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Abstract

Multi-instance multi-label learning (MIML) is a
framework for learning in the presence of label
ambiguity. In MIML, experts provide labels for
groups of instances (bags), instead of directly
providing a label for every instance. When label-
ing efforts are focused on a set of target classes,
instances outside this set will not be appropri-
ately modeled. For example, ornithologists la-
bel bird audio recordings with a list of species
present. Other additional sound instances, e.g., a
rain drop or a moving vehicle sound, are not la-
beled. The challenge is due to the fact that for
a given bag, the presence or absence of novel
instances is latent. In this paper, this problem
is addressed using a discriminative probabilis-
tic model that accounts for novel instances. We
propose an exact and efficient implementation of
the maximum likelihood approach to determine
the model parameters and consequently learn an
instance-level classifier for all classes including
the novel class. Experiments on both synthetic
and real datasets illustrate the effectiveness of the
proposed approach.

1. Introduction

Multi-instance multi-label learning is a framework for
learning in the presence of label ambiguity. In conventional
single instance single label learning (SISL), a label is pro-
vided for every instance. In contrast, in MIML learning,
instances are grouped into bags and labels are provided
at the bag-level. MIML learning has many applications
where data is complex and the labeling process is costly.
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For instance, in birdsong recognition, instead of provid-
ing a species label for each bird syllable, experts prefer to
provide species labels for longer intervals, each containing
multiple bird syllables (Briggs et al.|[2012).

A common assumption in MIML is that the set of classes in
which we are interested is a closed set and all instances we
encounter in both training and testing are assumed to be-
long to this fixed set of classes. However, this assumption
is frequently violated in real applications. For example,
in birdsong recognition, experts label long audio intervals
with a fix set of bird species. Other categories of sound
such as rain or car sound are not included in the labeling
process. Yet, such sounds are present in the data. Another
example is image annotation, as shown in Fig. [I] where
the annotator considers only a fixed set of tags and ignores
‘grass’ as it is not included in the tag set. We refer to this as
the novel instance problem in MIML data. Properly mod-
eling the novel instances in MIML data can have positive
impacts on several applications. First, it enables effective
detecting of novel instances in the data. Second, by model-
ing and recognizing the novel instances in MIML data, we
can better model the instances of known classes, and con-
sequently improve the ability to predict the class both at the
bag-level and at the instance-level.

There are several lines of work that are related to the prob-
lem of MIML learning with novel instances. The problem
of detecting instances from novel class has been studied
under the SISL setting (Saligrama & Zhao, 2012), (Hsiao
et al., 2012), (Da et al., |2014). However, a common as-
sumption in the SISL setting is that we only observe in-
stances from the known classes during training. In con-
trast, in MIML setting, we may in fact observe instances
of the novel class during training; they are just not labeled.
For example, consider the 2nd and 4th images in Fig. [I]
Even though these bag labels, which are {‘building’} and
{‘bird’} respectively, do not indicate the presence of novel
instances from ‘grass’, however, two grass segments are
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available during training.

introduced the problem of MIML learn-

ing with weak labels, where the bag-level labels may be
incomplete. Different from our setting, there the missing
labels are from the fixed set of known classes. Finally, (Loul
proposed to solve the novelty instance detec-
tion problem for MIML by learning a score function for
each known class and predicting an instance to belong to
the novel class if it scores low for all known classes. Since
there is no direct modeling mechanism for the novel class in
training, the process of learning the class score function is
not specific to novelty detection and various methods from
the MIML literature can be used to accomplish this task,

e.g., (Briggs et al.}[2012), (Cour et al., 2011).

In this paper, we develop a discriminative probabilistic
model that explicitly models the novel class instances un-
der the MIML setting. Our contributions are as follows:
(i) we develop a model that accounts for presence of novel
class instances (i4) we present an exact and efficient infer-
ence method for the model. The advantages of the proposed
framework are demonstrated by experiments on bag-level
label prediction and novel class detection using both syn-
thetic and real datasets.

2. Related work

Many multi-instance multi-label learning approaches fol-

low the maximum margin principle (Huang et al, [2014),

(Zhang & Zhou, 2008). Specifically, these approaches
maximize the margin among classes and the score of a bag

w.r.t. each class is computed from the score-maximizing
instance in the bag. As a consequence, these methods uti-
lize only a subset of the available instances in a given bag.
(Briggs et al] [2012) addresses this issue by using the soft-
max score considering all instances in the bag. Learning
from partial label is another framework that can be used
for MIML learning, as in CMM-LSB
[2012). CMM-LSB discards the bag structure. Instead, the
label of each instance is taken from its bag label. Thus,
the method ignores the relationship among instances in
each bag, which may then degrade the accuracy. Recently,
ORLR 2014), a probabilistic approach, is pro-
posed for the MIML learning. ORLR considers the class
membership for every instance in each bag and enforces the
constraint that the bag-level label set is formed as union of
the labels of all its instances. None of the aforementioned
methods directly addresses the potential problem of novel
class instances present in the data.

A number of approaches have been proposed for novel
class detection in the SISL setting. One solution to de-
tect novel class instances is to test whether it comes from

a probability distribution of known instances

1. building, sky 2. building 3. sky, bird
5™ A :
A0 Ty N~
5. dog, road

4. bird

" i

Figure 1. Example of images taken from MSCV2 dataset. Below
each image, a segmentation into instances are provided. Segment
ids in each image are denoted by pink, red, blue, and orange col-
ors. On top of each training image (numbered from 1 to 5) is its
bag label. The label for the test image (numbered 6) is unknown,
denoted by ‘?’. The label ‘grass’ is novel since it is not used for
any of the images but segments of this class appear in the 2nd and
4th images. In the test image, there is a ‘grass’ segment, which
belongs to the novel class. The challenge is to correctly annotate
each segment including the novel ‘grass’ segment.

2003). Another solution is finding the minimum

set covering most of the training examples and consider
remaining examples as novel instances such as
2009). In the MIML setting, we may observe
instances from novel class during training, as in (Lou et al.}
2013), where novel instance features are available in train-
ing. Specifically, the label of the bag only contains known
instance labels and ignores the novel instances. For ex-
ample, in image annotation, experts may only consider the
popular labels, such as ‘sky’, ‘building’, and ‘car’, and la-
bel images containing segments from those labels. Experts
may ignore segments coming from class such as ‘fence’ or
‘door’ depend on the granularity of the labeling process.

In this paper, we propose to incorporate the novel class into
our model so that it can be learned directly during training.

3. Problem Formulation

Setting. We consider the MIML setting in the presence of
novel class instances. The training set contains B bags,
denoted as {Xp,Yp} = {(Xp,Ys)}Z,. X, consists
of n; instances Xp1,Xp2, - - -, and Xp,,, Xp; € 2 = RY
Each instance x;; is associated with a latent instance label
yoi € {0,1,2,...,C}, where class 0 represents the novel
class. The bag label Y, is a subset of the set of known
classes = {1,2,...,C}. Note that the bag label does
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not include 0. Hence it does not provide information about
the presence or absence of the novel class in the bag.
In this setting, one can consider the following tasks: (%)
Instance annotation: mapping an instance in %2 to a label
in ' | J{0}, ie., {0,1,...,C}. (ii) Novelty detection:
mapping an instance in 2" to {{0}, %'}, i.e., determining
whether an instance belongs to the novel class or known
classes. (iii) Bag level prediction: mapping a bag in 2%
to a label in 27

Example: Consider the set of images (bags) taken from
MSCV2 dataset (Winn et al.,|2005)) in the MIML format as
in Fig. [ Additionally assume that grass is not included
in the set of tags used for annotation and hence segments
(instances) from grass can be regarded as novel instances.
Training images are numbered from 1 — 5. For example,
in the 1st image, the label is { ‘building’, ‘sky’} and there
are two segments in the image. However, no information
mapping segments to labels is available. Note that images
2 and 4, which contain the novel class (‘grass’), do not in-
dicate so in their bag labels. Our goal is to learn a classifier
that can map a segment to one of the known classes, i.e.,
‘building’, ‘sky’, ‘bird’, ‘dog’, ‘road’, or to the novel class.
Note that since the classifier is never trained with the label
‘grass’, at best it is expected to map ‘grass’ segments to a
novel class. The test image numbered 6 contains a segment
from the known class ‘dog’ and a segment from the novel
class ‘grass’. A key challenge is to design a classifier that
can correctly predict the label for segments from known
classes and recognize ‘grass’ segments as belonging to a
novel class.

4. Proposed approach

In this section, we introduce a probabilistic model for
MIML data that includes unlabeled novel class instances.
Additionally, we present a maximum likelihood algorithm
for learning the parameters of the model.

4.1. Model

The proposed model addresses the MIML problem in the
presence of novel class instances using two fundamental
aspects: (4) a class (¢ = 0) is assigned to represent novel
class instances. (i¢) the bag-level label removes any evi-
dence of the presence of the novel class from the union of
instance labels. These features of the model are designed to
allow learning a class for which no label is provided during
training.

Our model is presented in Fig. We assume that all
bag labels and instance labels in each bag are independent.
Specifically, we consider the relation between the instance

label and feature vector, including novel class, as follows

HC ef(ybi:C)WZXbi
c=0

ZC 0 ewleyi

c=

P(Ypi[Xpi, W) = (D

where W = [Wo, Wi, Wa,...,Wc] and w. € R¥*! is the
weight for the cth class. For each bag, the union of its
instance labels, including the novel label 0, is denoted as
Y, = U;lll Yp;. In addition, the relation between the ob-
served bag label Y, and Y,* is modeled as follows

p(Yu|Y}?) = I(Y, = Y*) + I(Y, {0} =Y}*), (2

where Y, C {1,2,...,C} and Y;* C {0,1,2,...,C}.
This model implies that the bag label Y, is obtained by
removing the novel class label 0 from the union of the in-
stance labels Y, if it appears in the union. Hence Y} can-
not reveal information about the presence of novel class
instances in the bag. We illustrate the use of our notation
for the example in Fig. [T|using Table[T]

Bag 2 \ Bag 3 \ Bag 4

Ng = 2 ng = 2 ng = 4

Yo1 =‘grass’ Y31 ="sky’ Ya1 ='grass’

Yoo =*building’ Yz ='bird” | yup ='bird’
Y43 =‘bird’
Yaq =‘bird’

Y; = Y; = Yi =

{‘grass’,‘building’} | {‘sky’,bird’} | {‘grass’,‘bird’}

Yo = Y3 = Y, =

{“building’} {sky’,bird’} | {‘bird’}

Table 1. Instance labels and bag labels of the proposed model for
images 2, 3, and 4 in Fig.

Figure 2. Graphical model for MIML learning in the presence of
novel class instances (MIML-NC).
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4.2. Maximum likelihood estimation using expectation
maximization

To learn the model parameters, we consider maximum like-
lihood inference and proceed with the evaluation of the
likelihood. Since Xp is independent of the parameters w
and bag labels are independent given X p, the likelihood for
the aforementioned model can be written as

B
p(Yp, Xp|w) =p(Xp) [[p(YslXs,w),  (3)

b=1

where p(Y;|Xp,
ability as

w) is computed using the law of total prob-

ny

U Ybj)

p(Y5|Xp, W Z Z {I(Y, =

yp1=0 Yoy, =0

ngy

%UM—U%MXprM, @)

Directly maximizing the logarithm of (@), i.e., the log-
likelihood, is hard. Instead, we consider the expectation
maximization (Dempster et al.l [1977) solution for infer-
ence. Consider the instance labels y = {y;,...,¥g}
where Y, = [Yb1, Y2, - - - s Ybn, | for all 1 < b < B, as hid-
den variables. In EM, the surrogate function g(w,w’) =
Ey[logp(Yp,Xp,y|w)|Yp,Xp,w], ie., the expectation
w.r.t. y of the complete log-likelihood, is iteratively com-
puted and maximized. The surrogate function for the pro-
posed model is given by

B ny, C
= Z Z[Z p(yps = | Y, Xp, W)W. Xy,

b=1 i=1 c¢=0
— log( Zew O] +¢, )

where ¢ = Ey[logp(Yply)|Yp,Xp, W] + logp(Xp) is
a constant w.r.t. w. Detailed steps to obtain g(w,w’) are
given in the supplementary material. The generalized ex-
pectation maximization framework consists of two steps as
follows

e E-step: Compute p(yp; = c|[Yp, Xy, wH) for b =
,Bandi=1,...,n

e M-step: Find w**1) such that g(w*+tD) wk)) >
g(wh wk)),

A key challenge in this paper is to address the probability
calculation of y; given Y, in the presence of novel class
instances. While the formulation of the problem in the EM
setting appears straightforward, the computation in the E-
step is nontrivial.

05 5.
O~ -~
;
OO ) | ©—-O—-@

Figure 3. The process to compute p(ysn, = ¢, Yy = L|Xp, w).
Bolded nodes are nodes which are currently computed. (a)
The variables for the bth bag. (b) Dynamically compute
(Y7~ Xy, w). (c) Compute p(ypn,, Ys|Xp, W) using Propo-
sition[]

4.3. E-step

The probability p(ys; = ¢|Y, = L, X, W), for ¢ € LU{0},
can be computed from p(yp; = ¢, Yy = L|X;, W) using
conditional rule as

=L,X;,w)

= L‘Xb,W)
= Lle,W)'

P(ybi = c|Yy
_ P(ypi = ¢, Yy
ZCELU{O} p(ybl =, Yb

We proceed with an efficient alternative computation of
p(Ypi = ¢, Yy = L|Xp, W) as follows.

LY}, where Y}, =
U;’=1 Yi;o is the union of labels of the first ¢ instances in
the bth bag. Note that this sub-bag label indicates the pres-
ence or absence of all classes including the novel class
in the sub-bag. Using the newly introduced random vari-
ables Y}, we can replace the label portion of the graphical
model in Fig. [2| for the bth bag with the chain structure in
Fig. B[a). The advantage of the new graphical model in
Fig. Bfa) is that it allows for efficient computation of the
desired probability p(yp; = ¢, Yy = L|X;, w). Denote the
power set of L J{0} excluding the empty set as P. We de-
rive the following procedure for computing the probability
p(ypi = ¢, Yp = L|Xp, W).

Consider the case i = ny where p(ypn, = ¢, Yy =
L|X}, w) is computed.

Define n;, random variables Y, Y7, . ..

Step 1. Dynamically compute p(Y;*~'[X;, w) using the
following recursion:

p(YZH =L'[X;,w) = Zp(ybjﬂ = l[Xpj+1, W)
lev

x [p(Y] = L{;[Xp, W) + p(Y] =L'|Xp,w)],  (6)
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where L' C P and L{; = {c € L'[c # [} (the proof of (&)
is given in the supplementary material). This calculation is
performed sequentially for every Y7 until p(Y;"» !X, w)
is obtained as in Fig. [3[b). Note that the presence or
absence of the novel class is taken into account when
computing p(Yy*~' = L'|X;,w) since L’ may contain
class 0.

Step 2. Compute p(Ypn, , Y| Xp, W) from p(Y;* ' [X,, w)
based on the model in Fig. 3c), as in the following propo-
sition.

Proposition 1 The probability p(ypn, = ¢, Yy = L|Xp, W)
Sfor all ¢ € L|J{0} can be computed as follows.

o [fc=0,
P(Yon, = ¢, Yy = LIXp, W) = p(ypn, = ¢[Xpn,, W)X
(Y™ = LIXy, w) + p(Yp» " = L{_J{0}/X,, w)].
e Elseifc # 0,

P(Ybn, = ¢, Yy = LIXy, W) = D(Ypn, = ¢[Xpn,, W)X
(Y ™' =LIXp,w) + p(Y;* " = L|_J{0}X,, w)+

p(Yp ™! = Ly [Xp, w) + p(Ype ™" = Ly |_{0}1Xs, ).

Proof. The detailed proof can be found in the supplemen-
tary material. O

Consider the remaining terms of the form p(y,; = ¢, Y, =
L|X;,w) where i = 1,2,...,m5 — 1. Define Y;l =
U;Lil 4 Yvj- For each i: First, swap yp; and ypy, to have

a new order of instances; Next, compute p(Yl\,Z|Xb7w)
using Step 1 based on the new order; Finally, compute
p(ybi, Y|Xp, W) using Step 2. By swapping the ith in-
stance with the last instance, p(yp;, Y5|Xp, W) is evaluated
as the last instance when all instances have already been
taken into account.

Pseudo code for computing the probability p(ys; = ¢, Yy =
L|X;,w) is provided in algorithm 1 in the supplemen-
tary material. The computational complexity of computing
p(ypi = ¢|Yp, Xp,w), forall1 <i <mnpand0 <c<Cis
O((|Yp| + 1)2/Yel+1n2). Although the exponential depen-
dence on the number of labels per bag 2/Y*!*1 may appear
as a limitation, in practice many real MIML datasets have
a fairly low number of labels per bag (Huang et al., 2014
p- 4) despite a possible large number of classes. Bags with
a large number of labels pose inherent challenges since they
provide limited information.

4.4. M-step

We apply gradient ascent with backtracking line search to
maximize g(w, w') w.r.t. w as follows

o (k)
wltD) ) 4 2908 W)

Iw. X 1, (N

w=w(k)

where the gradient w.r.t. w,, for all ¢ € {0,1,2,...,C},

)
%vyk)’ is
B ny wWlxy:
€7 T Xy
Z Z[P(Z/bi = | Yy, Xp, w)x;; — cini_]' (8)
b=1 i=1 ZCZOG e Tbi
4.5. Prediction

We perform instance label prediction, bag label prediction,
and novel class detection as follows.

Instance annotation. For an unlabeled test instance Xy,
the predicted label ¢; is computed as follows

N T
;= arg max Wwi Xy;. 9
Yti gOﬁkSC k At ()

Bag label prediction. The bag label )A(t of a test bag X;, is
computed from its instance labels as Y, = (|J, 9+)\{0},
where 9; is computed from (9).

Novelty detection. An unlabeled test instance is detected
as novel instance if p(ys; = 0|x4, W) > 6, where 0 < 6 <
1 is a manually selected threshold.

5. Experiments

In this section, we compare our approach with related
methods in MIML learning using MIML data that contains
novel class instances.

We compare the proposed approach (MIML-NC) with the
following algorithms: ORed Logistic Regression (ORLR)
(Pham et al.| 2014), kernel scoring (Lou et al. |2013),
and SIM (Briggs et all [2012) on both real and synthetic
datasets. ORLR and SIM methods have been designed for
making instance-level predictions for MIML data, but can
also be used for bag-level prediction and novel class detec-
tion. In order to deal with the case where there are multiple
novel classes and there is no fitted linear boundary to sepa-
rate classes, as in Fig. Elka), we also consider the kernel ver-
sions of the proposed framework and ORLR framework by
applying techniques for kernel logistic regression in (Zhu
& Hastiel |2001). We use Hamming loss as the evaluation
metric to compare bag-level prediction results (Zhou et al.,
2012). We use AUC (area under the curve) to compare nov-
elty detection results.
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5.1. Instance annotation in the novel class setting

In this experiment, we illustrate the rationale of our
approach for instance annotation in the MIML setting with
the presence of novel class instances on a toy dataset.

Setting. We generate B = 100 bags, each bag contains
ny = 10 instances, from six different regions, denoted
by six rectangles, as shown in Fig. @a). In each bag, the
number of instances belonging to each region is drawn
from a Dirichlet distribution with equal parameters of 1/6
to allow for class sparseness. On average in each bag there
are instances from only 2.5 regions. Note that we consider
the two pink regions (top left rectangle and bottom right
rectangle in Fig. [f(a)) as a novel class (labeled 0). The
labels for ‘cyan’, ‘blue’, ‘red’, ‘green’ regions are 1, 2, 3,
4, respectively. Note that all bag labels do not contain label
0 and the presence or absence of instances from the pink
regions is unavailable.

Results and analysis. The boundaries learned using kernel
ORLR and the kernel version of our proposed approach are
illustrated as in Fig. f{c) and [{d). Although ORLR may
classify instances from known classes correctly, it com-
bines the novel class with known classes. In contrast, the
proposed method correctly separates both known and un-
known classes.

5.2. Experiments on novelty detection

In this experiment, our goal is to show that the proposed
algorithm can be effective in detecting novel instances in
the MIML data. We compare the AUC of the kernel version
of our proposed approach with that of the kernel scoring

approach 2013).

Datasets. We use MSCV?2, Letter Carroll, and Letter Frost
datasets (Briggs et al, [2012), MNIST handwritten dataset
(Asuncion & Newman)) in these experiments. MSCV2 is
a MIML dataset containing 591 images from 23 classes.
Each image (bag) contains multiple segments. Each
segment is described by a 48-dimensional feature vector
and is annotated with a class. The label for an image is the
union of its segment labels. Letter Carroll and Letter Frost
are also MIML datasets, each is taken from a poem
[2012). Each word (bag) contains multiple letters.
Each letter is described by a 16-dimensional feature vector
and is annotated by one of 26 letter labels from ‘a’ to ‘z’.
The label for each word is the union of its letter labels.
MNIST is a SISL dataset containing 70,000 samples, each
sample is a 28 x 28 handwritten digit (from 0-9) image
represented by a vector of 784 features. We apply PCA to
reduce the dimension of instances from 784 to 20, as in

(Lou et al.} [2013).

's 1 w0

(© (d)

Figure 4. Toy datasets experiments. (a) The classes distribution.
The labels for instances from ‘cyan’, ‘blue’, ‘red’, ‘green’ regions
are 1, 2, 3, 4, respectively, and the label for ‘pink’ regions is 0
(novel). (b) An example training bag which is labeled {1,4}.
The label does not indicate the presence of novel instances from
pink regions (class 0). (c) Prediction results of ORLR method. (d)
Prediction results of the proposed method.

Setting. For MSCV2, Letter Frost, and Letter Carroll
datasets, we consider different splits of the classes into
known and unknown classes. Specifically, we consider the
1st to 4th classes as novel, the 1st to 8th classes as novel,
and the 1st to 16th classes as novel. For each split, we
remove the novel class labels from all bag labels, if they
appear. From MNIST dataset, we generate MIML datasets
containing 100 bags as follows. Each bag contains ten in-
stances and the number of instances sampled from each
digit is drawn from a Dirichlet distribution with parameter
1/10. This setting allows sparseness in the digits for each
bag. On average, each bag contains 2.6 digits. For MNIST,
we consider different splits of the classes into known and
unknown. Specifically, we consider three different settings
with changing number of novel classes {0, 1}, {0,1,2,3},
and {0,1,2,3,4,5}.

Parameter tuning. When comparing with kernel scoring,
we consider the same form of regularization as in (Lou
2013). Specifically, we add a regularization term
A oo WL Kw, to the objective function in (3), where K

2
—lx; —x;11

is a kernel matrix in which K(é,j) = e~ 5 . Adding
the regularization term results in adding 2AKw, to the
gradient in @) To tune §, we compute d?, the mean
square distance for every pair of instances in a dataset.
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’ Datsets H MIML-NC \ Kernel Scoring ‘
MSCV2-1to4 0.82 + 0.05 | 0.68 + 0.07
MSCV2-1to8 0.80 = 0.04 | 0.60 = 0.04
MSCV2-1to16 0.66 += 0.07 | 0.64 + 0.07
LetterCarroll-1to4 0.92 +0.03 | 0.81 =0.05
LetterCarroll-1to8 0.84 + 0.04 | 0.69 + 0.08
LetterCarroll-1to16 || 0.87 £ 0.05 | 0.77 £ 0.08
LetterFrost-1to4 0.94 + 0.03 | 0.84 + 0.07
LetterFrost-1to8 0.81 +0.05 | 0.69 + 0.08
LetterFrost-1to16 0.86 + 0.06 | 0.80 + 0.09
MNIST-0tol 0.90 +0.03 | 0.83 +0.06
MNIST-0to3 0.88 + 0.04 | 0.78 + 0.06
MNIST-0to5 0.84 + 0.06 | 0.79 + 0.08

Table 2. AUC results for the proposed method and kernel scor-
ing. Values that are statistically indistinguishable using the two-
tailed paired t-tests at 95% confidence level with the highest per-
formances are bolded.

Then, we set 6 = s x d2, where s is searched over the set
{1,2,5,10}. The parameter Apsrarr—no for the kernel
version of the proposed approach is fixed at 107°. The
parameter \ g s for the kernel scoring approach is searched
over {107*,1072,101,100}.

Results and analysis. The performance in terms of AUC
of the proposed approach and kernel scoring is shown in
Table 2] Note that for the MNIST dataset, we reproduced
the experiments when novel class instances are 0,1 in Table
6 of (Lou et al., [2013] p. 5) and achieved similar accuracy.
The AUC of the proposed approach is significantly higher
than that of the kernel scoring approach. The reason is the
kernel scoring approach only uses one maximizing-score
instance to represent each bag w.r.t. a class. In contrast,
the proposed approach takes into account all instances in
each bag. Additionally, unlike the proposed method which
directly models the novel class, kernel scoring does not di-
rectly model the novel class. Specifically, kernel scoring
works as if there are no novel class instances in training.
Then, an instance is classified as novel in testing if all of its
scores w.r.t. known classes are small. The condition is vio-
lated when the novel class is considerably large in training.

5.3. Bag label prediction experiments

In this section, we examine the effectiveness of the pro-
posed approach on bag label prediction when data contains
novel class instances. We compare the Hamming loss per-
formances of our proposed approach, the ORLR approach
(Pham et al) 2014)), and the SIM approach (Briggs et al.
2012). We also consider a dummy classifier where the pre-
dicted bag label consists of labels appearing in more than

grass, flowers

(b)

Figure 5. An example image (bag) with novel class instances in
Corel5k-10. (a) is the image labeled as ‘flowers’ and ‘grass’. (b)
are segments from the image. The green segment is not from
either ‘flowers’ or ‘grass’.

50% of training bags. The dummy approach does not rely
on instance features in prediction hence is used to obtain an
upper bound on the Hamming loss of all other algorithms
compared.

Datasets. We use MSCV2 and Letter Frost described in
Section [5.2] for these experiments. Additionally, we con-
sider two more datasets CorelSk and HJA which contain
real novel class instances. Corel5k (Duygulu et al., 2002)
is a MIML dataset where each image is a bag and its seg-
ments are instances. We sort classes based on the number
of times they appear in all images. From the sorted list,
we then select the top ten classes with highest values: ‘wa-
ter’, ‘sky’, ‘tree’, ‘people’, ‘grass’, ‘buildings’, ‘mountain’,
‘snow’, ‘flowers’, ‘clouds’. We remove bags whose bag
label contains any class outside of these ten classes. As
a result, instances outside the top ten classes are consid-
ered novel. An example image with novel class from the
processed Corel5k dataset (Corel5k-10) is shown in Fig. @
Another dataset is HIA (Briggs et al.,[2012) which is a bird-
song dataset in MIML format. Each bag is a ten second-
recording labeled with a list of bird species singing in this
time period. Each instance is a 38-dimensional feature vec-
tor extracted from a segment of the spectrogram of the ten
second-recording. Instances other than bird sounds or in-
stances which are too costly or difficult to label (Briggs
et al, |2012)) are unlabeled. Novel class instances such as
rain, wind, or insect noises are included in the set of un-
labeled instances. Out of a total of 10,232 instances there
are only 4,998 instances whose labels are used in forming
the bag-level labels. Setting. For ORLR and SIM, the bag
label is predicted as the union of its instance labels. Since
ORLR and SIM are unable to directly deal with novel in-
stances, we use a threshold € when predicting an instance
label as novel. From ORLR model, the score of instance
x; w.r.t. class ¢ is p(y; = c|x;, w) and for SIM model,
the score of instance x; w.r.t. class c is Wchi. We com-
pute the mean and standard deviation for these scores for
all instances then normalize these scores from 0 to 1. For
each test instance, if the maximal confidence score is less
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than a threshold ¢, the instance is considered novel. For
ORLR, we search ¢ over the set of {0, 0.1, 0.2, ..., 0.9}
and report the Hamming loss for each value of e. For ker-
nel ORLR, for each ¢, we search )\ and ¢ as in Section
and report the lowest Hamming loss. For SIM, for each
€, we search the parameter A (Briggs et al.l 2012) over the
set of {107%,1075,...,107%} and report the lowest Ham-
ming loss. Since the matrix K for HJA is large, we do not
run the kernel version of ORLR and MIML-NC on the HJIA
dataset.

Results and analysis. The Hamming loss of ORLR,
MIML-NC, kernel ORLR (K-ORLR), kernel MIML-NC
(K-MIML-NC), and SIM are presented in Fig.[6] We ob-
serve that the use of a threshold improves bag-level pre-
diction for both ORLR and SIM when novel instances are
present in the data. If the threshold € is small, many of
the novel class instances may be arbitrarily classified into
any of the known classes which may lead to more false
positives in the bag-level prediction. If € is large, many
instances whose scores are not sufficiently high will be
considered novel and consequently their labels will not be
included in the predicted bag label leading to many false
negatives. The performance of ORLR and SIM can be im-
proved by appropriately selecting the threshold e. How-
ever, in some datasets, for example, Letter Frost and HJA,
the optimally tuned ORLR or SIM is still outperformed by
the proposed approach. The reason is that ORLR and SIM
assume no novel class in their model. When the number of
novel instances is considerably large, the assumption is vi-
olated. Instead, MIML-NC directly models the novel class
that may lead to a lower Hamming loss performance. In
contrast to SIM and ORLR, the performance of MIML-NC
appears in straight lines since it is free of parameter tuning.

6. Conclusion

We presented a novel probabilistic model for MIML learn-
ing in the presence of novel class instances. We introduced
a novel efficient computational approach for inference. We
illustrated the use of the proposed framework for instance
annotation on a toy dataset. Moreover, the experiments
on MSCV?2 image dataset, letter recognition and handwrit-
ten digit dataset show that the proposed method achieves a
significant higher AUC compared to recent kernel scoring
method in novelty detection. Experiments on datasets con-
taining novel class including HJA bird song and CorelSk
show that the accuracy in bag label prediction of the pro-
posed approach is higher than those of recent state-of-the-
art methods.
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