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ABSTRACT 
 
Carbon capture and storage (CCS) is gaining interest as a significant global option to reduce emissions of 

CO2. CCS development requires an assessment of the potential risks associated with CO2 leakages from 

storage sites. Laboratory leaching tests have proved to be a useful tool to study the potential mobilization of 

metals from contaminated sediment in a decreased-pH environment that mimics such a leakage event. This 

work employs a Self-Organizing Map (SOM) tool to interpret and analyze the release of Dissolved Organic 

Carbon (DOC), As, Cd, Cr, Cu, Ni, Pb and Zn from equilibrium, column and pH-dependent leaching tests. 

In these tests, acidified seawater is used for simulating different CO2 leakage scenarios. Classification was 

carried out detailing the mobilization of contaminants for environments of varying pH, liquid-to-solid ratio 

and type of contact of the laboratory leaching tests. Component planes in the SOMs allow visualization of 

the results and the determination of the worst-case of element-release. The pH-dependent leaching test with 

initial addition of either base or acid was found to mobilize the highest concentrations of metals. 

KEY WORDS: Metal-release assessment, Carbon capture and storage, Self-Organizing Maps, Leaching 

tests, Sediment acidification 

 

INTRODUCTION 
 
Emissions of carbon dioxide (CO2) have been identified as the key factor responsible for climate change 

and effective measures and technologies need to be implemented to decrease these emissions (IPCC 2014). 

Carbon capture and storage (CCS) using geological sequestration in on- and offshore formations is a 

promising measure being considered worldwide to allow the continued use of fossil-fuels while preventing 

the associated emissions of CO2 from reaching the atmosphere (Corsten et al. 2013; Koornneef et al. 2012). 

The CCS process consists of the capture of CO2 from an industrial emitter, its transportation to a storage 

site in gas or liquid phase and its storage or sequestration in stable geological formations. Although CO2 is 

injected into deep storage formations, there is a risk of CO2 leakage from storage sites to the near-surface 
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environment and the effects of such a leakage need to be properly addressed. For offshore storage sites, an 

impact assessment of such leakages on the surrounding environment should include the mobilization of 

substances from caprock formations, marshes and sediment by the resulting seawater acidification (Payán 

et al. 2012a). The European Union (EU) Directive on the geological storage of CO2 (DOL 2009), that is 

based on the London Protocol and the OSPAR Convention (OSPAR 2007; RAMF 2006), establishes the 

framework to determine the risk assessment for and management of CO2 storage. Mobilization of metals in 

an acidified environment is a subject of concern in the CCS Directive as well as in the Marine Strategy 

Framework Directive (DOL 2008), both of which are focused on the marine environment.  

In recent years, several studies have assessed the risks and potential impacts of CCS technology using a 

range of approaches. A diverse set of tools has been applied to the various technology stages in the CCS 

process with life-cycle assessment (LCA) and a variety of modeling methods often used (Table 1). While 

current LCA studies on CCS focus on different technologies, timeframes and aspects treated (Corsten et al. 

2013), most storage analyses do not account for potential CO2 leakages; considering them to be negligible, 

unlikely to occur, or zero (Table 1). Where CO2 leakages during the storage stage are considered, the 

assessment is carried out according to degradation in aquifer properties and/or leakage rates, but is not 

related to the metal mobilization.  

Modeling techniques, such as those detailed in Table 1, can be used when predicting the spatial and 

temporal evolution of injected CO2 and to identify changes in water quality that may ensue. The results 

from the modeling techniques may also help to develop possible mitigation strategies if leaks were to occur 

at storage sites. Predictive models have been used to estimate the risk of CO2 leakages from storage sites, 

analyzing changes to the storage formation, the probability of leakage occurrence and the leakage ratio 

(Table 1). Birkholzer et al. (2008) show different possible geochemical reactions—such as mineral 

dissolution and metal mobilization— because of CO2 leakage during storage. Despite the promise that 

modeling offers, field and laboratory studies are still required to decrease uncertainties in model 

assumptions and to validate model findings. 

To complement LCA and modeling studies, analysis of natural and industrial analogues have been 

conducted both in-situ and in laboratory experiments to develop understanding of the risk posed by CO2 

leakages. Laboratory leaching tests have been widely used for studying the potential mobilization of 

elements in a decreased-pH environment because of ocean acidification and CO2 leakages during the CCS 



 
 

3 
 

storage stage (Martín-Torre et al. 2014, 2015 a, b). Equilibrium, column, core flow, sequential, pH-

dependent and multiphase leaching tests have been used, among others, to evaluate the mechanisms and the 

levels of metal mobilization from sediments exposed to acidified seawater (De Orte et al. 2014; 

Varadharajan et al. 2013; Payán et al. 2012 a, b; Ardelan et al. 2012, 2010, 2009; Ellis et al. 2011; Carey et 

al. 2009 ). 

The use of an assortment of leaching tests allows for the assessment of metals’ behavior under a wide range 

of variables, such as acidification, time of contact, and hydrological conditions. Thereby, the metal-release 

in different scenarios of sediment acidification can be tested. Equilibrium tests simulate the re-suspension 

of sediments in acidified seawater due to CO2 gas bubbling or dredging operations; column leaching tests 

simulate advective flow of acidified seawater arising from rapid fracture deterioration in caprock; and pH-

dependent leaching tests simulate scenarios of constant acidification (Payán et al. 2012 a, b; Martín-Torre 

et al., 2015 a). 

Classical multivariate statistical techniques, such as Principal Component Analysis and Hierarchical 

Component Analysis, have been commonly used to assess and classify sediment quality according to their 

contamination and metal-release behavior under different conditions using a variety of physico-chemical 

data (Khosrovyan et al. 2015; Moukhchan et al. 2013; Choueri et al. 2009; Cesar et al. 2007; Morales-

Caselles et al. 2007; Simeonov et al. 2007). Self-Organizing Maps (SOMs) and an artificial neural network 

with unsupervised learning have so far been used in a more limited way as an alternative to classical 

multivariate statistical techniques to assess sediment quality (see for example: Tsakovski et al. 

2009;Álvarez-Guerra et al. 2008; Arias et al. 2008). 

The main objective of this work is the use of a SOM tool to analyze element-release data from 

contaminated sediment under different laboratory leaching tests that simulate conditions of CO2 leakages 

from a CCS storage site. The work is divided into equilibrium and column tests with CO2 acidified 

seawater, and pH-dependent leaching tests with nitric acid (HNO3) acidified seawater. The proposed 

methodology permits the integration of element-release concentrations obtained during experiments of 

varying pH, liquid-to-solid ratios (L/S) and type of contact, which together simulate different CO2 leakage 

scenarios.  

MATERIALS AND METHODS 
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Sampling site and data sets 

The data used in this study are originated from four different leaching tests carried out under different 

conditions. These leaching tests have been applied to sediment sampled in the Suances estuary (Northern 

Spain), a narrow and shallow mesotidal estuary, which has been identified as a potential CCS storage site. 

The sediment contains significant concentrations of metals and organic pollutants that are derived from 

different activities upstream of the estuary. A detailed description of the studied area and sediment 

characterization is shown in Martín-Torre et al. 2015 a. 

 

The sediment used for experimental assays was sieved through a 2mm mesh to remove the gravel fraction, 

homogenized and frozen in 3 kg plastic bags until use. The used seawater (pH=8.02±0.076 and 35 ‰ 

salinity) was supplied by the Maritime Museum of Cantabria in Santander, filtered through 0.45 μm and it 

is used within the next 24 hours. The seawater is chemically analyzed by the same procedure of the sample 

leachates of each leaching test. Concentrations of As, Cd and Zn of the used seawater, considered in all 

data analysis, are 2.91±0.858; 0.528±0.653 and 13.788±7.506, respectively. Concentrations of Cr, Cu, Ni 

and Pb are below the detection limit of the equipment (4, 2, 2 and 0.4 µg/l, respectively). 

 

Equilibrium leaching tests were performed at the liquid to solid ratio (L/S) of 2, 4, 10, 15, 20, 30 and 40 

l/kg over a 24-hour period as the EN 12457 standard (EN 12457 1-2, 2002) provides. Leaching tests used 

seawater and CO2-acidified seawater at pH values of 7, 6 and 5 as leaching agents (Payán et al 2012a).  

 

Column leaching tests were carried out according to the CEN/TS 14405 standard (CEN/TS 14405 2004) 

using the same leaching agents than in equilibrium leaching tests. However, in these experiments, the L/S 

ratios of 0.1, 0.2, 0.5, 1, 2, 4, 5, and 10 were employed in experiments that lasted 56 h (Payán et al. 2012b).  

 

The pH-dependent leaching test with initial acid/base addition was performed following the CEN/TS 14429 

standard (CEN/TS 14429 2005) although three modifications were included: the use of seawater as 

leaching agent, the particle size of the solid (2 mm) and the pH range covered (Martín-Torre et al. 2015 a). 

The whole pH range (0–14) is studied for simulating different acidification and alkalinisation situations, 

including seawater conditions, ocean acidification, leakages from CO2 storage sites and potential chemical 

spills. For this test, samples of L/S = 10 l/kg were used in experiments that lasted 48 h. The acidified state 
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was achieved by adding predetermined amounts of acid (HNO3) in three stages (at 0, 30 and 120 min), as 

explained in the standard. The quantity of added acid varied from 0 to 8 eq/kg whereas the quantity of 

added base was from 0 to 3.5 eq/kg; thus, the obtainment of the most extreme pH values was assured 

(Martín-Torre et al. 2015 a; 2014).  

 

The pH-dependent leaching test with continuous pH-control standard (CEN/TS 14997, 2006) was 

conducted using seawater as leaching liquid. The seawater and the sediment were placed at L/S=10 l/kg. 

For reaching the pH objective (4, 5, 5.5, 6, 6.5 or 7) and keep it constant through the 96 hours of the assay, 

nitric acid (HNO3) was added by a pump connected to a pH control equipment when pH was higher than 

the established set point. 

 

To detail the performed leaching tests and clarify the modifications compared with standardized leaching 

tests, more information about experimental procedure is presented in Supplementary Information. 

pH of the final eluates from the different assays was measured using a Crison pHmeter GLP 22, with a 

suitable electrode for samples with suspended solids; the equipment was calibrated against standard 

solutions with an accurate to 0.01 pH units. Final eluates samples were filtered through a 0.45 µm pore size 

nitrocellulose filtration membrane and divide in two subsamples: one for the measurement of Dissolved 

Organic Carbon (DOC) and the other one acidified for analysing the concentrations of As, Cd, Cr, Cu, Ni, 

Pb and Zn. DOC analyses were performed by Analytical Services Unit of Sosprocan (University of 

Cantabria) following UNE-EN 1484 with a total organic carbon Schimadzu TOC-V Analyzer, applying the 

difference method Total Organic Carbon=Total Carbon–Total Inorganic Carbon (TOC=TC-TIC). 

Calibration was done using five dissolutions from 5 to 200 mg/l DOC. Accuracy was measured analysing 

patron dissolutions (50 and 100 mg/l TOC) each 15 samples and a blank solution each 5 samples. Element 

concentrations were determined by Metal Analysis Center of Scientific and Technological Center 

(University of Barcelona) using an Agilent 7500CE inductively coupled plasma-mass spectrometry (ICP-

MS) equipment in helium-collision mode and by a Perkin Elmer Optima 3200 RL inductively coupled 

plasma-optical emission spectrometry (ICP-OES) equipment. Metal standards for ICP-MS analysis of 1000 

mg/L were purchased from Merck (Darmstadt, Germany).The Certified Reference Material NASS-5 

(Seawater Reference Material for Trace Metals) from NRCC (Ontario, Canada) was analyzed for quality 

control. Samples were diluted (1:20) with HNO3 1% prior to analysis and Rh was added as internal 
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standard to correct for eventual drift of signal during analysis. The metal concentrations were calculated 

using external calibration with internal standard correction. The NASS-5 CRM was spiked with the 

elements at two different concentration levels 1 and 10 ppb. The CRM and the two spiked levels of 

concentration were measured every 6 samples as quality control. The detection limits for the elements 

under study (As, Cd, Cr, Cu, Ni, Pb and Zn) were 2, 0.4, 4, 2, 2, 0.4 and 10 µg/l, respectively. All leaching 

tests were performed in duplicate and the results shown in next tables are the medium value of both data. 

Prior to the experiments, all sampling and laboratory material was pre-cleaned, acid washed (10 % HNO3) 

and rinsed with Milli-Q water (Direct-Q 5 UV, Merck Millipore). 

 

The data used in this work includes 60 samples from leaching tests with CO2 acidification (28 samples 

from the equilibrium leaching tests and 32 samples from column leaching tests) and 24 samples from pH-

dependent leaching tests with HNO3 acidification (18 samples from tests with initial addition and 6 samples 

from tests with continuous pH-control). Each set of data has been analyzed separately by the SOM 

methodology (Figure 1). 

The data analysis included quantification of As, Cd, Cr, Cu, Ni, Pb, Zn as well as the mobilization and 

concentration of Dissolved Organic Carbon (DOC). These variables were chosen to evaluate the 

contaminants released into the seawater because of leaked CO2 coming into contact with contaminated 

sediments. The complete dataset with the values of the eight variables obtained in the different leaching 

tests is provided in Table 2 and Table 3.  

 

Self-Organizing Maps (SOMs) 

The SOM tool applied to the environmental classification of sediments has been previously used by the 

authors; in these works (Alvarez-Guerra, 2008, 2010), the  SOM it is show as an effective tool for the 

integration of multiple physical, chemical and ecotoxicological variables in order to classify different sites 

under study according to their similar sediment quality. Details about the methodology background and use 

of the SOM are described in these previous articles. Briefly, a SOM is a statistical tool based on a neural 

network with the SOM considered a map that consists of units (neurons) organized on a regular grid, 

usually a 2-dimensional hexagonal grid. Each neuron is represented by a weighted vector (prototype vector 

or codebook vector) whose dimension is equal to the dimension of the input space. The SOM Toolbox for 
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Matlab (version 2) was used to carry out the analysis, which was based on unsupervised learning and was 

trained using the Kohonen algorithm (Vesanto et al. 1999; Kohonen 1998). 

This methodology uses two distinct phases: the initialization, where the simple vectors of the input dataset 

are presented to the SOM as a whole, and the training steps that involves iterative calculating and 

comparing Euclidean distances between each vector and all the weigh vectors of the SOM (Vesanto et al., 

1999). The neuron with the input vector at minimum distance to the weigh vector was chosen as the Best-

Matching Unit (BMU) (Álvarez-Guerra et al. 2008). In each training step, the weight vectors were updated 

in such a way that the new weight vectors are weighted averages of the input data vectors. During this 

iterative training, the SOM behaves like a flexible net that folds onto the ‘cloud’ formed by the input data 

with BMUs of similar data samples being closely co-located on the final map grid (Vesanto et al. 1999; 

Álvarez-Guerra et al. 2008). 

The SOM analysis displays the obtained results in a map. This map shows which unit is the BMU inside 

each element in the input data (in this work, the different leaching tests samples). As the iterations 

described above proceed, the samples that exhibit similar values of the evaluated variables are expected to 

be assigned to the same neuron, while the samples with differing values are expected to be distant from 

each other. The ‘Component planes’ are the tool to interpret the SOM results, emphasizing identical values 

of the weight vectors for each component (eight in this work) in each neuron. Simple inspection of a 

component plane provides an idea of the spread of values of that variable and comparison of component 

planes allows correlations between variables to be observed (Álvarez-Guerra et al. 2008). 

Normalization of variables is of vital importance because of the SOM algorithm uses Euclidean metrics to 

measure distances between vectors (Vesanto et al. 1999). The Normalization removes the influence of the 

scalar of measurement of the variables, avoiding variables with high values dominating the maps on 

account of their greater influence on the Euclidean distances (Álvarez-Guerra et al. 2010). Three 

normalization methods available in the SOM Toolbox were considered: standardization, which normalizes 

the variance of each variable to unity and its mean to zero (‘var’); normalization, which scales the variable 

values in the range 0–1 with a linear transformation (‘range’); and normalization using a logarithmic 

transformation (‘log’) (Álvarez-Guerra et al. 2008). 
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The quantization error (QE) and the topographic error (TE) are two criteria used to evaluate the quality of 

SOMs obtained, permitting comparison between the suitability of the various normalization methods 

(Vesanto et al. 1999; Álvarez-Guerra et al. 2008). QE is the average distance between each data vector and 

its BMU and, thus, measures map resolution (Kohonen 2001; Álvarez-Guerra et al. 2010). TE is used as a 

measure of topology preservation; it represents the proportion of all data vectors for which the first and the 

second BMUs are not adjacent (Kiviluto 1996; Álvarez-Guerra et al. 2010). 

The map size is important in SOMs in detecting any deviation in the data. If the map is too large, the SOM 

can be over-fitted, but if the map is too small, some differences cannot be shown (Álvarez-Guerra et al. 

2010, 2008; Lee et al. 2006; Leflaive et al. 2005).  

The algorithm proposed by Alhoniemi et al. (2002) was applied to decide the size of the SOM. In this 

algorithm, the optimum map size is estimated to be five times the square root of the number of the input 

data vectors, and then is further refined according to the ratio of the two largest eigenvalues of the input 

(Álvarez-Guerra et al. 2010). Therefore, each analysis was trained with different map sizes, and the 

optimum map size was determined on the basis of the minimum QE and minimum TE. The k-means cluster 

analysis method (MacQueen et al. 1967), which minimizes the sum of the distances between each data 

vector and the center of its cluster, was used to group neurons of the trained map into a smaller number of 

clusters that represent similar behaviors (Vesanto and Alhoniemi, 2000). Detailed information about SOM 

is included in the Supplementary Information. 

 

RESULTS AND DISCUSSION 

Classification of equilibrium and column leaching tests with CO2-acidification 

The results of QE and TE for the three normalization methods applied and different map sizes are shown in 

Table 4. 

‘Range’ was the normalization method that obtained the lowest values of QE and TE. A 49-unit map 

(7 × 7) was selected as the best compromise between a low QE and an acceptable number of neurons, 

similar to the size of the 34-unit map proposed by the Alhoniemi et al. (2002) algorithm. Interestingly, in 

this case TE was zero, so the map preserved the topology of the input data very well (Kohonen 2001). 

Figure 2 represents the SOM of 7 × 7 units obtained. The application of the k-means algorithm to the 
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trained map classified the samples into five clusters (Clusters I–V). Figure 3 shows the component planes 

of the SOM for the eight solubilized constituents from the equilibrium and column leaching tests. 

Cluster I grouped all of the column leaching tests (Ec) at the most acidic conditions (pH 5) for all the values 

of L/S evaluated in this test (0.1, 0.2, 0.5, 1, 2, 4, 5 and 10). The main characteristic of the leaching test of 

this cluster was that these samples showed the highest levels of mobilization of Cu, Pb and Zn (Figure 3).  

Cluster II grouped the equilibrium leaching tests (Eq) at pH 5 at low L/S ratios (2, 4 and 10). This cluster 

was characterized by the highest release of Cd and Ni. Cu, Cd, Ni, Pb and Zn showed higher releases at pH 

5 and values of the L/S ratio lower than 15 in both equilibrium and column leaching tests. A decreasing 

amount of metal-release with neutral and slightly alkaline pH values was observed for these metals. This is 

thought to be related to the higher adsorption of some pollutants to soil and sediments at higher pH values 

(Payán et al. 2012b; Voegelin et al. 2003). 

Cluster III included samples from both leaching tests. This cluster contained all of the column leaching test 

samples at pH 6 and a number of those at pH 7 (L/S=0.2, 05, 1, 2, 4 and 10) and pH 8 (L/S=4 and 10). 

Furthermore, equilibrium leaching test samples for the highest values of the L/S ratio (30 and 40) at all pH 

values and equilibrium leaching test samples for the L/S ratio of 10 at pH values of 6 and 7 were placed in 

this cluster. Therefore, this cluster collected samples at pH values of 6 and 7 at L/S ratios lower than 10 in 

the column leaching test and samples at the same pH at L/S ratios higher than 10 in the equilibrium 

leaching test. This cluster was characterized by minimum values of solubilization for all variables evaluated 

(Figure 3). This could be because this cluster grouped the highest values of the L/S ratio for both leaching 

tests and when the exchangeable fraction has been depleted, the dilution of leachates is more accentuated as 

the L/S ratio increases (Payán et al. 2012a; Ndiba and Axe 2010). 

Cluster IV showed a similar situation to Cluster III. Here, column leaching test samples at elevated pH (7 

and 8) for low values of the L/S ratio (0.1 at pH 7 and 0.1, 0.2, 0.5, 1 and 2 at pH 8) were found. Also 

located here were equilibrium leaching test samples at circum-neutral to slightly alkaline pH (6, 7 and 8) at 

L/S ratios of 2 and 4, and L/S = 10 for pH 8. The cluster comprised the samples at pH values between 7 and 

8 from the lowest values of the L/S (0.1 to 2) in the column leaching test, and samples at pH 8 from values 

of the L/S of 2 and above in the equilibrium leaching test. The results additionally show that these samples 

produced elevated concentration of DOC and As. DOC was mainly leached in alkaline (pH 8) conditions 
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with low values of the L/S ratio (0.1–1 l/kg in column tests and 2–4 l/kg in equilibrium tests), that 

approached typical pore water solutions. Solubilization of organic matter was responsible for the decreased 

releases at high values of the L/S that can be further attributed to the decreased availability of DOC after its 

initial dissolution (Payán et al. 2012b). Arsenic displayed a similar trend in leaching behavior, which was 

associated with organic matter with the highest releases at higher pH values (7 and 8) and lower values of 

the L/S (2–4). We highlight that As could also be mobilized after dissolution of oxides (Achard et al. 2012). 

Cluster V contained samples of all pH values with L/S ratios of 15 and 20 in the equilibrium leaching test 

and samples that exhibited the maximum levels of Cr mobilization. The amphoteric character of Cr leads to 

it leaching in both acidic and alkaline conditions. 

The maximum release of Ni and Cr were observed in equilibrium leaching tests whereas the Cu, Zn and Pb 

were found to mobilize more readily during column leaching tests. Cd, As and DOC presented similar 

release patterns in both of the included leaching tests. 

Figure 4 shows a qualitative map where the three variables analyzed in this paper (leaching test, value of 

pH and L/S) are summarized for each cluster. Clusters I and III simulated advective flow of acidified 

seawater through the sediment column and the results highlight the release of Cu, Pb and Zn in acidic 

conditions at low L/S values. Clusters II, IV and V simulate CO2 bubbling over contaminated sediment and 

show high releases of Cd, Ni, Cr and As at low-to-medium values of L/S across the entire pH range.  

 

Classification of pH-dependent leaching tests with HNO3-acidification 

The results of QE and TE for the three normalization methods applied and the different map sizes are 

summarized in Table 5. 

“Range” was again the normalization method that obtained the lowest values of QE and TE. A 24-unit map 

(6 × 4) was selected as the best compromise between a low QE and a number of neurons that matched the 

24-unit map size proposed by the Alhoniemi et al. (2002) algorithm. TE was again zero, indicating that the 

map preserved the topology of the input data very well (Kohonen 2001). Figure 5 shows the SOM of 6 × 4 

units that was obtained. 
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The application of the k-means algorithm to cluster the trained map classified the samples into five clusters 

(Clusters I-V) (Figure 5). Figure 6 shows the component planes of the SOM for the eight mobilized 

constituents from the pH-dependent leaching tests.  

Cluster I grouped pH-dependent leaching test samples with pH in the range 4–11. Additionally, aside from 

the sample at pH 4, all of the pH-dependent tests with continuous pH-control (Edc) samples were located in 

this cluster. The main characteristic of the results of leaching tests in this cluster was that these samples 

showed intermediate values for solubilization of DOC, Cu and As and minimum  solubilization of the rest 

of the metals. These results are explained by the neutral and alkaline conditions grouped in this cluster 

(Figure 6). 

Cluster II collected the samples for pH-dependent tests with initial addition (Ed) where alkaline values of 

pH were simulated. This cluster was characterized by a high release of DOC and As. DOC is known to be 

released in alkaline solutions because of the higher negative charges on both organic matter and soil 

surfaces that cause the particles to repel each other (You et al. 1999). The release trend of As was similar to 

that of DOC, showing a maximum concentration and a high release of As in alkaline conditions. Again, this 

is due to the negatively charged surfaces above the point of zero charge; above this point, the sorption of 

anions is less favorable (Rigol et al. 2009). 

Cluster III grouped the pH-dependent test with initial addition (Ed) samples for pH values between 3.97 

and 4.42. Intermediate values of release for all variables evaluated were located in this cluster. 

Cluster IV comprises only samples of pH dependence test with initial addition where pH was found 

between 0.6 and 2.49. The main characteristic of the leaching test of this cluster was that these samples 

showed the highest levels of leached Cr and Ni (Figure 6).  

The samples which have the highest acid pH for both tests are grouped in cluster V (pH=4 for pH 

dependence test with continuous pH-control, and pH=0.27 for pH dependence test with initial addition). 

The maximum release of Cd, Cu, Pb, and Zn are located in this cluster. 

The maximum leaching rates of Cd, Cr, Cu, Ni, Pb, and Zn were observed at pH ranged from 0 to 4 

(clusters IV and V). The release of Cr, Ni, Pb and Zn at these conditions is consistent with the observation 

that in acidic conditions, the solid sediment surfaces are positively charged and metal-sorption is not 
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favored. Furthermore, dissolution of organo-metallic complexes is expected in these conditions leading to a 

higher metal-release than in alkaline conditions. In this work, Cu release is higher at acidic pH values due 

to the low sorption of this metal in these acidic conditions (Güngör and Bekbolet 2010; Impellitteri et al. 

2002; Almås et al. 2000). 

The maximum release of all variables evaluated (a worst-case scenario) took place in the pH-dependent test 

with initial addition (where the pH condition is fixed initially). The release under this testing regime was 

higher than that expected for a pH-dependent test with continuous pH-control.  

Figure 7 shows the qualitative map for the pH-dependent leaching tests with the pH, the L/S ratio and the 

leaching test for each obtained cluster.  

 
 
 
CONCLUSIONS 
 
This paper used a SOM-based methodology for interpreting and analyzing the information collected from 

the classification of 60 samples obtained from equilibrium and column leaching laboratory tests using CO2-

acidified seawater. The combination of the leaching results with the statistical treatment of SOMs provides 

conclusions about the mobilization of elements from contaminated seabed sediments because of CO2 

leakages and, for example, illustrated that for Ni and Cr the mobilization is higher in equilibrium leaching 

tests at L/S = 10 and pH 5 for Ni, and at the L/S ratio of 20 at all values of pH for Cr.  

 

For Cu, Zn and Pb, the highest risk of mobilization was originated in column leaching tests at pH 5 and at 

L/S ratios of 2, 4, 5 and 10. The risk of mobilization of Cd, As and DOC was present in both tests. 

However, while the maximum DOC mobilization was found in column leaching tests with a pH of seawater 

(pH=8) and a low L/S ratio, Cd and As presented a stronger leachability in equilibrium leaching tests. 

Acidic conditions (pH 5 at the ratio L/S of 10 and pH values of 6 and 7 at the ratio L/S of 2 and 4) were 

responsible for the highest levels of mobilization of other elements (Cd and As). 

 

The analysis of 24 samples obtained from pH-dependent leaching tests using HNO3-acidified seawater at a 

constant L/S value of 10 showed that the maximum mobilization of DOC, As, Cd, Cr, Cu, Ni, Pb and Zn 

variables was produced in samples of pH-dependent leaching tests with initial addition. For all studied 
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elements except As, a more acidic sample led to a higher release of elements. Conversely, the release of 

DOC and As was higher in alkaline conditions. 

 

The results described herein are useful for simulating element-release from contaminated sediment in 

contact with acidified seawater under different environmental conditions. This scenario could equally apply 

to marine acidification caused by CO2 leakages from CCS technologies as well as arising from other 

accidental spills of acid.  

Finally, the SOM-method has demonstrated its advantage as a powerful visualization tool that enables 

analysis of the impact on a number of variables. 
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Fig1. Schematic representation of the methodology followed in this study. 
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Fig2. Distribution of equilibrium and column leaching tests acidified with CO2 samples. The 5 clusters (I-
V) have been derived from the k-means algorithm applied to the trained SOM. The labels in the hexagons 
of the map show the BMU corresponding to each leaching test sample. 
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Fig3. Component planes of the SOM for the 8 input variables. Each map corresponding to one variable 
(component) should be compared to the map representing the distribution of the equilibrium and column 
leaching tests acidified with CO2 samples presented in Figure 2; hexagons in the same place on different 
component planes correspond to the same map unit. The colors indicate the value of the component in the 
weight vector of each unit of the map, according to the color bars on the right. 
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Fig4. Qualitative map for equilibrium and column leaching tests with CO2 acidification. Clusters are 
characterized by the pH (color), by the liquid to solid (L/S) ratio with higher sizes of bubbles meaning 
higher L/S ratios and by the leaching contact, represented by reactors; in clusters with both of the reactors, 
their relative size is identified with the number of samples of each contact in the cluster.   
 
 
 

 

Fig5. Distribution of the pH dependence leaching test acidified with HNO3 samples. The 5 clusters (I-V) 
have been derived from the k-means algorithm applied to the trained SOM. The labels added to the 
hexagons of the map indicate the BMU corresponding to each leaching test sample. 
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Fig6. Component planes of the SOM for the 8 input variables. Each map corresponding to one variable 
(component) should be compared to the map representing the distribution of the pH dependence leaching 
tests acidified with HNO3 samples presented in Figure 5; hexagons in the same place on different 
component planes correspond to the same map unit. The colors indicate the value of the component in the 
weight vector of each unit of the map according to the color bars on the right.  
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Fig7. Qualitative map for the pH dependence leaching tests with HNO3 acidification. Clusters are 
characterized by the pH (color), and by the leaching contact, represented by reactors; in clusters with both 
of the reactors, their relative size is identified with the number of samples of each contact in the cluster. 
The liquid to solid ratio is the same in all clusters (L/S=10).  
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TABLE 1. Main characteristics of the LCA and modelling risk assessment tools used for CCS evaluation. 

Risk assessment 
tool applied 

Phases of CCS 
analyzed 

Leakages in 
storage phase 

taken into 
account 

Parameters used for 
risk assessment as 

consequence of 
leakages 

Reference 

L
if

e 
C

yc
le

 A
na

ly
si

s 
(L

C
A

) 

Capture, transport and 
storage 

Yes Leakage ratio BMU (2008) 

Capture, transport and 
storage 

No - Hertwich et al. (2008) 

Capture, transport and 
storage 

No - Pehnt and Henkel (2009)

Capture, transport and 
storage 

No - Nie et al. (2011) 

Capture, transport and 
storage 

No - Singh et al. (2011) 

Capture, transport and 
storage 

Yes Leakage ratio Hussain et al. (2013) 

Capture, transport and 
storage 

No - Iribarren et al. (2013) 

Capture & transport  No - Akai et al. (1997) 

Capture & transport No - Nagashima et al. (2011) 

Capture & transport No - Singh et al. (2012) 

Capture No - Khoo et al. (2006) 

Capture No - Viebahn et al. (2007) 

Storage No - Chadwick et al. (2004) 

Storage Yes 
Degradation of 

aquifer properties 
Korre et al. (2009) 

Storage Yes Leakage ratio Hou et al. (2012) 

Storage Yes 
Degradation of 

aquifer properties 
Zhou et al. (2013) 

M
od

el
lin

g 

Storage Yes 

Alterations on 
groundwater 

Birkholzer et al. (2008) Metals mobilization

pH variations    

Transport & storage Yes 
Probability of leakage 

occurrence 
Hill et al. (2011) 

Storage Yes 
Degradation of 

aquifer properties 
Keating et al. (2011) 

Transportation No - Mazzoldi et al. (2011) 

Storage No - Xiao et al. (2009) 

Modelling and 
Simulation 

Storage Yes Leakage ratio Meyer et al. (2009) 

Storage Yes 
Degradation of 

aquifer properties 
Sakamoto et al. (2011) 

Techno-economic 
Modelling 

Capture, transport and 
storage 

No - 
Van der Zwaan and 

Gerlagh (2009) 
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Table 2. Data set of values of the 8 variables in the 60 samples from equilibrium and column leaching tests 
with CO2 acidified seawater. 

SAMPLE 
VARIABLES (μg/L) 

Cr Ni Cu Zn As Cd Pb DOC (10-4) 

Ec5/0.1 6.93 30.3 1370 6880 3.41 1.59 43.8 6.85 

Ec5/0.2 7.26 35.1 1710 7890 3.20 1.31 86.8 4.70 

Ec5/0.5 7.15 38.6 3170 9110 3.60 1.02 188 2.16 

Ec5/1 7.21 38.6 3870 9690 3.61 0.92 258 1.63 

Ec5/2 7.37 40.0 4210 10720 3.48 1.08 365 1.59 

Ec5/4 7.66 43.6 4890 11500 3.38 0.89 424 1.42 

Ec5/5 7.77 43.2 5100 11160 3.40 0.90 439 1.09 

Ec5/10 7.98 39.0 5000 9670 3.26 0.90 376 1.79 

Ec6/0.1 6.18 11.4 399 1710 9.81 0.09 24.7 5.76 

Ec6/0.2 6.15 9.18 296 1870 9.39 0.07 14.8 3.30 

Ec6/0.5 6.09 8.27 215 1620 8.64 0.05 8.18 2.10 

Ec6/1 6.06 8.58 176 1430 8.43 0.05 7.34 4.58 

Ec6/2 6.02 8.19 150. 1230 8.39 0.05 4.86 3.20 

Ec6/4 5.95 8.88 138 1270 8.29 0.05 4.25 0.827 

Ec6/5 5.90 9.18 135 1230 8.33 0.06 3.91 2.67 

Ec6/10 5.78 10.6 134 792 8.20 0.06 4.08 1.00 

Ec7/0.1 6.04 12.5 286 770 15.4 0.23 8.91 2.42 

Ec7/0.2 6.37 10.8 241 752 14.3 0.22 6.25 1.10 

Ec7/0.5 5.95 9.49 205 754 12.9 0.14 4.02 6.18 

Ec7/1 5.77 9.73 185 890 12.0 0.13 3.30 4.10 

Ec7/2 5.58 8.93 169 731 11.4 0.09 2.86 6.65 

Ec7/4 5.47 9.32 160 792 10.4 0.08 2.29 1.69 

Ec7/5 5.48 9.46 153 818 10.2 0.08 2.11 1.40 

Ec7/10 5.43 9.27 139 611 9.28 0.06 2.23 1.73 

Ec8/0.1 8.66 9.76 997 1100 24.6 0.12 4.68 55.9 

Ec8/0.2 8.45 7.98 939 861 22.6 0.09 3.53 40.9 

Ec8/0.5 7.82 6.62 840 640 20.5 0.06 2.81 32.3 

Ec8/1 7.35 5.98 723 522 18.6 0.05 2.17 19.5 

Ec8/2 6.79 5.97 582 466 16.7 0.05 1.85 13.6 

Ec8/4 6.35 5.97 437 523 14.8 0.04 1.74 6.90 

Ec8/5 6.23 5.97 395 546 14.2 0.04 1.62 6.46 

Ec8/10 6.07 5.43 305 446 13.0 0.04 1.94 4.85 
Ec a/b: samples from column leaching test (Ec) at pH=a, and L/S=b. 
Eeq a/b: samples from equilibrium leaching test (Eeq) at pH=a, and L/S=b. 
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Table 2 (Cont.). Data set of values of the 8 variables in the 60 samples from equilibrium and column 
leaching tests with CO2 acidified seawater. 

SAMPLE 
VARIABLES (μg/L) 

Cr Ni Cu Zn As Cd Pb DOC (10-4) 

Eeq5/2 1.84 13.5 64.7 355 6.92 1.45 8.30 8.90 

Eeq5/4 4.74 42.1 25.0 124 13.4 1.50 9.38 6.58 

Eeq5/10 1.48 339.6 121 69.5 13.0 1.90 8.35 7.78 

Eeq5/15 83.7 4.11 13.8 9.72 15.0 0.06 0.44 1.38 

Eeq5/20 104 4.09 15.0 9.86 18.0 0.01 0.33 0.740 

Eeq5/30 34.0 8.27 67.8 257 12.0 0.04 2.10 0.810 

Eeq5/40 40.0 6.14 85.7 17.4 11.0 0.06 5.00 0.310 

Eeq6/2 11.2 18.4 1290 580 34.4 0.26 4.74 3.99 

Eeq6/4 7.29 14.5 844 157 34.4 0.07 8.57 3.74 

Eeq6/15 85.1 2.10 13.2 11.3 10.0 0.23 0.81 0.98 

Eeq6/10 5.42 22.0 191 578 15.3 0.13 5.72 3.72 

Eeq6/20 109 2.18 20.4 1.19 13.0 0.03 0.17 0.82 

Eeq6/30 35.9 3.65 268 60.9 5.12 0.03 2.43 0.52 

Eeq6/40 42.5 2.64 162 8.12 6.09 0.01 1.73 0.19 

Eeq7/2 13.3 3.53 1180 31.7 32.0 0.15 1.99 6.47 

Eeq7/4 9.39 28.7 1320 153 33.8 0.08 2.39 4.21 

Eeq7/10 6.17 4.20 272.2 46.2 17.4 0.13 1.66 2.89 

Eeq7/15 86.8 1.73 12.1 2.61 9.16 0.10 0.11 1.25 

Eeq7/20 115.0 2.05 8.49 0.90 13.2 0.09 0.09 1.07 

Eeq7/30 32.01 2.68 250 39.6 3.94 0.01 0.87 0.61 

Eeq7/40 36.38 2.09 336 17.1 4.65 0.01 0.79 0.28 

Eeq8/2 14.6 2.35 1000 23.8 31.7 0.22 0.88 23.3 

Eeq8/4 11.2 2.38 1400 27.5 32.5 0.11 0.64 15.0 

Eeq8/10 7.31 2.57 454 23.7 20.1 0.16 0.75 12.7 

Eeq8/15 90.1 1.70 11.2 6.66 9.50 0.04 0.43 1.52 

Eeq8/20 115.3 1.94 9.24 0.20 13.0 0.02 0.47 0.95 

Eeq8/30 38.0 2.69 352 18.3 4.81 0.02 2.73 0.45 

Eeq8/40 45.4 1.55 554 3.39 5.29 0.04 2.29 0.19 
Ec a/b: samples from column leaching test (Ec) at pH=a, and L/S=b. 
Eeq a/b: samples from equilibrium leaching test (Eeq) at pH=a, and L/S=b. 
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Table 3. Data set of values of the 8 variables in the 24 samples from pH dependence leaching tests with 
HNO3 acidified seawater. 

SAMPLE 
VARIABLE (μg/L) 

Cr Ni Cu Zn As Cd Pb(10-4) DOC(10-4) 

Ed0.27/10 1290 732 116 257450 51.9 547 2.66 13.7 

Ed0.6/10 1280 720 24.2 243870 36.1 439 0.428 11.9 

Ed0.98/10 1270 724 8.93 238520 37.8 242 0.224 12.2 

Ed1.3/10 1140 809 24.5 188740 37.0 101 0.204 11.7 

Ed2.49/10 536 506 6.62 127710 71.2 18.5 0.134 10.5 

Ed3.97/10 130 426 23.0 48640 560 10.8 0.193 5.02 

Ed4.42/10 13.4 388 15.9 36060 593 4.31 0.285 4.23 

Ed5.32/10 2.68 170 2.45 7950 24.3 1.65 0.019 3.27 

Ed6.51/10 1.52 47.7 1.89 506 14.9 0.33 0.001 3.08 

Ed7.41/10 6.82 2.79 2.76 23.1 9.98 1.16 0.001 1.80 

Ed7.49/10 20.3 6.01 11.7 111 8.76 0.82 0.000 1.62 

Ed8.26/10 7.32 12.6 4.23 873 12.0 1.36 0.002 3.13 

Ed9.44/10 1.62 8.33 1.52 30.1 15.5 0.34 0.000 3.59 

Ed10.73/10 43.6 84.9 12.8 2278 55.6 3.72 0.004 10.9 

Ed11.15/10 5.70 78.64 82.0 160 81.7 1.24 0.004 14.7 

Ed12.07/10 12.0 58.3 16.2 54.5 469 0.44 0.001 20.5 

Ed12.18/10 13.8 99.2 28.2 362 1260 0.31 0.006 38.9 

Ed13.72/10 35.9 105 23.6 580 1360 1.35 0.008 36.0 

Edc4/10 8.73 373 27.6 210180 148 506 1.95 4.01 

Edc5/10 1.01 282 2.45 93220 14.7 43.8 0.155 2.27 

Edc5.5/10 1.27 228 1.80 51450 15.0 14.4 0.040 1.74 

Edc6/10 2.23 118 2.58 12230 4.39 3.02 0.011 0.999 

Edc6.5/10 1.03 35.9 3.73 1370 3.31 0.24 0.002 1.56 

Edc7/10 0.66 12.8 2.07 283 2.21 0.19 0.001 0.642 
Ed a/b: samples from pH dependence leaching test with initial addition (Ed) at pH=a, and L/S=b. 
Edc a/b: samples from pH dependence leaching test with continuous pH-control (Edc) at pH=a, and L/S=b. 

TABLE 4. Quality measures (quantization error (QE) and topographic error (TE)) of the SOMs of different 
map sizes obtained with three normalizations of the data (n=60). 

Map Size 
Normalization LOG Normalization RANGE Normalization VAR 

QE TE QE TE QE TE 
6X6=36 1.294 0 0.152 0.05 0.705 0.017 
7X5=35 1.323 0.033 0.153 0.017 0.666 0.017 
7X6=42 1.198 0.017 0.143 0 0.610 0.017 
7x7=49 1.102 0.017 0.119 0 0.527 0.05 
8x5=40 1.191 0.017 0.138 0 0.649 0 
8X6=48 1.091 0.017 0.121 0.017 0.532 0.033 
9x4=36 1.249 0.033 0.154 0 0.684 0.017 
9X5=45 1.122 0.033 0.129 0.033 0.563 0.017 
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TABLE 5. Quality measures (quantization error (QE) and topographic error (TE)) of the SOMs of different 
map sizes obtained with three normalizations of the data (n=24). 

Map Size 
Normalization LOG Normalization RANGE Normalization VAR 

QE TE QE TE QE TE 
5x4=20 2.556 0 0.257 0 0.915 0 
5x5=25 2.342 0 0.231 0 0.865 0.042 
6x4=24 2.331 0 0.225 0 0.796 0 
6x5=30 2.103 0.042 0.204 0 0.691 0 
7x3=21 2.444 0 0.231 0.042 0.79 0 
7x4=28 2.148 0 0.196 0 0.697 0 
8x3=24 2.181 0 0.223 0.083 0.771 0.083 

 
 
 

 


