be true), the good performance of the empirical

one might be related to certain over-fitting.

Also in relation to the second objective, Chapter 6 assesses, focusing on the Philip-

pines, a number of aspects which are relevant for the SD of seasonal forecasts. As

derived from the conclusions drawn below, it establishes the methodological frame-

work under which the different SDMs considered in this Thesis are applied:
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� By applying a PP method in ‘perfect’ conditions for the 42 PAGASA stations

(under a cross-validation framework for the period 1981-2005), we found that

the combination of circulation (zonal wind velocity at different vertical levels)

and thermodynamic (humidity and temperature) variables over a domain cov-

ering the country (Figure 6.1) yielded the highest predictive potential, being

the latter lower for the case of using circulation variables alone. Therefore, the

predictor combination P4 (see Table 6.1) is considered for all the PP methods

applied in this Thesis.

� Under a cross-validation framework for the period 1981-2005, we applied in

‘perfect’ conditions two different configurations of a PP method based on GLMs

and two MOS-BC methods which considered for calibration both season-specific

and yearly predictor data over the 42 PAGASA stations (see the chapter for

details). Whereas MOS-BC methods were shown to be not sensitive to the

choice of data considered for calibration, season-specific data yielded better

results in the case of the PP method (especially for the central part of the

year). Therefore, season-specific data is used for the calibration of all the SD

methods (both PP and MOS-BC) considered in this Thesis.

� We computed the biases of the ENSEMBLES models —ERA-Interim was used

as reference— for the large-scale predictors variables included in P4 (see Table

6.1) over the geographical domain considered for SD (Figure 6.1). Beyond the

expected differences among models, varying spatial patterns of bias were found

in many cases for different target months within the same season. Thus, in order

to be compatible with the reanalysis used for calibration, model predictor data

must be properly preprocessed (or harmonized) before entering PP methods.

To this, in this Thesis we first remove the model bias (the reanalysis used for

calibration is taken as reference) separately for each month rather than for

the entire season. By doing this, we force the model to follow the mean and

variability of the reanalysis to some extent.

To fully accomplish the second objective of the Thesis, Chapter 8 assesses, also for

the Philippines, the impact of the choice of reanalysis used for the calibration of the

PP methods on the downscaled results —an issue which had never been addressed

before,— both in ‘perfect’ and ‘non-perfect’ (i.e., using GCM predictor data for

the prediction phase) conditions (see the chapter for details). The most important

conclusions obtained are given next:
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� We compared ERA-Interim and JRA-25 (two state-of-the-art reanalyses of ref-

erence) over a large region containing the Philippines and found that whereas

reanalysis uncertainty (differences between both reanalyses) was trifling for cir-

culation variables (zonal winds), it was important for thermodynamic ones (hu-

midity and temperature). Thus, the PP assumption (reanalysis data reflecting

‘real’ large-scale atmospheric conditions) does not hold for the region consid-

ered.

� First, we applied an illustrative PP method (in cross-validation mode for the pe-

riod 1981-2005) considering separately ERA-Interim and JRA-25 reanalyses in

order to obtain the regression coefficients relating the local-scale precipitation at

the 42 PAGASA stations to the large-scale predictors considered (selected based

on the results from Chapter 6). The downscaled results were found to be sensi-

tive to the reanalysis used for calibration if humidity and/or temperature —the

variables showing the largest reanalysis uncertainty— were included in the pre-

dictor field. However, with local (spatial average) daily correlation differences

of 0.1 (0.03) at the utmost, this sensitivity was relatively small. Afterwards, the

coefficients calibrated with ERA-Interim and JRA-25 were separately applied

to predictor data from the MPI-ECHAM5 (both control and scenario runs), as

well as to four ENSEMBLES models in order to generate local-scale climate

change projections (up to the end of the century) and seasonal forecasts (for

the period 1981-2005), respectively. In the former case, the reanalysis-induced

differences detected in present climate conditions were considerably amplified

when climate signal bearing variables, i.e., humidity and temperature —which

are indispensable for capturing the ‘correct’ climate change signal (Goodess and

Palutikof, 1998; Wilby et al., 1998)— were included in the predictor field. In

particular, the projected deltas for the end of the century (2071–2100 minus

1981–2000) were found to differ by up to a 35% (on average for the whole coun-

try) between the two reanalyses considered. In contrast, in the latter case, very

similar local-scale seasonal predictions were obtained for most of the models,

locations and seasons, independently from the reanalysis used for calibration.

Therefore, the choice of reanalysis used for calibration of the PP methods was

shown to be an important uncertainty source for climate change studies —for

which it should be treated with equal care as other, well-known, uncertainty

sources such as the choice of GCM or SDM (Dibike and Coulibaly, 2005; Chen

et al., 2012),— whereas it is not of special relevance for the SD of seasonal

forecasts.
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3. Finally, with regard to the third objective, Chapter 9 assesses, also for the Philip-

pines, whether SD can serve to improve the skill of the raw model global precipitation

forecasts, beyond reducing their systematic biases (see Section 3.4.1-2). To this, and

building on the lessons learnt from Chapters 6 and 8, we applied two MOS-BC and

two PP methods to four of the ENSEMBLES models and analyzed their relative

advantages and limitations by comparing the downscaled results against the corre-

sponding raw model outputs at the 42 PAGASA stations for the period 1981-2005.

In particular, we focused on accuracy and reliability aspects (for deterministic and

tercile-based probabilistic predictions, respectively). The main conclusions found

were:

� Overall, results vary mainly among seasons, but also among regions, models and

SD methods. For the latter, they are more sensitive to the approach considered

(MOS-BC or PP) than to the particular method used within each approach.

In terms of accuracy, neither MOS-BC nor PP methods yield relevant improve-

ments (with respect to raw model precipitation) for DJF and MAM, suggesting

that the added value that can be obtained by means of SD is limited for those

cases in which the models properly simulate precipitation. However, whereas

MOS-BC methods do not clearly improve (or even worsen) the direct model out-

put in JJA and SON, PP methods provide in general better (worse) accuracy

than raw model precipitation does in the former (latter) season. In particular,

PP methods yield large accuracy improvements in JJA over the northwestern

part of the country for all models (with the exception of the ECMWF).

Regarding reliability, the results obtained are in general very similar to those

found for accuracy. In particular, whereas substantial added value is found for

PP methods in JJA —when they lead to marginally useful categories over 50%

of the cases (as compared to less than 10% for the direct model output and

the MOS-BC methods),— the opposite situation is found in SON —when they

lead to not useful or dangerous categories in nearly 50% of the cases (as com-

pared to 10% for the direct model output).— The general agreement between

the results found for accuracy and reliability points out the suitability of the

classification proposed by Weisheimer and Palmer (2014) —which is slightly

modified in this Thesis (see Section 3.5.1 for details)— for regional studies such

as the one undertaken here.

� Those cases in which PP methods lead to a gain (loss) of skill —as measured

by both accuracy and reliability— can be explained by situations where large-

scale variables, which are defined over a synoptic domain, are better (worse)
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predicted by the model than precipitation, which is more affected by particular

local features. This suggests that PP methods might be able to exploit the

models’ ability for reproducing the large-scale predictor variables to indirectly

obtain more skillful local precipitation forecasts (as compared to the direct

model global outputs).

10.2 Related Publications
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for regional projections of precipitation with an ensemble of statistical downscaling

methods. Under review in Journal of Climate.”

� Manzanas, R., 2016: Can statistical downscaling improve the skill of global seasonal

forecasts in Senegal? Under review in Theoretical and Applied Climatology.

� Manzanas, R., L. K. Amekudzi, K. Preko, S. Herrera, and J. M. Gutiérrez, 2014:

Precipitation variability and trends in Ghana: An intercomparison of observational

and reanalysis products. Climatic Change, 124 (4), 805–819, doi:10.1007/s10584-

014-1100-9.
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� Gutiérrez, J. M., D. San–Mart́ın, S. Brands, R. Manzanas, and S. Herrera, 2013:

Reassessing statistical downscaling techniques for their robust application under cli-

mate change conditions. Journal of Climate, 26 (1), 171–188, doi:10.1175/JCLI-D-

11-00687.1.

� Brands, S., R. Manzanas, J. M. Gutiérrez, and J. Cohen, 2012: Seasonal predicta-

bility of wintertime precipitation in Europe using the Snow Advance Index. Journal

of Climate, 25 (12), 4023–4028, doi:10.1175/JCLI-D-12-00083.1.

10.3 Developed Software: MeteoLab

Most of the calculations of this Thesis have been performed using MeteoLab, a Matlab®

toolbox for statistical downscaling developed by the Santander Meteorology Group which

can be freely downloaded from http://meteo.unican.es/trac/MLToolbox. Whereas the

analog and the bias correction techniques (see Chapter 5) were already implemented in this

toolbox, the methods based on GLMs have been developed in this Thesis and are available

in the current version of MeteoLab. The code needed for reproducing all the SD methods

used in this Thesis with MeteoLab is given below (the nomenclature introduced in Chapter

5 is used). The reader is referred to http://meteo.unican.es/trac/MLToolbox/wiki/

Downscaling for details on further configuration possibilities.

method.type = 'ANALOGES'; % Method
method.properties.NumberOfPCs = 30; % Number of PCs
method.properties.AnalogueNumber = 1; % Number of analogs
method.properties.InferenceMethod = 'mean'; % Inference method

MeteoLab code for defining the AN det SDM.

method.type = 'ANALOGES'; % Method
method.properties.NumberOfPCs = 30; % Number of PCs
method.properties.AnalogueNumber = 15; % Number of analogs
method.properties.InferenceMethod = 'rand'; % Inference method

MeteoLab code for defining the AN sto SDM.

method.type = 'GLM'; % Method
method.properties.ThresholdPrecip = 0.1; % Threshold for wet days (mm)
method.properties.NumberOfPCs = 15; % Number of PCs
method.properties.SimOccurrence = 'false'; % Not simulate occurrence
method.properties.SimAmount = 'false'; % Not simulate amount

MeteoLab code for defining the GLM det SDM.

http://meteo.unican.es/trac/MLToolbox
http://meteo.unican.es/trac/MLToolbox/wiki/Downscaling
http://meteo.unican.es/trac/MLToolbox/wiki/Downscaling
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method.type = 'GLM'; % Method
method.properties.ThresholdPrecip = 0.1; % Threshold for wet days (mm)
method.properties.NumberOfPCs = 15; % Number of PCs
method.properties.SimOccurrence = 'true'; % Simulate occurrence
method.properties.SimAmount = 'true'; % Simulate amount

MeteoLab code for defining the GLM sto SDM.

method.type = 'GQM'; % Method
method.properties.Variable = 'pr'; % Variable
method.properties.threshold = 0.1; % Threshold for wet days (mm)
method.properties.FreqCorrection = 'true'; % Frequency correction

MeteoLab code for defining the QM par SDM.

method.type = 'EQM'; % Method
method.properties.Variable = 'pr'; % Variable
method.properties.threshold = 0.1; % Threshold for wet days (mm)
method.properties.extrapolation = 'constant'; % Type of extrapolation
method.properties.quantiles = 1:99; % Corrected percentiles
method.properties.FreqCorrection = 'true'; % Frequency correction

MeteoLab code for defining the QM emp SDM.

10.4 Future Work

On the one hand, some of the results obtained during the realization of this Thesis

have opened the door for the development of new works which constitute the natural

continuation of some of the analysis presented here:

� In Section 3.4.1-2 we have characterized the drift of seasonal forecasts, considering

precipitation from the ENSEMBLES models. In order to assess both the possible

reduction of this drift in recent global models, but also its sensitivity to the ensemble

size, the analysis was extended to the System 4 (the new version of the ECMWF

model included in ENSEMBLES, the System 3). Preliminary results indicate that

the drift is still important, with high values along the tropics and over the oceans.

However, small ensembles (around 5 members) seem to be enough for its accurate

characterization. Due to the lack of time, this work could not be finalized during

the course of the Thesis and will be one of the first tasks to be addressed after its

end, focusing on the implications that may arise for the bias correction of seasonal

forecasts.
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� As explained in Section 3.5.1, Weisheimer and Palmer (2014) assessed the reliability

of global seasonal precipitation forecasts from the ECMWF System 4 (51 members)

for the 21 only-land regions defined in Giorgi and Francisco (2000) and the results

were presented in a scale ranging from 1 (dangerous) to 5 (perfect). Nevertheless, our

preliminary investigation indicates that this classification is sensitive to a number

of factors. For instance, the results from the latter may be altered if the confidence

interval considered for the slope of the weighted reliability line is not suitable for

the available ensemble size. Also, the results may substantially change depending

on the region considered for spatial aggregation. Therefore, we will carefully analyze

all these factors in collaboration with the authors of the original methodology.

On the other hand, in the framework of international initiatives and collaborations

which have emerged during the Thesis, we also contemplate some works and research lines

which will be developed in the coming future:

� Part of the methodological knowledge and some of the downscaling techniques de-

veloped during this Thesis have been applied to different regions in SPECS and

EUPORIAS projects. In particular, an experiment in which dynamical and statis-

tical (considering different approaches) downscaling are compared has been carried

out over Brazil. In EUPORIAS, the added value of downscaled seasonal predictions

has been assessed for Ethiopia (in the context of a climate service for early warning of

droughts) and over two pilot regions in Europe (England and Italy). All these works

will be completed during the coming months (for instance, in the case of Ethiopia

we have found that the uncertainty in the observations may have an impact on the

downscaled forecasts) and the most important results will be gathered in a number

of publications which, given the heterogeneity of the regions considered (in terms of

climatic variability, seasonal predictability, influence of ENSO, etc.), will provide a

reference for future SD studies in the context of seasonal forecasting.

� Following from a research stay at the National Service for Meteorology and Hy-

drology of Perú (SENAMHI: http://www.senamhi.gob.pe), a high-quality obser-

vational dataset covering the whole country is available. Given the complex climatic

characteristics of Perú (most of the climates of the world are present in the country),

and the important influence of ENSO over the region, we consider a future research

line in which, in collaboration with SENAMHI and taking advantage of the experi-

ence and methodological knowledge gained during this Thesis, the potential for the

application of the different techniques for SD of seasonal forecasts in the country

will be explored.

http://www.senamhi.gob.pe
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� Finally, the downscaling techniques developed in this Thesis have contributed to the

experiment 1a of the VALUE COST action (http://www.value-cost.eu), which

aims to carry out a systematic intercomparison of the different approaches and tech-

niques for SD in the context of climate change. As a result of this initiative, a

database with the predictions from more than 40 downscaling methods (the largest

ensemble to-date) has been produced. Additionally, the Santander Meteorology

Group has developed a portal which allows for defining indices and validation met-

rics which can be applied to the whole ensemble of available methods. Therefore,

another future research line will be focused on including new verification metrics

of interest for seasonal forecasting (such as the interannual correlation) in order to

assess the potential of the different methods for this new context of application.

http://www.value-cost.eu
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