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1 Abstract

Se formula un modelo matemático de dinámica de multitudes mediante un sistema de
EDO no lineales y con términos discontinuos en el cual se han introducido las fuerzas
de empuje como posible factor causante de los accidentes y situaciones potencial-
mente mort́ıferas. Aśımismo, se han definido términos como la enerǵıa o la densidad
aplicados a este modelo para poder medir los resultados obtenidos. Se presentan
simulaciones para diversas configuraciones iniciales y diferentes masas correspondi-
entes a las personas que conforman la multitud. Se han obtenido resultados que si
bien no permiten predecir para cualquier situación dónde estarán los puntos de peli-
gro, si que permiten a corto plazo y con una configuración inicial dada determinar
en qué puntos podŕıan producirse accidentes. Finalmente, se ha podido concluir que
la introducción de fuerzas de empuje que aumentan la enerǵıa, también aumenta los
puntos con mayor densidad máxima en el sistema y por tanto las posibilidades de
que ocurran desgracias.
Palabras clave: multitud, dinámica, ecuaciones diferenciales ordinarias
(EDO), modelo matemático, sistema de ecuaciones.

A model in crowd dynamics has been formulated in which we have introduced push-
ing forces as a factor that increases the risk in crowds. In order to measure this risk,
important physical quantities have been defined such as the energy or the density
specifically for this model. Moreover, we have considered different initial configu-
rations and several mass configurations in order to test the model under different
conditions. The obtained results show an unpredictable behavior for initial condi-
tions; however, we can detect high density peaks, and consequently risky areas, in
the studied initial configurations and always in the short-term. Furthermore, we
find that pushing forces that increase energy also increase the areas where density
is over dangerous levels.
Key words: crowd, dynamics, ordinary differential equations (ODE),
mathematical model, system of equations.

2 Introduction

Lately, there has been growing concerns regarding the proliferation of people across
the world. Specifically, under high densities, dangers of stampeding effects in densely
populated areas have been observed. In the last 25 years hundreds of people have
died because of stampedes in crowds. Cities as New York (87 deaths in 1990), Los
Angeles (51 deaths in 1992), Mandi Dabwali in India (441 deaths in 1995), Inchon
in South Korea (54 death in 1999), Tokio (44 deaths in 2001), Ho Chi Minh city
(61 deaths in 2001), Rhode Island (over 100 deaths in 2003), Bombay (51 deaths in
2004), Manila (79 deaths in 2006), Duisberg (Loveparede stampede in 2010 killed
21 people) and especially Mecca where on 24 September 2015 about 700 pilgrims
were killed in a stampede and over 3,200 have died in the last 25 years, have known
what crowds are able to cause [3]. There are many other examples of deaths caused
by stampedes, so the development of models to predict crowd dynamics could allow
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us to save many lives. Furthermore, knowledge in this field will aid businesses in
designing optimally structured facilities for panic situations at minimal cost.

Much research has been conducted in an effort to understand these phenomena,
but much remains to understand. Current research suggests that crowds behave
much like a fluid. However, this model fails to be sufficient for all population sce-
narios. Thus, we seek an appropriate model that accurately simulates the dynamics
of a panicking crowd and normal crowd activity.

How are models in crowd dynamics nowadays? Essentially, two distinct rudimen-
tary approaches are utilized to model crowd behavior. The first approach involves
treating pedestrians as distinct individuals and selecting appropriate algorithms to
simulate walking behavior. This method tends to give more reliable results when
pedestrian count is low as in [4]. When large crowds develop, it becomes reasonable
to treat the entire crowd as a whole and model them using a gas-kinetic or fluid
dynamic framework [5] [7]. Each model has its own advantages and disadvantages.
The discrete model can be favorable in terms of flexibility. For instance, one can
consider behavioral forces acting on a system, influencing the trajectories of pedes-
trians. In more recent developments, D. Helbing has made significant progress in
the field of crowd dynamics. While abandoning most prior assumptions of crowd
behavior dynamics, he used heuristic observations from films to adopt a flexible mi-
croscopic description of crowd behavior. Helbing’s models are able to predict many
social phenomena including dangerous pressure build-ups, clogging effects at bottle-
necks, and ignorance of nearby exits due to herding [1][2].

We are particularly interested in a specific physical event that occurs in crowd dy-
namics. We aim to model the effects of pushing for dense crowd situations for the
simplified scenario of a one dimensional line. We would like to explore physical phe-
nomena that arise as a result of the pushing force.
The model which will be presented in this paper is not enough realistic yet to pro-
vide predictions for any scenario, but it is enough to provide a potential cause for
the stampedes or other risky situations related with crowds: a pushing force.
Upon modeling crowd behavior in one-dimensional space with each respective push-
ing force, we seek to measure the system’s total energy and pressure. The goal of
our model is to find high densities peaks in crowd dynamics. Find these potentially
dangerous areas could help to reduce the number of deaths caused by crowds.

The results of this model allows us to find a relation between energy, pushing forces
and high density peaks, so that different pushing forces lead to either dangerous
behavior whenever they increase the energy or stable situations if they decrease the
energy. As a consequence of this fact, we can conclude thanks to this simple model
that pushing forces could be one of the factors that cause dangerous situations such
as stampedes and overcrowded areas.
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3 General Description of the model

We will consider a one-dimensional finite interval of length L where the boundaries
are the walls of a thin hallway (see Fig. 1).

Figure 1: Interval and walls

Pedestrians are populated within the given region. We will choose to represent
each pedestrian as an interval centered at the point xi, as the position of the mass
center of the person i, xi, depends on time we will denote it as xi(t), with a fixed
radius r that represents a pedestrian shoulder width (see Fig. 2).

Figure 2: Interval, walls and a pedestrian

Hence, each pedestrian will occupy a region of length 2r, the interval (xi(t) −
r, xi(t) + r). We will require that for all time t, xi(t) ∈ (0, L) and xi(t) < xi+1(t).
This condition is reasonable as this is a one-dimensional model (in higher dimen-
sions this condition would turn to xi(t) 6= xj(t) if i 6= j while in our one-dimensional
model, as people cannot switch positions by moving in other directions, it is enough
with xi(t) < xi+1(t) ). Physically, this means that no pedestrian’s center of mass is
allowed to cross one another or a wall.
An example of the distribution of the pedestrians along the interval can be observed
in figure 3
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Figure 3: Initial configuration with 50 pedestrians

We are particularly interested in the qualitative behavior of the pedestrians due
to the physical interactions between them. To capture this notion we define physical
contact as an overlap between two pedestrian’s intervals. We define the overlap ∆i(t)
between pedestrian i and i+1 as:

∆i(t) := (xi(t) + r)− (xi+1(t)− r) = xi(t)− xi+1(t) + 2r (1)

Careful consideration must be taken into account when a pedestrian interacts with
the boundary. Thus, we define the overlap between pedestrian x1(t) and the left
boundary wall as:

∆L(t) := −x1(t) + r (2)

Similarly, we define the overlap between pedestrian xn(t) and the right boundary as
the following:

∆R(t) := xn(t) + r − L (3)

Since we restrict to the case xi(t) ∈ (0,L) and xi(t) < xi+1(t) for all time t, we
obtain that ∆L(t),∆R(t) ∈ (r− L, r) and ∆i(t) ∈ (2r− L, 2r)

We can understand this definitions better through the following figure. (4)
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Figure 4: Example of the overlaps between pedestrians and pedestrian one and the
wall

Along the paper and in order to emphasize the dependence of ∆ on the position
we will refer to ∆R(t), ∆L(t) and ∆i(t) as ∆R, ∆L and ∆i respectively.

4 Forces

4.1 Overview

One of the main parts of developing a crowd dynamics model is to find some func-
tions which can describe the behavior of the forces that can be found in a crowd.

For our model, we will consider only the physical forces that influence the tra-
jectories of the pedestrians. We assume that a normal force is necessary to prevent
people from crossing paths or the walls. We also consider different candidates for a
pushing force, which is the most important one in this model because, as we said
previously, we are looking for high density peaks induced by pushing forces.

4.2 Normal Force

When two humans are in contact, physical considerations imply the existence of
a normal force between them. This force is responsible for preventing pedestrians
from crossing each other, one of the given conditions of this model. Provided that
two pedestrians are in physical contact, we define the normal force, FN , as follows:

FN(∆i(t)) :=

{
κ tan(π

2
∆i(t)

2r
) if ∆i(t) > 0

0 if ∆i(t) ≤ 0
= κ tan

(
π

2

max(∆i(t), 0)

2r

)
(4)
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Figure 5: Tangent graph

where κ is a proportionality constant corresponding to the intensity of the force.
Definition (4) must be slightly altered to handle the pedestrians who are able to
come in contact with the wall.

FNL(t) :=

{
κ tan

(
π
2

∆L(t)
r

)
if ∆L(t) > 0

0 if ∆L(t) ≤ 0
= κ tan

(
π

2

max(∆L(t), 0)

r

)
(5)

FNR(t) :=

{
κ tan

(
π
2

∆R(t)
r

)
if ∆R(t) > 0

0 if ∆R(t) ≤ 0
= κ tan

(
π

2

max(∆R(t), 0)

r

)
(6)

The work done by this force on a pedestrian is independent of the path a pedes-
trian traverses.The above choice of normal force is by no means a unique choice. In
choosing this particular form we sought to capture the general qualitative behavior
induced by a normal force, this is, the closer pedestrians are, the stronger normal
force is.

This is the reason why we introduce a tangent function is to avoid pedestrians
crossing each other, as there is a vertical asymptote at ∆ = r if we consider the
overlap between person 1 and the left wall or person n and the right wall or ∆ = 2r
otherwise.
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4.3 Pushing Forces

It is natural to expect humans to begin to push each other in high density crowds.
One of our goals is to model the effect of such a force on the trajectories of the
pedestrians. As a consequence of this force, we expect to observe the high increase
of density and wave-like behavior of the system under certain conditions. Thus, in
modeling the pushing force we look for candidates that will cause the total energy
to increase and will compare them without pushing forces and pushing forces which
decreases energy. We propose several possible candidates for an appropriate pushing
force F P .

4.3.1 Heaviside Force

Our first approach is to model the pushing force as a constant force that is present
whenever there is overlap. However, there should be a difference in the way it acts
depending on whether the level of contact, what we call the overlap, is increasing or.
it is decreasing. In the case that the overlap is decreasing between two pedestrians
(that is, ∆̇ ≤ 0 where ∆̇ = d∆

dt
) we expect a lag, ∆0 > 0, before pushing begins.

That is, they need to be close enough for them to push. Then, we will assume that
the push is a constant. When the overlap is increasing, we expect the pedestrians
to push until they are comfortable. This results in a force of the form:

FH(∆i(t), ∆̇i(t)) =


P if ∆̇i(t) > 0 ∧∆i(t) > 0

0 if ∆̇i(t) > 0 ∧∆i(t) ≤ 0

P if ∆̇i(t) ≤ 0 ∧∆i(t) > ∆0

0 if ∆̇i(t) ≤ 0 ∧∆i(t) ≤ ∆0

(7)

= P ·H(∆i(t)) ·H(∆̇i(t)) + P ·H(∆i(t)−∆0) ·H(−∆̇i(t)) (8)

where H(∆(t)) is an alternative version of the Heaviside function:

H(x) =

{
1 if x > 0
0 if x ≤ 0

(9)

In this case we take H(0) = 0 instead of H(0) = 1 or H(0) = 1
2

as it is usual.

For convenience, we can also smooth this force and consider:

FHR(∆i(t), ∆̇i(t)) :=

{
P
2

( 2
π

arctan(β∆i(t)) + 1) if ∆̇i(t) > 0
P
2

( 2
π

arctan(β(∆i(t)−∆0)) + 1) if ∆̇i(t) ≤ 0
(10)
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Figure 6: f(x) = arctan(x)

where P is a constant that characterizes the intensity of the pushing force the
pedestrian i feels from i+1. β is a large constant so that arctangent is essentially
a step function. ∆0 ≥ 0 is a threshold constant dictating when the pushing force
should activate when the overlap is decreasing.

4.3.2 Anti-Plastic Force

It seems natural to consider that the intensity of the force depends on the level of
overlap. When the overlap is increasing (∆̇i ≥ 0), we model the pushing force as
depending linearly on ∆i with slope m passing through the origin (no push when
∆i = 0) up to ∆i = 2r (maximum overlap). When the overlap is decreasing we also
model it as depending linearly on ∆i but with slope M, 0 < M < m. This acts only
when ∆i ≥ 0 and for the purpose of computing, the equation would pass through
the point (d0, 0) in the negative independent axis. Then, for the maximum overlap
2r, we have the line equation FA(∆i, ∆̇i)−m · 2r = M · (∆i − 2r). If we substitute
and isolate, we obtain the value d0 = 2r− m·2r

M
= 2r(1− m

M
) < 0. This value satisfies

that if ∆i = 2r then m∆i = M(∆i − d0). This results in a force of the form

FA(∆i(t), ∆̇i(t)) =


m∆i(t) if 0 ≤ ∆̇i(t) ∧∆i(t) > 0

M(∆i(t)− d0) if 0 > ∆̇i(t) ∧∆i(t) > 0
0 if ∆i(t) ≤ 0

(11)
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Figure 7: Anti-plastic force diagram

This can be better understood graphically by a single diagram reminiscent of
stress-strain diagram in the theory of plasticity (see Fig. 7 ). Our force results in a
”stress-strain” diagram with arrows opposite to these obtained in plasticity, hence
why we use the moniker ”anti-plastic” to describe it.

4.3.3 Plastic force

As one of our goals is to compare how our system works with different pushing
forces we introduce a new one which we expect to decrease total energy. Again
we consider that the intensity of the force depends on the level of overlap linearly.
However in this case the slope is greater whenever ∆̇i ≤ 0, that is, when the overlap
is decreasing. Then the pushing force depends linearly on ∆i with slope mp passing
through the origin up to ∆i = 2r if ∆̇i ≥ 0 as in the case of the anti-plastic pushing
force. In case the overlap is decreasing the pushing force also depends linearly on
∆i with slope Mp, Mp > mp > 0. Then the definition of the plastic pushing force is

F Pl(∆i(t), ∆̇i(t)) =


mp∆i(t) if ∆̇i(t) > 0 ∧∆i(t) > 0

Mp(∆i(t)− dp) if ∆̇i(t) ≤ 0 ∧∆i(t) > dp
0 otherwise

(12)

where dp = 2r · (1 − mp

Mp
) > 0 is analogous to the point d0 in the anti-plastic

pushing force.

12



This force can be better understood observing the following diagram (see Fig. 8):

Figure 8: Plastic force diagram

5 The Model in equations

Given a choice of a pushing force FP , which from now until the end will refers
to any of the three pushing forces detailed before (this is PHR,PA and P Pl), we
consider the forces acting on each pedestrian i of our model. For example, person i,
i ∈ {2, . . . , n− 1}, is pushed by people i-1 and i+1 and in case of physical contact
normal force between person i and person i-1 and normal force between person i and
person i+1 come out. Then, we can then apply Newton’s Second Law (F = mẍ) to
obtain the following equation of motion:

miẍi(t) = FN(∆i−1(t))− FN(∆i(t)) + F P (∆i−1(t), ∆̇i−1(t))− F P (∆i(t), ∆̇i(t))

∀i ∈ {2, . . . , n− 1}
(13)
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FN
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Figure 9: Representation of a two pedestrians system

Pedestrians near a wall do not feel a pushing force from the wall, and consequently
we obtain the following equations:

m1ẍ1(t) = FNL(t)− FN(∆1(t))− F P (∆1(t), ∆̇1(t)) (14)

mnẍn(t) = −FNR(t) + FN(∆n−1(t)) + F P (∆n−1(t), ∆̇n−1(t)) (15)

As we observe in the diagram (9)
This results in a system of ordinary differential equations (ODE) of the form:

m1ẍ1(t) = FNL(t)− FN(∆1(t))− F P (∆1(t), ∆̇1(t))

m2ẍ2(t) = FN(∆1(t))− FN(∆2(t)) + F P (∆1(t), ∆̇1(t))− F P (∆2(t), ∆̇2(t))
...

miẍi(t) = FN(∆i−1(t))− FN(∆i(t)) + F P (∆i−1(t), ∆̇i−1(t))− F P (∆i(t), ∆̇i(t))
...

mn−1ẍn−1(t) = FN(∆n−2(t))− FN(∆n−1(t)) + F P (∆n−2(t), ∆̇n−2(t))− F P (∆n−1(t), ∆̇n−1(t))

mnẍn(t) = −FNR(t) + FN(∆n−1(t)) + F P (∆n−1(t), ∆̇n−1(t))
(16)

We seek to understand the behavior of the solutions of this system numerically.
In order to solve this system of ODE’s we use the mathematical software MATLAB.
In particular we have worked with the solver ode45 (checking the results using other
ode solvers such as ode23) which is based on an explicit Runge-Kutta formula [8],
the Dormand-Prince pair. For further information about the ode solver method see
Appendix 1.

Another important point to understand is the existence and uniqueness of so-
lution for the system of equations (16). After an initial analysis we find that this
problem requires more effort than what was initially expected and it is studied in
Appendix 2.

In the next section, we consider those qualities of physics related to this system
which are of interest for the modeling purposes.
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6 Measuring the results

We need to introduce several physical quantities to measure our results in order to
check if the model works properly and to be able to compare the different results
that we obtain from different simulations.

6.1 Physical Quantities

6.1.1 Energy

In choosing how to model the pushing force we sought to inject energy into the sys-
tem by the inclusion of pushing. Thus, we derive here the expression for total energy.

The kinetic energy for our system is defined in the usual sense,

n∑
i=1

KEi =
n∑
i=1

1

2
miv

2
i (t) =

n∑
i=1

1

2
miẋ

2
i (t) (17)

where n is the number of people in the system.

There is also potential energy coming from the normal force (the pushing forces
defined in this paper are not conservative). Recall that a force has potential if there
exists a scalar function V such that:

NF = −∇V (18)

where NF represents all normal forces and ∇ =
∑n

i=1 ~ei
∂
∂xi

being (x1, . . . , xn)
the coordinates of our system and (e1, . . . , en) the standard basis.

For the normal force, this is indeed the case and we can compute it by integrat-
ing along a solution of the system. So, let

NF = (FNL − FN(∆1), FN(∆1)− FN(∆2), . . . , FN(∆n−1)− FNR) (19)

be the net normal force in the system and ~dr the line element in Rn. We can inte-
grate over the solution ~x = (x1(t),. . .,xn(t)) of the system to obtain:

V = −
∫

(−∇V ) · ~dr = −
∫

(NF (t)) · ~dr (20)

=

∫
FNL(t)d∆L +

∫
FNR(t)d∆R +

n−1∑
i=1

∫
FN(∆i)d∆i (21)

By (21)
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V (x1, . . . , xn) = −2κr
π

log(| cos( π
2r
max(∆L, 0))|)− 2κr

π
log(| cos( π

2r
max(∆R, 0))|)−

−
∑n−1

i=1
4κr
π

log(| cos( π
4r
max(∆i, 0))|) + C1

(22)
where C1 is the integration constant and V is continuous (even for ∆i = 0). Previ-
ous equation (22) holds for 0 ≤ π

2r
max{∆L, 0} < π

2
, 0 ≤ π

2r
max{∆R, 0} < π

2
and

0 ≤ π
4r
max{∆i, 0} < π

2
, ∀i ∈ {1, . . . n − 1}, for whenever ∆L,∆R < r and ∆i < 2r.

This confirms that the normal force is conservative as expected and as we will see
in the simulations.

Namely, if we consider the previous system of ordinary differential equations (16),
then the total energy E of the system is given by,

E(t) =
1

2

n∑
i=1

miẋ
2
i (t) + V (x1(t), . . . , xn(t)) (23)

as the pushing forces are not conservatives. With the addition of pushing forces,
energy is expected to increase or decrease.
If we observe the energy evolve over time, we get the following equation,

dE(t)
dt

=
∑n

i=1miẋi(t)ẍi(t) + ẋ1(t) ∂V
∂x1

(x1(t), . . . , xn(t)) + . . .+ ẋn(t) ∂V
∂xn

(x1(t), . . . , xn(t)) =

= ẋ1(t)[m1ẍ1(t) + ∂V
∂x1

(x1(t), . . . , xn(t))] + . . .+ ẋn(t)[mnẍn(t) + ∂V
∂xn

(x1(t), . . . , xn(t))]

(24)
Since NF = −∇V ,

dE(t)
dt

= ẋ1(t)[m1ẍ1(t)− FNL(t) + FN(∆1(t))] + ẋ2(t)[m2ẍ2(t)+

+FN(∆2(t))− FN(∆1(t))] + . . .+ ẋn−1(t)[mn−1ẍn−1(t)+

+FN(∆n−1(t))− FN(∆n−2(t))] + ẋn(t)[mnẍn(t) + FNR(t)− FN(∆(t))]

(25)

If we substitute miẍi(t) by its value in equation (16) we obtain,

dE(t)
dt

= ẋ1(t)[−F P (∆1(t), ∆̇1(t))] + ẋ2(t)[F P (∆1(t), ∆̇1(t))− F P (∆2(t), ∆̇2(t))] + . . .

+ẋn−1(t)[F P (∆n−2(t), ∆̇n−2(t))− F P (∆n−1(t), ∆̇n−1(t))] + ẋn(t)[F P (∆n−1(t), ∆̇n−1(t))]
(26)

As ∆i(t) = xi(t)− xi+1(t) + 2r, then ∆̇i(t) = ẋi(t)− ẋi+1(t) and we finally obtain
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dE(t)

dt
= −

n−1∑
i=1

F P (∆i(t), ∆̇i(t))
d∆i

dt
(27)

Integrating over time, we get that the energy of the system that looks like,

E(t2)− E(t1) =

∫ t2

t1

dE = −
∫ t2

t1

n−1∑
i=1

F P (∆i(t), ∆̇i(t))∆̇idt (28)

Finally it is important to notice that the energy is not measured in Joules as the
mass is normalized (1 unit of mass is equal to 62 kg which is the average of human
weight [6]). Then, we use J∗ where 1J∗ = 62J .

6.1.2 Density

As said before, one our main goals is to find high density peaks induced by pushing
forces. However, what does density mean in this system? There is no conventional
definition of density in discrete crowd dynamics and consequently we need to define
density in our system.

Our first idea to measure the density in a point y ∈ [0, L] was to count the
number of pedestrians who lies in the interval (y − δ, y + δ) ⊆ [0, L] where δ > 0 is
a constant. Nevertheless, with that definition the distance of the pedestrians to the
point y does not take into account and consequently we look for a different definition.

Consider an open interval J centered at y ∈ [0,L]. Let m be the usual Lebesgue
measure on the line. We can define the density ρ(J, t) at J at time t as the portion
of individuals that lie in J at time t divided by the length of the interval.

This seems a natural option to measure ”density” due to the fact that it provides
a continuous measure of the amount of people in some locality of the interval [0,L],
and it will be mathematically expressed as,

ρ(J, t) :=

∑n
i=1 m[J ∩ (xi(t)− r, xi(t) + r)]

m[J ]
(29)

Once the density for one point( this is, the density of one of its neighborhoods)
has been defined, we are going to state how to measure density in the whole interval.

When studying the density in our system, we can partition the interval [0,L] and
measure the density at each partition j centered at yj and in an interval Jj. One
natural option is to study the case yj = Oj and Jj = (Oj -δ, Oj +δ) for some fixed
points Oj and a fixed non-negative constant δ. This provides the density to be,

ρ̂j(t) := ρ((Oj − δ, Oj + δ), t) =

=
∑n

i=1m[(Oj−δ,Oj+δ)∩(xi(t)−r,xi(t)+r)]
2δ

(30)
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If we take enough points Oj for a fixed δ we can cover the full interval [0,L] and
then obtain a measure of the density that covers each point z ∈ [0, L]. The smaller
δ is and the more number of points Oj we study, the more accurate is this measure.

We expect the pushing force to have an effect on the local densities under cer-
tain conditions (initial configurations, etc.). This can be observed by studying the
evolution of ρj all over the time.

It is important to remark that there is not units to measure the density in the
way we do, so we are going to use what we called density units (d.u), where one
unit is the density of only one person in the center of the interval we are measuring,
always considering δ < r.

7 Simulations

7.1 Setup

For the purpose of simulations, we consider four initial configurations. In all, we
take initial velocities to be 0, this is ẋi(0) = 0, ∀i ∈ {L,R, 1 . . . , n} as we believe
simulations will be easier to analyze. Nevertheless, this assumption is critical (in
some sense) from the point of view of proving existence and uniqueness of solution
for the system (see Appendix 12.2).
It is of convenience to describe the initial configuration using the initial overlaps.

∆(0) = (∆L(0),∆1(0), . . . ,∆n−2(0),∆n−1(0),∆R(0)) (31)

As r is prefixed, by definition of ∆i we obtain the following system of equations,

x1(0) = r −∆L(0)
x2(0) = x1(0) + 2r −∆1(0)
...
xk(0) = xk−1(0) + 2r −∆k−1(0)
...
xn−1(0) = xn−2(0) + 2r −∆n−2(0)
xn(0) = xn−1(0) + 2r −∆n−1(0)

(32)

that can be easily solved.

7.1.1 Initial configurations

Small Disturbance I

We want to observe what a small disturbance in the initial configuration might
do to our system. First, we consider a configuration with slight overlap between any
two pedestrians xi and xi+1, this is ∆i > 0, and zero everywhere else (here, ”zero
overlap” could mean also negative overlap, in fact, a situation where pedestrians are
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not touching each other and consequently there is no overlap). That is, for the ∆(0)
vector mentioned above, we require that for some i, ∆i(0) = η where η is a positive
constant. For the other positions ∀j 6= i, ∆j(0) ≤ 0.

Figure 10: Small Disturbance I

Small Disturbance II

Another small disturbance we have considered is the one caused by a slight
overlap between either person one and the left wall or person n and the right
wall. This is, ∆L(0) > 0 and ∆i(0) ≤ 0, i ∈ {1, . . . n − 1, R} or ∆R(0) > 0 and
∆i(0) ≤ 0, i ∈ {L, 1, . . . n− 1}.

Figure 11: Small Disturbance II
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Bell Curve Disturbance

Next, we consider a ”bell curve” initial configuration in which overlap decreases
between each pair of pedestrians as one progresses out toward the boundaries from
the center.

Assuming that we have an even number of pedestrians, an odd number of spacing
will correspond with the ∆(0). At ∆n

2
(0), it will have the maximal overlap. Then,

as we increment to the left and right by one to ∆n
2
−1(0) and ∆n

2
+1(0) and after j

steps ∆n
2
−j−1(0) and ∆n

2
+j+1(0), they will have a value that is equal or smaller than

∆n
2
(0) and than ∆n

2
+i+1(0), ∀i ∈ {0, . . . , j − 1} and ∆n

2
−i−1(0), ∀i ∈ {0, . . . , j − 1}.

This process is continued to the first and last delta.

If an odd number of pedestrians exist, then we must adjust our configuration
slightly. In this case, ∆n−1

2
(0) and ∆n+1

2
(0) will both have the same maximal over-

lap. As we increment to the left and right in the same manner as mentioned above,
the overlaps will have the same value and decrease.

Figure 12: Bell curve disturbance

Alternating Disturbance

In the last initial configuration we consider the overlaps between every pair of pedes-
trian alternates in value: For i = 2k, k ∈ N, ∆i(0) receives the same non-negative
value c0. For i= 2k+1, k ∈ N, ∆i(0) is assigned the non-negative value c1, c1 6= c0.
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Figure 13: Alternating disturbance

7.1.2 Mass distribution

Due to the fact that masses are important variables in our system, we will use dif-
ferent mass distributions to find out how they affect to the results. Mass has been
normalized in this model and consequently, 62 kilograms, the average human weight
[6], are 1 unit.

Regular mass distribution

In this distribution everyone has the same mass. In general we will consider
mi = 1, ∀i ∈ {1, . . . , n}.

Massive center distribution

In this case, the person in the middle will have more mass than the others who
have a mass of 1. As n could be even or odd we should define two cases.

If n is even, mn
2

= 2 and mi = 1, ∀i ∈ {1, . . . , n
2
− 1, n

2
+ 1, . . . , n}.

If n is odd, mn+1
2

= 2 and mi = 1, ∀i ∈ {1, . . . , n+1
2
− 1, n+1

2
+ 1, . . . , n}.

Less massive center distribution

In contrast of the massive center case, the person in the middle will have less
mass than the others who also have a mass of 1. Similarly, as n could be even or
odd we have to define two cases.

If n is even, mn
2

= 1
2

and mi = 1, ∀i ∈ {1, . . . , n
2
− 1, n

2
+ 1, . . . , n}.

If n is odd, mn+1
2

= 1
2

and mi = 1, ∀i ∈ {1, . . . , n+1
2
− 1, n+1

2
+ 1, . . . , n}.
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Massive extremes configuration

In this distribution the extremes have more mass than the rest who remains with
the average mass. Consequently, m1 = mn = 2 and mi = 1, ∀i ∈ {2, . . . , n− 1}.

Less massive extremes configuration

As previously, we consider the same case with less mass in the extremes. Then,
the mass distribution is m1 = mn = 1

2
and mi = 1, ∀i ∈ {2, . . . , n− 1}.

Random mass distribution

The last distribution randomize the mass configuration in order to know how
random mass configurations diverge from regular mass distributions. We consider
random numbers between 1

2
and 2, then mi ∈ [1

2
, 2], ∀i ∈ {1, . . . , n}.

7.1.3 Length of the Interval and Slack

To this point, we have not said anything about the length of the interval. If we
consider a system of n pedestrians and choose the interval to have length L = 2rn,
observe that the initial configuration provided by having initial positions such that

∆L(0) = 0,∆R(0) = 0,∆i(0) = 0, i = 1,. . . ,n-1

and initial velocities set to 0 induces a fixed point of the system. However, if we
reduce the length of the interval by ε > 0 (L = 2nr − ε), it is impossible to keep
initial positions so that

∆i(0) = 0,∀i ∈ {L, 1, . . . , n− 1, R} (33)

and then, we have perturbed the system away from the previous fixed point and
generated movement due to the fact that now ∆i > 0 for at least one i such that
i ∈ {L, 1, . . . , n−1, R}. It would be interesting to study the change (if any) in the dy-
namics, the energy, and the density as we vary and for different fixed choices of ∆(0).

We call the parameter ε the slack removed. Sometimes we will call no slack con-
figuration when we remove ε from the system since when ε = 0 the above mentioned
fixed point is present. The interest in increasing ε comes from the desire to study
what happens to an initial configuration as the room gets tighter.
Although we expect it to be less engaging, we will also consider to increase the
length of the interval by ε > 0.

7.2 Results

In this section results obtained through more than two hundred simulation under
different conditions are exposed. The selection has been done in order to illustrate
the most representative outcomes.
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Before displaying the results related to simulations, it is convenient to define
the values of the different common constants, shown in the table below. These
values have been chosen by empirical facts and by trial and error mechanism. The
magnitudes they represent have been introduced during the workflow of this report.

r 0.25
κ 8
β 100
P 0.28225
M 0.5
m 1
d0 -0.25
Mp 2
mp 1
dp 0.25
ε1 0.25

Once that the values of common constants have been set for every simulation we
will describe each experiment.

Firstly, we start by the simulations in which the number of pedestrians, n is two
(we do not take into consideration the case n = 1 for obvious reasons) in order to
test whether the model works in the way it was developed. As it is the simplest sce-
nario it is easier to understand the behavior of the model in different situations such
as different mass configurations, initial conditions or forces. Then, some examples
with more pedestrian are presented together with some interesting comments.

7.2.1 Simulations with 2 pedestrians

Simulation 1

Initial configuration No overlap
Slack Yes

Mass configuration Regular mass distribution
Pushing Force Anti-plastic

Time [s] 100

In the first simulation we are willing to check that the model works properly in the
case ∆L ≤ 0, ∆1 ≤ 0, ∆R ≤ 0, this is, there is no initial overlap. We also introduce
the four different graphs that are going to be shown in every simulation.

1 ε takes this value only in cases of removed slack
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(a) Positions (b) Energy

Figure 14: Position and energy plots for simulation 1

(a) Density (b) Maximum density

Figure 15: Density plots for simulation 1

In Fig. 14a (top-left) the position of each pedestrian along the interval in the
y-axis and the time in the x-axis is observed. As we expected there is no position
change by the given definition of the forces.

In Fig. 14b (top-right) the energy (y-axis) evolving with respect to the time is
displayed. Here, the purple line represents total energy (the upper figure shows the
total energy alone, while the lower shows all of them together), the blue line repre-
sents the potential energy and the red line represents the kinetic energy. We observe
that all of them are constant as there is no position change and no overlap.

In the Fig. 15a (bottom-left) the density is presented where the y-axis shows the
pedestrian’s position and the x-axis shows time. In this plot the colors represents
the density(each color line means a change in the density in a similar way to a
contour line which can be found in a map). In this case there is no evolution over
time in the density as a consequence of this initial configuration. Fig. 15b (bottom-
right) shows how density evolves over computational steps (because we compute the
density for each step). In this case it is obvious that density is constant and equal
to 1, as there is no overlap and the interval in which we measure the density is
(xi − r, xi + r), i ∈ {1, 2}.
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Simulation 2

Initial configuration Small disturbance I
Slack Yes

Mass configuration Regular mass distribution
Pushing Force None

Time 200

Due to checking purposes, we start by setting as the unique force the normal one
because we want to review its behavior (meaning without pushing forces).

(a) Position (b) Energy

Figure 16: Position and energy plots for simulation 2

(a) Density (b) Maximum density

Figure 17: Density plots for simulation 2

We notice there is almost no movement, and the existing one is caused by the
small disturbance (Fig. 16a). The amplitude of the oscillations is fixed, aspect which
we can only find in simulations where the energy remains constant. Moreover, we
find that there is no increment of the density over time in the long term and that
density grows from the walls to the middle (Fig. 17a). Furthermore, we notice that
the maximum density is also bounded (Fig. 17b).
The total energy is constant as the normal force is conservative (Fig. 16b). When
the pedestrians are getting closer the potential energy grows while the kinetic energy
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decreases and vice versa when they are separating.

Simulation 3

Initial configuration Small disturbance I
Slack No

Mass configuration Regular mass distribution
Pushing Force None

Time 200

The main goal of this simulation is to point out the difference between the existence
of slack or not in the model.

(a) Position (b) Energy

Figure 18: Position and energy plots for simulation 3

(a) Density (b) Maximum density

Figure 19: Density plots for simulation 3

The observed differences remark the fact that there is less amplitude in the os-
cillations and consequently less displacement with respect to the original positions
(Fig. 18a). The total energy is about a half of the total energy shown at the second
simulation (Fig. 18b) and there are less changes in density and in maximum density
than the expected when there is less movement (Figs. 19a and 19b). As well as
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previously, the energy is constant as a consequence of the conservation of energy in
the case of the normal force.

Simulation 4

Initial configuration Small disturbance I
Slack Yes

Mass configuration Regular mass distribution
Pushing Force Anti-plastic

Time 200

In the fourth simulation a pushing force is introduced for the first time. In this
case, the amplitude of the oscillations increase in contrast with the previous sim-
ulations without pushing force (Fig. 20a). This is a consequence of anti-plastic
pushing force because, as we will see, other pushing forces does not increase this
amplitude. It is also noticeable that energy rises as we expected when we designed
the anti-plastic force (Fig. 20b). In the same way we detect that the density and
the maximum density increase over time in the long term and mainly in the middle,
between both pedestrians (Figs. 21a and 21b).

(a) Position (b) Energy

Figure 20: Position and energy plots for simulation 4

(a) Density (b) Maximum density

Figure 21: Density plots for simulation 4
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Simulation 5

Initial configuration Small disturbance I
Slack No

Mass configuration Regular mass distribution
Pushing Force Anti-plastic

Time 200

In this simulation we corroborate that there is almost no difference between slack
and no slack configurations. The tendencies are the same in positions (Fig. 22a),
energy (Fig. 22b), density (Fig. 23a) and maximum density (Fig. 23b). However,
there is a decrease in the intensity, meaning that the amplitude of the oscillations
shorten (because there is less movement), implying a reduction in energy and less
density.

(a) Positions (b) Energy

Figure 22: Position and energy plots for simulation 5

‘

(a) Density (b) Maximum density

Figure 23: Density plots for simulation 5
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Simulation 6

Initial configuration Small Disturbance II
Slack Yes

Mass configuration Regular mass distribution
Pushing force None

Time [s] 100

For the first time, in this simulation the initial configuration is switched to the Small
Disturbance II. As it occurred in simulation 2, energy remains constant because the
normal force is conservative (Fig. 24b). The oscillations are much different than in
the previous simulation, and seem to be quasi-periodic (Fig. 24a). Besides, there is
an obvious dependence of the positions of the initial configuration, present not only
in the first seconds. Density also does not increase over time in the long-term. We
can observe this quasi-periodic behavior in both density plots so that there is no
evolution over time (Figs. 25a and 25b).

(a) Position (b) Energy

Figure 24: Position and energy plots for simulation 6

(a) Density (b) Maximum density

Figure 25: Density plots for simulation 6

Simulation 7
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Initial configuration Small Disturbance II
Slack Yes

Mass configuration Massive Extreme Configuration
Pushing Force Anti-plastic

Time 100

Now, we introduce a different mass configuration (person one has 2 mass units and
person two has 1 mass unit). We observe how person one although there is an in-
crement of the amplitude its oscillations, this increment is reduced if we compare to
the case of regular mass distribution whereas person two increases it (Fig. 26a). It
seems physically rational that a pedestrian with less mass moves more than a heavy
pedestrian as it is harder to move someone whose weight is larger. Total energy
still increases in the long-term because it is induced by the introduction of the anti-
plastic force, although the reached values are below the ones obtained in the regular
mass distribution case (Fig. 26b). Density plots follow the same tendency, in spite
of the fact that the reached values are lower, as it happens with relation to the total
energy, that in the previous case (Figs. 27a and 27b).

(a) Positions (b) Energy

Figure 26: Position and energy plots for simulation 7

(a) Density (b) Maximum density

Figure 27: Density plots for simulation 7
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Simulation 8

Initial configuration Small Disturbance II
Slack Yes

Mass configuration Regular mass distribution
Pushing force Plastic

Time [s] 100

In contrast with what we observe in previous simulations, the amplitude of the
pedestrian’s oscillations decrease over time till the system stabilizes (Fig. 28a). In
this case, as predicted, the plastic pushing force reduces the energy (Fig. 28b).
Similarly, the density decreases over time as well as the maximum density (Figs.
29a and 29b). Furthermore, it seems that there is a direct relation among energy,
density and amplitude of the oscillations. This hypothesis will be verified in the case
n=50.

(a) Position (b) Energy

Figure 28: Position and energy plots for simulation 8

(a) Density (b) Maximum density

Figure 29: Density plots for simulation 8

7.2.2 Simulations with 50 pedestrians

In this section, simulations with the case n = 50 are introduced. We have chosen
this value because it is large enough to show the behavior of the model in case of
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a large number of people, and, at the same time, it does not induce computational
issues related with long simulation times.

Simulation 9

Initial configuration No overlap
Slack Yes

Mass configuration Regular mass distribution
Pushing force Anti-plastic

Time [s] 100

We start with the same configuration as in the experiments for two pedestrians,
this is, ∆i ≤ 0 ∀i ∈ {L,R, 1, . . . , n − 1}. The first simulation with 50 pedestrians
shows us that, in case there is no overlap, all pedestrians remains in their position
(Fig. 30a). This result verifies that the forces works properly when ∆i ≤ 0, ∀i ∈
{L,R, 1, . . . , n− 1}. As in simulation 1, total energy (Fig. 30b), density (Fig. 31a)
and maximum density (Fig. 31b) remains constantly zero.

(a) Position (b) Energy

Figure 30: Position and energy plots for simulation 9

(a) Density (b) Maximum density

Figure 31: Density plots for simulation 9
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Simulation 10

Initial configuration Bell curve
Slack Yes

Mass configuration Regular mass distribution
Pushing force None

Time [s] 200

In the second simulation with n = 50 a new initial configuration is set: the bell
curve (see Fig. 32).

Figure 32: Bell curve with slack

As well as in simulations 2 and 7, energy remains constant because the normal
force, which is the only one that plays a role in this case, is conservative (Fig. 33b).
The position figure shows the dense center of the distribution spreading out until
the boundaries are reached (Fig. 33a). Looking closely, pulse waves can be seen
traveling between the walls. As time increases, noise from other collisions dilute
the appearance of these pulses. Likewise, the density plot provides a clearer visual
representation on how these wave propagate (Fig. 34a). The density peaks travel
along the pulses and appear red in the density figure. However, the density peaks
do not grow over time neither in number nor in intensity as we observe in Fig. 34b.
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(a) Position (b) Energy

Figure 33: Position and energy plots for simulation 10

(a) Density (b) Maximum density

Figure 34: Density plots for simulation 10

Simulation 11

Initial configuration Bell curve
Slack No

Mass configuration Regular mass distribution
Pushing force None

Time [s] 200

In this simulation, as in the case of two pedestrians, the difference between slack and
reduced slack is not significant. It is found out that the behavior is pretty similar in
both scenarios being able to observe the existence of pulse waves (Fig. 35a). While
the value of the average energy is barely higher in the previous simulation (Fig.
35b), the average maximum density is slightly higher in this case (Fig. 36b). Then,
it is concluded that in our model small differences in the length of the interval does
not change significantly the final result.
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(a) Position (b) Energy

Figure 35: Position and energy plots for simulation 11

(a) Density (b) Maximum density

Figure 36: Density plots for simulation 11

Simulation 12

Initial configuration Alternating disturbance
Slack Yes

Mass configuration Regular mass distribution
Pushing force None

Time [s] 100

In the fourth scenario, the alternating disturbance configuration is introduced in the
model as the initial set up (see Fig. 37 for a visual representation of this configura-
tion).

We can easily see the initial wave which is very different from the result obtained
with the bell curve configuration. Thus, there is an strong dependency of the initial
configuration as also noticed in the two pedestrian case. This strong dependency
is also found when the existence of solution for our system of equations is theoreti-
cally studied (see Appendix 12.2). The alternating initial configuration without the
presence of any force leads to ’calm’ behavior in the first 40 to 60 seconds and then,
unpredictable behavior follows. This profile leads to more fluctuations in the middle
and more squishing against the walls (Fig. 38a). This situation is more stable and
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less dangerous than the bell curve at least at the beginning. As mentioned previ-
ously, the energy remains constant because the normal force is conservative (Fig.
38b). It is also interesting to observe how the density growth seems to be related
with the waves too, as we detected in the previous cases (Fig. 39a). Unexpectedly,
density peaks do not occur along these pulse waves formed in the beginning. Instead,
minima in density occur along these pulses. The highest density peaks appears at
the end of the simulation as a consequence of this unpredictable behavior. This
increment in the density is also observed in the maximum density plot (Fig. 39b).

Figure 37: Alternating disturbance with slack

(a) Position (b) Energy

Figure 38: Position and energy plots for simulation 12
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(a) Density (b) Maximum density

Figure 39: Density plots for simulation 12

Simulation 13

Initial configuration Bell curve
Slack Yes

Mass configuration Regular mass distribution
Pushing force Heaviside

∆0 0.001
Time [s] 100

In this simulation we consider the Heaviside pushing force for first time. We can eas-
ily observe the initial wave caused by the given configuration and how it disappears
when the system stabilizes like it happened previously in the case of the plastic one
(Fig. 40a). Probably this stabilization is caused by the pushing force which also
leads to a decrease of the energy, although in this case it grows in the first seconds,
fact which could be induced by the initial configuration (Fig. 40b). In the density
figures we can identify the high density peaks along the pulses of the initial wave
which disappear whenever the system stabilizes (Figs. 41a and 41b).

(a) Position (b) Energy

Figure 40: Position and energy plots for simulation 13
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(a) Density (b) Maximum density

Figure 41: Density plots for simulation 13

Simulation 14

Initial configuration Bell curve
Slack Yes

Mass configuration Regular mass distribution
Pushing force Anti-plastic

Time [s] 200

Let’s consider what happens in case the energy increases over time in the long term.
In order to carry out this task, the Heaviside pushing force is substituted by the
anti-plastic one. It is checked that the energy increases as it did in the two pedes-
trians case.
In this simulation, it is noticed how after about 80 seconds the movement grows and
isolated high density peaks, not related with the waves, are found as it happened in
the cases where the normal force was the only one acting or adding the Heaviside
one. We are also able to detect those points thanks to the maximum density plots,
which show us how the maximum density also increases over time in the long term
(Fig. 43b).

If we compare these outputs with those coming from the same simulation with-
out pushing forces (simulation 10), a similar pattern is revealed from the start but
the pulse waves become more apparent over time rather than diluting as shown in
Fig. 42a. The overall density reaches higher values but these values do not fluctuate
much being isolated the high density peaks (Fig. 43a). The energy increases as well
as in the two pedestrian case with the small oscillations (Fig. 42b), expected thanks
to the equation (Fig. 28).
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(a) Position (b) Energy

Figure 42: Position and energy plots for simulation 14

(a) Density (b) Maximum density

Figure 43: Density plots for simulation 14

Simulation 15

Initial configuration Bell curve
Slack Yes

Mass configuration Massive center distribution
Pushing force Anti-plastic

Time [s] 100

In this case, the last factor whenever the number of pedestrians is 50 is set: a
different mass configuration.
The results of this simulation show a similar behavior of that case where every mass
is equal to one (Fig. 44a). However, the total energy (Fig. 44b) and density (Figs.
45a and 45b) are slightly lower, so small differences in mass configuration just barely
disturb the results. As this simulation is 100 seconds long instead of 200, no chaotic
behavior is observed as previously. Therefore, it is possible to conclude that most
dangerous moments may take place after enough time when there is more energy in
the system, and consequently more higher density values and more oscillations of
the maximum density. In this case, the high density peaks are easily observable in
Fig. 45a and are not found to be related with pulse waves.
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(a) Position (b) Energy

Figure 44: Position and energy plots for simulation 15

(a) Density (b) Maximum density

Figure 45: Density plots for simulation 15

Simulation 16

Initial configuration Alternating disturbance
Slack Yes

Mass configuration Regular mass distribution
Pushing force Anti-plastic

Time [s] 100

At this point, the anti-plastic pushing force in the alternating configuration are in-
troduced, producing results (Fig. 46a) quite similar in the first 40 seconds that in
the previous case. However, after that time the result becomes completely unpre-
dictable and isolated high density peaks not related to any wave are remarked (Fig.
48a). This behavior is a result of the introduction of a pushing force which increases
the energy and the density (Figs. 46b, 48a and 48b). The fact that random behavior
appears earlier than in the previous case is due to the initial configuration that again
plays an important role in the resulting positions. Once again, we can observe the
energy increment when the anti-plastic pushing force is used, looking closely at the
total energy plot in Fig. 47. Furthermore, we find again the expected oscillations in
the total energy as well as the growth of the maximum density. Yet, in this scenario
it seems to rise at a lower pace.
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(a) Position (b) Energy

Figure 46: Position and energy plots for simulation 16

Figure 47: Zoom of the energy to observe the oscillations
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(a) Density (b) Maximum density

Figure 48: Density plots for simulation 16

Simulation 17

Initial configuration Alternating disturbance
Slack Yes

Mass configuration Regular mass distribution
Pushing force Heaviside

∆0 0.001
Time [s] 100

Substituting the anti-plastic force by the Heaviside one with ∆0 > 0, we obtain a
small decrease in the energy (Fig. 49b) that leads to a more stable configuration, in
which there are always tiny oscillations (Fig. 49a), but there are neither high density
peaks (Fig. 50a) nor huge displacements. The stability of this scenario is also found
in the density plots, where the oscillations of the density are not significant if we
compare with the previous ones (Fig. 50b).

(a) Position (b) Energy

Figure 49: Position and energy plots for simulation 17

42



(a) Density (b) Maximum density

Figure 50: Density plots for simulation 17

Simulation 18

Initial configuration Bell curve
Slack Yes

Mass configuration Regular mass distribution
Pushing force Plastic

Time [s] 100

Finally, the plastic pushing force is introduced in simulations with 50 pedestrians.
We can observe the initial wave induced by the positions configuration at the be-
ginning of Fig. 51a and how it disappears over time when the system stabilizes.
Another consequence is the appearance of density peaks only along the pulse waves
and the dissipation of the density whenever there are no pulse waves (Fig. 52a). In
fact, if we observe the maximum density plot (Fig. 52b) there is a fast decrease at
the beginning and, after that, it remains constant and close to 1 as the configuration
is stable. Moreover, as mentioned previously in the two pedestrians case, the energy
decreases and it is almost constant in the long term (Fig. 51b). This decrease is
faster than in the Heaviside case as in this scenario the energy tends to zero while
in the Heaviside one does not.

(a) Position (b) Energy

Figure 51: Position and energy plots for simulation 18
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(a) Density (b) Maximum density

Figure 52: Density plots for simulation 18

Simulation 19

Initial configuration Small disturbance II
Slack Yes

Mass configuration Regular mass distribution
Pushing force Plastic

Time [s] 100

Hereafter, in the last n = 50 pedestrians simulation, the initial configuration is
the small disturbance II, being ∆n−1 > 0, ∆i = 0, ∀i 6= n − 1. Similarly to what
observed results from previous simulations, there is strong dependence on the initial
configuration at the beginning of the simulation (it is better observed in the density
plot placed at Fig. 54a through the pulse wave). Still, after few seconds the system
stabilizes as in other simulations in which we have included the plastic pushing force
(Fig. 53a). This stabilization is caused by the decrease of the energy which is
induced by the plastic force too (Fig. 53b). As it has been already pointed out, the
density plot depends strongly on the initial configuration. In the first seconds it is
easily observed the wave caused by the initial configuration as the higher density
is found along the pulse wave. After that moment, there are almost no changes in
density as the system is in quasi-equilibrium (Fig. 54a).
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(a) Position (b) Energy

Figure 53: Position and energy plots for simulation 19

(a) Density (b) Maximum density

Figure 54: Density plots for simulation 19

7.2.3 Simulations with more than 50 pedestrians

Simulation 20

Initial configuration Bell curve
Slack Yes

Mass configuration Regular mass distribution
Pushing force Anti-plastic

Time [s] 200

This simulation represents the movement of 100 pedestrians and it corroborates what
is observed in the case of 50 people, so we could generalize what we have concluded
for n different people where n is big enough and the other conditions (such as length
of the interval, slack, mass, etc. ) remains constant. We remark that the same
pulse waves stand in this simulation (Fig. 55a) as well as the oscillating increment
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of the total energy (Fig. 55b), the isolated high density peaks (Fig. 56a) and the
increment of the maximum density (Fig. 56b), analogously for the simulation for 50
pedestrians.

(a) Position (b) Energy

Figure 55: Position and energy plots for simulation 20

(a) Density (b) Maximum density

Figure 56: Density plots for simulation 20

7.3 Other observations

Once that some of the results of most important simulations have been presented in
the section above, it is time to introduce further comments and observations based
on the outputs of simulations that were neither selected nor mentioned before.

Firstly, simulations with n = 2 yield interesting behavior. In general, people in
small disturbance configuration II oscillates with more amplitude than in small dis-
turbance I with and without slack. Normal force cases show oscillations between
constant upper and lower bounds while simulations with anti-plastic pushing force
show an increment in the amplitude of the oscillations, caused by the definition of
these pushing force that increases the energy of the system. In case of the Heaviside
and plastic forces, the amplitude of the oscillations decrease, being more noticeable
the reduction in the case of the plastic one. Small disturbance configuration I seems
to be more stable than configuration 4 as there are no ”peaks” which are observed
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in configuration II.

With respect to the energy, the results obtained are the same as in the case of
fifty pedestrians (mentioned below). Setting only the normal force, the total energy
remains constant (because it is a conservative force). Anti-plastic pushing force
induces an increment of total energy, with some small oscillations due to the con-
struction of this pushing force, similar to an increasing exponential function. Yet,
Heaviside and plastic forces cause a decrease of total energy. The main difference
regarding the energy is that in the case of the plastic the total energy tends to zero
fast while using the Heaviside one leads to a slow decrease.

The average energy is greater in small disturbance configuration II because the
value of the potential energy at time 0 is higher (the overlaps are greater) and the
movement is larger so that kinetic energy is greater than in configuration I. Besides,
overlaps are greater in configuration II over time (not only at time 0) which leads
to an increment of the potential energy and consequently, the total energy. Further-
more, it has been noticed that slack and energy are not apparently related.

In general, density grows from the walls to the middle symmetrically when both
masses are equal or displaced in case that the masses are different similarly to Fig.
27a. The most important observation with respect to density is that it changes in
time when pushing forces vary energy, for instance, increasing it such as the anti-
plastic one or decreasing such as Heaviside and plastic forces. The relation between
energy and density is direct, so the more energy the more density. Hence, forces
which increase energy such as the anti-plastic one could explain high densities in
crowds as densities grow to high levels whenever energy does it too.

Secondly, the case of n=50 does also offer interesting results. Wavy pulses are
shown in almost every simulation independently of the forces used, being an im-
portant feature of the model. Additionally, it is observed how increments in total
energy leads to higher densities and most times to unpredictable behavior.

On the one hand, the anti-plastic pushing force shows a rise in the number of
pulse waves. As a consequence, the most unstable behavior occurs after the first
100 seconds. From this time and on, pulses period are so small that making almost
impossible to distinguish them. The density is once again higher than in the pre-
vious case, but little information can be extracted only from these plots alone. On
the other hand, adding the plastic pushing force make the energy decrease very fast
stabilizing the system in few seconds, being able to find ”high” density peaks only
along the initial pulse wave.

Moreover, the use of the Heaviside pushing force reveals a similar pattern to the
one observed in the case of the normal force alone. This characteristic is a nearly
stable solution in which there is still oscillations and the highest density peaks are
observed along the waves.
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The energy of the 50-pedestrians systems is predictable as in the previous case
of n = 2. They do not depend on the initial profiles nor whether the slack was
provided in the long term while these factors can slightly influence in the short
term. The energy mostly depends on the forces, mainly in the pushing ones, acting
on the people. In the case of just a normal force energy was always constant. On
the contrary, the use of anti-plastic pushing force always resulted in an oscillating
increasing exponential function. In contrast, the plastic and Heaviside ones leads
to an oscillating decreasing function in the long term as we also observed in the
simulations of the previous section.

Finally, with respect to initial configurations, the main differences take place in
the positions during the first seconds due to the fact that they induce diverse pulse
waves, being more unstable the bell curve configuration.

8 Conclusions

In spite of the fact that most of behaviors shown previously were unpredictable,
conclusions can still be extracted from this project. We have found that modeling
human behavior proves to be difficult because patterns are not easily distinguishable
in highly populated plots. In addition, configuration spaces where people reside at
do not affect patterns in energy growth, only the extent to which they grow. To
change patterns in energy growths, it is necessary to model the crowd with different
forces. Regarding our model, the total energy depends on the pushing forces, fact
that has been proved in equation 28.

Initial profiles mainly determine the dynamics at least at the beginning and conse-
quently density distribution strongly depends on them as well. Pulse waves within
crowds depend on where boundaries are located. Density extrema (maxima or min-
ima according to the chosen initial conditions) occur most of the times along these
pulses. However, density also depends on pushing forces. In fact, it increases over
time only in case we introduce energy in the system, as it is easily observed in the
simulations, and decrease whenever the energy is reduced. Therefore, there is a
direct relation between energy and density.

In relation with energy it is important to remark that an increment in the en-
ergy leads to unstable behavior, pulse waves and high density isolated areas. These
feature are exactly the ones we looked for when we introduced pushing forces in the
model. Whereas, a reduction in the energy leads to a stable system. The empirical
relation between energy and density and the proven relation between energy and
density evidence that pushing forces in a crowd can induce high density peaks and
then dangerous situations which was the main goal of this project.

Moreover, it seems that there also exists a relation among energy, position and
overlaps. This relation is not theoretically proved although there are some empirical
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evidences. In the cases with more amplitude in the oscillations of the position, the
energy and the overlaps are also greater. In particular, anti-plastic pushing force
leads to increments of energy and overlaps because people are increasing their am-
plitude of oscillation and getting closer, while Heaviside and plastic forces lead to
the opposite result. In the cases where the only force is the normal one, people are
not getting closer and the energy is bounded (constant in the case of only a normal
force) as well as the overlaps.

9 Limitations of the model

The main limitation we find in our model is that simulations cannot be run in long
periods of time due to software constraints. Due to this issue, we can run simu-
lations with few people and easy (computationally speaking) initial configurations
during few minutes, however, when we introduce a huge amount of people and a not
simple configuration we only can simulate for few seconds. In fact, at this point, we
only can obtain conclusions about the first minutes in an stampede and only make
assumptions about what we think it will happen after that precise moment.
We expect that these problems could be solved using a different software, an opti-
mized code or a better computer (most of the simulations have been run on my own
computer; however, in order to reduce the time spent on running simulations, we
have used Altamira Supercomputer2). For example, there are some simulations
which are unable to be completed as the intern memory of MATLAB was not suffi-
cient due to the length of the vectors of position and velocity.

Regarding the theoretical part of the model, the main problem is that we are not
able to ensure the existence a solution, and in case it exists, that it is unique. We can
only prove the last statement for easy scenarios and just locally. It is expected that
this result could be translated to the general case; however, it is just a non-proved
hypothesis.

Another important limitation is related with numerical calculations. By definition,
the normal force tends to infinite as people get closer. Nevertheless, when two or
more people are extremely close to each other they may change positions (an event
which is not allow). Furthermore, it is not possible to come back to the original
order as the normal force does not allow to change positions again. Then, there
are simulations with very specific parameters and configurations (mainly when the
constant parameters of the forces are big enough, the velocities are high and in op-
posite directions, which in this one dimensional model means with opposite sign,
and configurations with people very close to each other). Latest adjustments on the
value of the constants have helped to avoid this problem in most situations, however,

2We acknowledge Santander Supercomputacion support group at the University of Cantabria
who provided access to the supercomputer Altamira Supercomputer at the Institute of Physics
of Cantabria (IFCA-CSIC), member of the Spanish Supercomputing Network, for performing sim-
ulations/analyses.
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it is possible that it happens under extreme conditions.

Besides, something that should be considered and that it is not included in this model
because of its complexity (this is a simple model) is to ”eliminate” the pedestrians
who are placed in an emplacement where the density is very high (it is considered
that 6 people/m2 is life threatening) and that are probably seriously injured or dead.

On the other hand, we are not taking into consideration the friction (it is some-
how included in constant P , for example). Despite it could be easily introduced,
we believe omitting it simplifies the equations so that it is easier to draw conclusion
from the obtained results.

To conclude, the last limitation found is the mass configurations we have chosen
are not significant for a high number of people and consequently we cannot draw
conclusions in relation with mass. In order to solve this problem we should define
new mass configurations and test them again.

10 Benefits of the model

From our point of view, the simplicity of this model is its most important accom-
plishment as it allows to change any input parameter, such as different length, mass,
forces, number of pedestrians, . . ., without needing any further variation of the model
as a whole. As a consequence of this property, a deep study of the understanding of
the model can be performed easily by modifying those different factors in order to
inspect the results straightforwardly.

Secondly, it introduces pushing forces as one of the possible reasons why crowd
density rises a lot causing stampedes or other dangerous situations. We have found
that pushing forces which increase energy cause an increment of the density of the
system proving the previous hypothesis. In fact, thanks to the density measure, we
are able to distinguish the areas where the risk of injuries or death is considerable.
For example, this model could be used to prevent people to stay away from those
dangerous areas when an stampede takes place.

Lastly, the wavy behavior observed in most of the simulations is also detected in
real situations. These waves along with the high density areas are some of the fea-
tures that encourage our motivation for stating that the model could hold for real
situations such as the ones we have tested.
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12 Appendix

12.1 Dormand-Prince method

It is a Runge-Kutta based process to solve ordinary diffential equations [8]. It is
adaptive, as we will see, and it is based on Runge-Kutta solvers of order four and five
[9]. Like other Runge-Kutta based methods it tries to solve the following Cauchy
problem:

ẋ = f(t, x), x0 = x(t0) (34)

First, it starts with the Runge-Kutta method of order four:

It takes a size-step h > 0, the time step. Then:

ti+1 = ti + h

In order to compute xi+1 (approximate value of the solution x at the point ti+1) it
computes several scalars (k1, k2, k3, k4, k5, k6, k7) that are the derivatives (slopes) at
different points. The definition of these scalars, the computation of xi+1 (the weight
of each scalar) and the adaptive process to choose an optimal time step are what
make it different from the other methods.

In Dormand-Prince method the coefficients are obtained in the following way:

k1 = hf(ti, xi) (35)

k2 = hf(ti +
h

5
, xi +

k1

5
) (36)

k3 = hf(ti +
3h

10
, xi +

3k1

40
+

9k2

40
) (37)

k4 = hf(ti +
4h

5
, xi +

44k1

45
− 56k2

15
+

32k3

9
) (38)

k5 = hf(ti +
8h

9
, xi +

19372k1

6561
− 25360k2

2187
+

64448k3

6561
− 212k4

729
) (39)

k6 = hf(ti + h, xi +
9017k1

3168
− 355k2

33
− 467328k3

5247
+

49k4

176
− 5103k5

18656
) (40)

k7 = hf(ti + h, xi +
35k1

384
+

500k3

1113
+

125k4

192
− 2187k5

6784
+

11k6

84
) (41)

These coefficients are computed in such a way that they can be used in the Runge-
Kutta method of order 4 and in the one of order 5 reducing the number of function
evaluations to 7 (instead of 14).
Afterwards we compute xi+1 using the method of order 4:

xi+1 = xi +
35k1

384
+

500k3

1113
+

125k4

192
− 2187k5

6784
+

11k6

84
(42)
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Second we calculate a corrected value of xi+1, which we are going to recall as x̂i+1,
using a Runge-Kutta method of order five:

x̂i+1 = xi +
5179k1

57600
+

7571k3

16695
+

393k4

640
− 92097k5

339200
+

187k6

2100
+
k7

40
(43)

To obtain the optimal next size-step we compute the difference between xi+1 and
x̂i+1, which is considered the error in xi+1:

|x̂i+1 − xi+1| =
∣∣∣∣ 71k1

57600
− 71k3

16695
+

71k4

1920
− 17253k5

339200
+

22k6

525
− k7

40

∣∣∣∣ (44)

Let ε > 0 be the tolerance, the optimal time interval,hopt is calculated as

hopt = h · s (45)

where h is the previous time step interval and s is computed as

s =

(
εh

2|x̂i+1 − xi+1|

) 1
5

(46)

When the difference between xi+1 and x̂i+1 is big enough, the solution will probably
oscillate abruptly in that area so it is necessary to decrease the time step (s < 1)
to obtain a more accurate solution. On the other hand, if xi+1 and x̂i+1 are close
enough, the solution is likely to be smooth in that area and there is no need to
reduce the time step, being s ≥ 1.

12.2 A preliminary study about existence and uniqueness of
solution of our ODE’s system with discontinuous terms

The analysis of existence and uniqueness of solutions for our problem is not an easy
task. Each equation depends on six variables xi, xi+1, xi−1, ẋi, ẋi+1, ẋi−1 and it is
related with the previous and the following one (this fact adds four more variables,
xi−2,xi+2,ẋi−2 and ẋi+2). Moreover, there are discontinuous functions such as the
pushing forces and the points where they are not continuous depends on the relations
of the ten previous variables. It is clearly not an standard ODE system and it should
be analyzed carefully. For those reasons, we find that fully studying the existence
and uniqueness of solutions is out of the level of this project and furthermore it is
not one of our main goals. However, this part is important for the validity of our
model, so we are going to prove that there is a unique local solution for our problem
at least under some particular conditions.

An important remark at this point is that if the initial conditions are not discon-
tinuity points for the functions defining the ODE and the branch which satisfies
the initial condition has a unique solution, then the whole problem has a unique
local (at least) solution. We will see that sometimes there is a problem if the initial
conditions are discontinuity points as in our system of ODEs.
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Let’s start with some examples similar to our problem to show all the possibilities
that could appear (no solution, multiple solutions or unique solution).
Let’s consider the following Cauchy’s problem{

ẍ(t) = f(x(t), ẋ(t))
x(0) = 2, ẋ(0) = 0,

(47)

where

f(x, y) :=


x if x > 0 ∧ y > 0

4(x− 1) if x > 1 ∧ y < 0
0 otherwise

Rewriting the ODE of 47 as a first order ODE system, we can deduce that the solu-
tion x(t) is going to be C1 and C2 piecewise. We also observe that f is discontinuous
at points of the form (x, 0) with x > 0, x 6= 1, x 6= 4

3
.

In order to find the solutions we consider each branch of the system that we rewrite
in following way:

ẍ(t) = x(t), x(0) = 2, ẋ(0) = 0. (48)

ẍ(t) = 4(x(t)− 1), x(0) = 2, ẋ(0) = 0. (49)

ẍ(t) = 0, x(0) = 2, ẋ(0) = 0. (50)

It is easy to deduce that the solution of problem (48) is:

x(t) = 2cosh(t) (51)

The solution of (49) is:
x(t) = cosh(2t) + 1 (52)

And finally the solution of (50) is:

x(t) ≡ 2 (53)

We can construct different solutions of (47) by using combinations of the previous
ones, this is, by copying and pasting the solutions of the different branches according
to the requested conditions, for example:

x(t) ≡ 2

x(t) =

{
2cosh(t) if t ≥ 0

2 if t < 0

x(t) =

{
2 if t ≥ 0

cosh(2t) + 1 if t < 0

Then, it is clear that this problem has several solutions.
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If we change the initial conditions to x(0) = 1 and ẋ(0) = 1 (f is continuous at
(1,0)), then we consider the following problem:{

ẍ(t) = f(x(t), ẋ(t))
x(0) = 1, ẋ(0) = 1.

(54)

Clearly, the solution in this case is x(t) = et ,∀t ≥ 0. Furthermore, as ẋ(t) = et >
0 ,∀t ≥ 0 the solution does not leave the first branch, obtaining a global unique
solution.

Another example leads to a completely different situation. Let’s consider the fol-
lowing Cauchy’s problem:

{
ẍ(t) = g(x(t), ẋ(t))
x(0) = 2, ẋ(0) = 0,

(55)

where

g(x, y) :=

{
−x if x ≥ 2

4(x− 1) if x < 2

In this case g is discontinuous at the points of the form (2, y) ,∀y ∈ R.
Again we solve each part. Firstly we solve

ẍ(t) = −x(t), x(0) = 2, ẋ(0) = 0, (56)

whose solution is:
x(t) = 2cos(t). (57)

Secondly we solve

ẍ(t) = 4(x(t)− 1), x(0) = 2, ẋ(0) = 0, (58)

with solution
x(t) = cosh(2t) + 1. (59)

However, if we analyze each solution we realize that those solutions only holds
for t = 0 and that there is no solution in any neighborhood of this point. Let’s
consider the Taylor series at 0 (initial condition point) for a hypothetical solution
x(t) (although x(t) is not C2 at t = 0, this condition is satisfied at both sides of it,
so we can consider the Taylor series at a neighborhood of 0):

x(t) = x(0) + ẋ(0)t+
ẍ(ξ)

2
t2 = 2 +

ẍ(ξ)

2
t2, (60)

for one ξ such that 0 < ξ < t.
Hence, sign(x(t) − 2) = sign(ẍ(t)). If sign(x(t) − 2) > 0 ⇒ x(t) > 2 but
ẍ(t) = −x(t) < 0 which is a contradiction. If sign(x(t) − 2) < 0 ⇒ x(t) < 2 ,
however, ẍ(t) = 4(x(t) − 1) which is another contradiction if x(t) > 1 (the initial
condition is x(0) = 2). Then there is no solution for problem (55).
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The last example gives us a third option, a unique solution. Let’s consider the
following Cauchy problem: {

ẍ(t) = g(x(t), ẋ(t))

x(π
4
) = 2

√
2, ẋ(π

4
) = 0.

(61)

At the initial conditions the function g is continuous and as x(π
4
) = 2

√
2 we start

solving the first branch whose solution is x(t) = 2(cos(t) + sen(t)). However, this
time the solution leaves this branch at t = π

2
. At that point the solution for the

second branch is eπ−2t+1. This solution does not leave the second branch for t ≥ π
2
,

so there is a unique solution given by the following expression:

x(t) =

{
2(cos(t) + sen(t)) if π

4
≤ t < π

2

eπ−2t + 1 if t ≥ π
2

(62)

Once observed that problems which are similar to ours could have no solution, one
solution or several ones, it is necessary to study this question (existence and unique-
ness) in detail.

As we have said previously the study of existence and uniqueness of solution in
our system is not an easy task, indeed, it is a non-standard problem which can not
be solved using the usual methods, so we are going to analyze it in the simple case of
two pedestrians (n = 2). In this Appendix we will only consider the cases of normal
force, only pushing force (exhaustive analysis on the plastic one) and normal force
along with the plastic pushing force (the results with the other pushing forces are
mainly the same).

Let’s start studying the problem without pushing forces, this is F P ≡ 0:{
m1ẍ1(t) = κ tan(π

2
max(r−x1(t),0)

r
)− κ tan(π

2
max(x1(t)−x2(t)+2r,0)

2r
)

m2ẍ2(t) = κ tan(π
2
max(x1(t)−x2(t)+2r,0)

2r
)− κ tan(π

2
max(x2(t)+r−L,0)

r
)

(63)

x1(0) = x10 , x2(0) = x20 , ẋ1(0) = 0 , ẋ2(0) = 0.

This one is a classical problem which can be solved through usual methods (con-
sidering the condition of the model 0 < x10 < x20 < L). In this case we are going
to show that the functions are continuous and locally Lipschitz continuous in its
domain which ensures the existence of solution and at least the local uniqueness.

Firstly, we are going to study the continuity of normal forces. We consider FN(∆1(t))
(although the results could be generalized for any ∆i(t)).

FN(∆1(t)) = κ · tan(
π

2

max(x1(t)− x2(t) + 2r, 0)

2r
) (64)

This function, FN , is not continuous whenever the tangent is discontinuous, this is,
whenever max(x1(t)− x2(t) + 2r, 0) = (2k − 1) · 2r, k ∈ Z.

Then, if 0 ≤ max(x1(t)−x2(t)+2r,0)
2r

< 1, FN(∆1(t)) is continuous. If x1(t)−x2(t) + 2r ≤
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0 then FN(∆1(t)) ≡ 0, which is obviously continuous. On the other hand, if

x1(t) − x2(t) + 2r > 0, FN(∆1(t)) is continuous whenever max(x1(t)−x2(t)+2r,0)
2r

< 1.
By the condition given by the model x10 < x20, so x1(t) < x2(t) ,∀t ∈ [0, h] for one

h > 0. Then max(x1(t)−x2(t)+2r,0)
2r

= 1 + x1(t)−x2(t)
2r

< 1 ,∀t ∈ [0, h] and consequently
FN(∆1(t) is continuous at least in a neighborhood of 0.

Now, we want to prove the local uniqueness, so we are going to show that FN(∆1(t))
is locally Lipschitz. Firstly, we can easily check that max(x, 0) is globally Lipschitz
continuous with Lipschitz constant 1. Meanwhile tangent function is continuous
differentiable in (−π

2
, π

2
), so tan(π

2
x) is continuous differentiable in (−1, 1) and con-

sequently is locally Lipschitz in that interval. Finally, as the composition of contin-
uous Lipschitz functions is again a continuous Lipschitz function we can ensure that
at least there is a local unique solution.

The second case we are going to study is just considering the plastic pushing force
(without normal force, this is, FN ≡ 0). Then, the problem we are going to analyze
is: {

m1ẍ1(t) = −F P (∆1(t), ∆̇1(t))

m2ẍ2(t) = F P (∆1(t), ∆̇1(t))
(65)

x1(0) = x10 , x2(0) = x20 , ẋ1(0) = 0 , ẋ2(0) = 0.

Let’s analyze each pushing force (FHR, FA and F Pl).

Firstly we are going to analyze the case F P = FHR. Let’s remember the form
of this function defined in section 4

FHR(∆1(t), ∆̇1(t)) :=

{
P
2

( 2
π

arctan(β∆1(t)) + 1) if ∆̇1(t) > 0
P
2

( 2
π

arctan(β(∆1(t)−∆0)) + 1) if ∆̇1(t) ≤ 0
(66)

Arctangent function is continuous in R and globally Lipschitz continuous so the dis-
continuity problem of this force resides in the points whenever ∆̇1(t) = 0, this is,
whenever ẋ1(t) = ẋ2(t). As two of the initial conditions are ẋ1(0) = 0 and ẋ2(0) = 0,
then if this force is considered in our system we cannot use classical analysis at least
at the beginning.

Secondly, we will study the scenario in which F P = FA. Again, we consider the
form of this function in section 4:

FA(∆1(t), ∆̇1(t)) =


m∆1(t) if 0 ≤ ∆̇1(t) ∧∆1(t) > 0

M(∆1(t)− d0) if 0 > ∆̇1(t) ∧∆1(t) > 0
0 otherwise

(67)

As in the previous case, each branch of FA is continuous and Lipschitz continu-
ous (all of them are linear functions) so the existence and uniqueness problem is
found in the points in which the branches join discontinuously, this is, whenever
∆1(t) > 0, ∆̇1(t) = 0 or ∆1(t) = 0, ∆̇1(t) < 0. As two of the initial conditions are
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ẋ1(0) = 0 and ẋ2(0) = 0, if x10, x20 are such that ∆1(0) ≤ 0 then we are not in a
discontinuity point and there is a local unique solution, however, if x10, x20 are such
that ∆1(0) > 0 then our initial conditions are given in a discontinuous point and
then a non classical analysis must be carried out.

Finally, we are going to analyze the case F P = F Pl. Remembering the definition of
F Pl in section 4:

F Pl(∆1(t), ∆̇1(t)) =


mp∆1(t) if ∆̇1(t) > 0 ∧∆1(t) > 0

Mp(∆1(t)− dp) if ∆̇1(t) ≤ 0 ∧∆1(t) > dp
0 otherwise

(68)

Like it happened previously, each branch of F Pl is continuous and Lipschitz contin-
uous so the existence and local uniqueness is ensured at every point except those
in which the branches link discontinuously, namely, whenever ∆̇1(t) = 0 ,∆1(t) >
0 ,∆1(t) 6= dp ,∆1(t) 6= 2r . Again two of the initial conditions are ẋ1(0) = 0 and
ẋ2(0) = 0 , so if x10, x20 are such that ∆1(0) < then we are not in a discontinu-
ity point and there is a local unique solution; however, if x10, x20 are such that
∆1(0) > 0 ,∆1(0) 6= dp , x10 < x20, then the initial conditions are given in a dis-
continuous point and then we must analyze the existence and uniqueness by using
non-classical results.

Coming back to the problem (65), let us consider F P = F Pl and m1 = m2 = 1
in order to simplify the problem. Then we easily verify that ẍ1(t) + ẍ2(t) = 0. This
implies that under the given conditions ẋ1(t) + ẋ2(t) = 0 and x1(t) + x2(t) = c1

where c1 = x1(0) + x2(0) = x10 + x20. Isolating x2(t) we obtain:

x2(t) = x10 + x20 − x1(t) (69)

Substituting in (65) and renaming α = x10 + x20 − 2r and γ = α + dp (as dp > 0,
γ > α) we reduce our system to:

ẍ1(t) =


−mp(2x1(t)− α) if ẋ1(t) > 0 ∧ 2x1(t) > α
−Mp(2x1(t)− γ) if ẋ1(t) ≤ 0 ∧ 2x1(t) > γ

0 otherwise
(70)

x1(0) = x10 , ẋ1(0) = 0.

Following the same procedure as for (47) and (55), we split it into the following
three Cauchy problems:

ẍ1(t) = −mp(2x1(t)− α), x1(0) = x10, ẋ1(0) = 0. (71)

ẍ1(t) = −Mp(2x1(t)− γ), x1(0) = x10, ẋ1(0) = 0. (72)

ẍ1(t) = 0, x1(0) = x10, ẋ1(0) = 0, (73)
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whose solutions are, respectively,

x1(t) = (x10 −
α

2
)cos(

√
2mpt) +

α

2
, (74)

x1(t) = (x10 −
γ

2
)cos(

√
2Mpt) +

γ

2
, (75)

and
x1(t) ≡ x10. (76)

If we consider ∆1(0) = x10 − x20 + 2r < 0 (⇔ 2x10 < α), then clearly the unique
solution is x1(t) ≡ x10, x1(t) ≡ x20.

Let’s study the more interesting case when ∆1(0) > 0. If 2x10 ∈ (α, γ) the solu-
tion is still x1(t) ≡ x10, x2(t) ≡ x10, ∀t, t > 0. If ∆1(0) > dp, this is, 2x10 > γ
the unique solution is x1(t) = (x10 − γ

2
)cos(

√
2Mpt) + γ

2
, x2(t) = x10 + x20 −

(x10 − γ
2
)cos(

√
2Mpt) + γ

2
, ∀t ∈ [0, h] for some h > 0. Then, as 2x10 > γ, and

ẋ1(t) = −((x10 − γ
2
)
√

2Mpsen(
√

2Mpt)) < 0 ,∀t ∈ [0, h] such that x1(t) > γ
2
, there

is a unique local solution at least in a neighborhood of 0.

Finally we are going to study the case including normal forces and plastic push-
ing forces. The system of equations is given by the following expression:{

ẍ1(t) = FNL(t)− FN(∆1(t))− F Pl(∆1(t), ∆̇1(t))

ẍ2(t) = −FNR(t) + FN(∆1(t)) + F Pl(∆1(t), ∆̇1(t))
(77)

x1(0) = x10 , x2(0) = x20 , ẋ1(0) = 0 , ẋ2(0) = 0.

As it is still difficult to be studied directly in this form, we are going to divide it
into several scenarios.

Considering L = 2nr = 4r, the first scenario is whenever x1(0) = x10 = r, x2(0) =
x20 = 3r. In this case initially all the forces are equal to 0 and then the unique
solution is x1(t) ≡ x10 = r, x2(t) ≡ x20 = 3r ,∀t > 0.

The second one is whenever r < x1(0) = x10 < x2(0) = x20 < L − r = 3r. In
this case, initially the system can be simplified obtaining:{

ẍ1(t) = −FN(∆1(t))− F Pl(∆1(t), ∆̇1(t))

ẍ2(t) = FN(∆1(t)) + F Pl(∆1(t), ∆̇1(t))
(78)

x1(0) = x10 , x2(0) = x20 , ẋ1(0) = 0 , ẋ2(0) = 0.

Then, the following relation still holds in a neighborhood of 0:

ẍ1(t) + ẍ2(t) ≡ 0, (79)

and by the initial conditions

ẋ1(t) + ẋ2(t) ≡ 0, (80)

59



x1(t) + x2(t) ≡ x10 + x20. (81)

As previously, x2(t) = x10 + x20 − x1(t). Substituting it in the system of equations
we obtain a single equation:

ẍ1(t) = −κ tan(π2
max(2x1(t)−α,0)

2r )−

−


mp(2x1(t)− α) if ẋ1(t) > 0 ∧ 2x1(t) > α
Mp(2x1(t)− γ) if ẋ1(t) ≤ 0 ∧ 2x1(t) > γ

0 otherwise

(82)

Following the previous process we split it into three problems:

ẍ1(t) = −κ tan(
π

2

max(2x1(t)− α, 0)

2r
)−mp(2x1(t)− α), x1(0) = x10, ẋ1(0) = 0.

(83)

ẍ1(t) = −κ tan(
π

2

max(2x1(t)− α, 0)

2r
)−Mp(2x1(t)− γ), x1(0) = x10, ẋ1(0) = 0.

(84)

ẍ1(t) = −κ tan(
π

2

max(2x1(t)− α, 0)

2r
), x1(0) = x10, ẋ1(0) = 0. (85)

If 2x10 < α then initially ẍ1(t) = 0, so x1(t) ≡ x10 , x2(t) ≡ x20, ∀t ≥ 0. If 2x10 > γ
then ẍ1(0) < 0 so the first derivative is monotonically decreasing. As ẋ1(0) = 0 then
for any t > 0 , ẋ1(t) < 0. In this case we are in the branch (84) where the functions
are continuous with continuous derivative and consequently there is a unique solu-
tion at least locally.
The case α < 2x10 < γ remains open for us.

The third scenario is whenever 0 < x10 < r < L − r = 3r < x20 < L. It im-
plies that 2x10 < α. Then, initially we obtain the following system of equations:{

ẍ1(t) = FNL(t)
ẍ2(t) = −FNR(t)

(86)

x1(0) = x10 , x2(0) = x20 , ẋ1(0) = 0 , ẋ2(0) = 0.

Similarly to what happened in (63) this is a classical problem and there is a unique
solution at least locally.

The last case to study is whenever 0 < x10 < r and x20 < L − r = 3r (which
is analogous to the case in where x20 > L − r and x10 > r). Then, initially the
system is reduced to{

ẍ1(t) = FNL(t)− FN(∆1(t))− F Pl(∆1(t), ∆̇1(t))

ẍ2(t) = FN(∆1(t)) + F Pl(∆1(t), ∆̇1(t))
(87)

x1(0) = x10 , x2(0) = x20 , ẋ1(0) = 0 , ẋ2(0) = 0.
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We discuss three different scenarios. The first one is the case ∆1(0) < 0 (this implies
FN(∆1(0)) = 0 and F Pl(∆1(0), ∆̇1(0)) = 0) and the remaining problem is at least
at the beginning {

ẍ1(t) = κtan( π
2r
max(r − x1(t), 0))

ẍ2(t) = 0
(88)

x1(0) = x10 , x2(0) = x20 , ẋ1(0) = 0 , ẋ2(0) = 0,

and, as in previous cases, there is a locally unique solution with x2(t) ≡ x20.
The second one is whenever ∆1(0) > dp, this is, 2x10 > γ. In this situation we
remember that initially problem under study is the following

ẍ1(t) = κtan( π
2r
max(r − x1(t), 0))− κtan( π

4r
max(x1(t)− x2(t) + 2r, 0)))−

−


mp∆1(t) if ∆̇1(t) > 0 ∧∆1(t) > 0

Mp(∆1(t)− dp) if ∆̇1(t) ≤ 0 ∧∆1(t) > dp
0 otherwise

ẍ2(t) = +κtan( π
4r
max(x1(t)− x2(t) + 2r, 0)))+

+


mp∆1(t) if ∆̇1(t) > 0 ∧∆1(t) > 0

Mp(∆1(t)− dp) if ∆̇1(t) ≤ 0 ∧∆1(t) > dp
0 otherwise

(89)
x1(0) = x10 , x2(0) = x20 , ẋ1(0) = 0 , ẋ2(0) = 0.

As a consequence of ∆1(0) > dp, when 3x10 > x20, max(x1(t) − x2(t) + 2r, 0) >
2max(r − x1(t), 0) , ∀t ∈ [0, h] for some h > 0. It implies that ẍ1(t) < 0 ,∀t ∈ [0, h]
for some h > 0. Moreover, ẍ2(t) > 0 ,∀t ≥ 0 and then ∆̇1(t) < 0 ,∀t ∈ [0, h] and
we are not going to leave the second branch. By this fact, at least locally, there will
not be any discontinuity and then there is a local unique solution.
We have not found yet any proof for the third case, this is, whenever 0 ≤ ∆1(0) ≤ dp.

In conclusion, we have proved that there is at least a local unique solution in most
of the cases under certain conditions in order to simplify the problem.
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