

ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGÍA

UNIVERSIDAD DE CANTABRIA

Trabajo Fin de Máster

PROPUESTA DE UNA METODOLOGÍA PARA LA OBTENCIÓN DE UN MODELO DE RIESGO ESPECÍFICO DE DESPRENDIMIENTOS DE ROCA EN ESPACIOS NATURALES (A methodological proposal for obtaining a specific risk model on rock falls in natural spaces) Para acceder al Título de

MÁSTER UNIVERSITARIO EN INGENIERÍA DE MINAS

Autor: Alejandro Lara Hidalgo Director: Alberto González Díez Octubre - 2016

1	INTR	ODUCCIÓN	1
2	PLAN	ITEAMIENTO DEL PROBLEMA	2
	2.1	DESLIZAMIENTOS	2
	2.2	ANÁLISIS DE RIESGOS NATURALES	8
	2.3	HERRAMIENTAS UTILIZADAS PARA LA TOMA DE DATOS	13
	2.4	MODELO DE CÁLCULO DE PROPAGACIÓN DE CAÍDA DE ROCAS	15
	2.5	HIPÓTESIS A FALSIFICAR	18
3	OBJE	TIVOS	19
4	ÁRE/	A DE ESTUDIO	20
	4.1	GEOLOGÍA	21
	4.1.	1 Descripción litoestratigráfica	21
	4.1.	2 Descripción estructural	22
	4.1.	3 Hidrogeología	24
	4.1.	4 Geomorfología	24
5	MET	ODOLOGÍA	25
6	RESU	JLTADOS – DISCUSIÓN	30
	6.1	ANÁLISIS GEOMORFOLÓGICO	30
	6.2	SIMULACIONES	39
	6.3	MODELOS DE RIESGO	48
	6.3.	1 Modelos de susceptibilidad	48
	6.3.	2 Modelo de amenaza	50
	6.3.	3 Modelo de vulnerabilidad	53
	6.3.	4 Modelo de riesgo específico	59
	6.3.	5 Medidas de mitigación	61
7	CON	CLUSIONES	64
8	BIBLI	OGRAFÍA	65
9	ANE)	KOS	72

INDICE

FIGURAS

Figura 2.1. Tipos de movimientos de ladera. Tomado de González de Vallejo, 2002 4
Figura 2.2. Elementos morfológicos y morfométricos de un deslizamiento, (tomado de González
de Vallejo, 2002)
Figura 2.3. Elementos geomorfológicos de un deslizamiento (tomado de Gutiérrez, 2008)7
Figura 2.4. Desprendimiento en N-621 (Cantabria)8
Figura 4.1. Localización del área de estudio dentro de Liébana; Comunidad Autónoma de
Cantabria
Figura 4.2. Mapa geológico con estructura (DCITYMAC)
Figura 4.3. Afloramiento de roca mecanizada por efecto de planos de cabalgamiento
Figura 5.1. Diagrama de flujo de la metodología29
Figura 6.1. Mapa geológico-geomorfológico31
Figura 6.2. Modelo de rasgos geomorfológicos cartografiados en la superficie del Deslizamiento
de Sebrango
Figura 6.3. A, afloramiento de lutitas devónicas sobre el cuerpo del Deslizamiento de Sebrango.
B, materiales del Grupo Potes presentes en los cantiles de la corona del Deslizamiento de
Sebrango
Figura 6.4. Vegetación cercana al flanco oriental
Figura 6.5. Pie de cantiles
Figura 6.6. Corredor
Figura 6.7. Detalle del grado de maduración textural de los bloques presentes en los corredores.
Figura 6.8. Cono de derrubios superior (2013)
Figura 6.9. Detalle de la superficie del Deslizamiento de Sebrango afectada por
desprendimientos desde 201337
Figura 6.10. Mapa de la superficie del Deslizamiento de Sebrango en la que se han cartografiado
los bloques mayores de 0.01 m3 (25 kg) (areas en rojo). Inferior izquierda, histograma de la
población de bloques medida. Superior Derecha, detalle de la medida de un bloque mediante
las técnicas descritas
Figura 6.11. Doce corredores adicionales 40
Figura 6.12. Treinta y tres trayectorias en la cabecera40
Figura 6.13. Ejemplo de simulación de caída de rocas con RocFall (Corredor 8)
Figura 6.14. Modelo de alcance de bloques de 2,5 kg43
Figura 6.15. Modelo de alcance de bloques de 125 kg 44

Figura 6.16. Modelo de alcance de bloques de 5000 kg46
Figura 6.17. Modelo de alcance de bloques de 54.000 kg47
Figura 6.18. Modelo de susceptibilidad 49
Figura 6.19. Modelo de amenaza52
Figura 6.20. Modelo de vulnerabilidad de los bloques de 2,5 kg
Figura 6.21. Modelo de vulnerabilidad de los bloques de 125 kg55
Figura 6.22. Modelo de vulnerabilidad de los bloques de 5.000 kg56
Figura 6.23. Modelo de vulnerabilidad de los bloques de 54.000 kg58
Figura 6.24. Modelo de riesgo especígico60
Figura 6.25. Tipo de medidas estructurales contra caídas de roca (Tomado de MACCAFERRI,
2008)
Figura 6.26. Sistema de redes en cantiles (Tomado de MACCAFERRI, 2008)63
Figura 6.27. Pantallas dinámicas elasto-plásticas (Tomado de IBEROBARRERA, 2004)63
Figura 6.28. Sistema de terraplén contra caída de rocas (Tomado de MACCAFERRI, 2008) 63
Figura 9.1. Simulaciones de las 33 trayectorias de la cabecera del deslizamiento de Sebrango.
Figura 9.2. Simulaciones de los 29 corredores del deslizamiento de Sebrango
Figura 9.3. Parábola descrita por un bloque en RocFall (Tomado de Stevens, 1998) 196
Figura 9.4. Coeficientes de restitución energética (Rn =Coeficiente de restitución energética
normal; Rt = Coeficiente de restitución energética tangencial) y Velocidad (Vn = Componente
Normal de la velocidad; Vt = componente Tangencial de la velocidad) Tomado de Pfeiffer (1995)

<u>TABLAS</u>

Tabla 2.1. Clasificación de movimientos de ladera. Tomada de (Varnes, 1978)
Tabla 2.2. Principales programas informáticos para cálculo de caidas de rocas. Tomado de
Guzzetti et al. (2002)
Tabla 9.1. Tamaños de los bloques medidos mediante las técnicas descritas. Se han identificado
839 bloques72
Tabla 9.2. Coeficientes de Restitución Energética Normal (Rn) y Tangencial (Rt) en función del
tipo de material(Tomado de (Santamaría, 1996)202
Tabla 9.3. Valores de coeficientes de restitución propuestos en la literatura (Tomado de Peng,
2000)
Tabla 9.4. Ángulo de fricción interna según tipo de suelo (Tomado de Das, 2001) 204

RESUMEN

En el presente Trabajo Fin de Máster se propone una metodología para la construcción de un modelo de riesgo específico de desprendimientos de roca, que pueda utilizarse en el ámbito de la gestión de un espacio natural. El área elegida para llevar a cabo el trabajo es el Deslizamiento de Sebrango, cuya actividad está produciendo periódicamente desprendimientos que afectan tanto a su corona como al depósito. En este trabajo, se emplean diferentes tipos de herramientas (tratamiento de imagen, Sistemas de Información Geográfica (SIG), modelos bidimensionales de propagación de caídas) que de manera conjunta permiten la captura de los datos empleados en la generación de los modelos de riesgo. Tras un detallado análisis de campo que comprende la toma de datos de variables de tipo geológico, condicionantes de la inestabilidad, se efectuó un tratamiento de imagen empleando en una Estación Fotogramétrica Digital. Este tratamiento fotogramétrico se realizó empleando imágenes procedentes de vuelos existentes. Mediante las mismas, se completó la base de datos geomorfológica del deslizamiento, tomando especial relevancia los rasgos relativos a los desprendimientos (zonas de despegue, corredores, zonas de acumulación y tamaño de los bloques encontrados en la ladera afectada). Los modelos de simulación bidimensional de caídas de rocas obtenidos permitieron conocer los lugares más frecuentes de paso de los tamaños de bloque simulados, así como la emergía de los mismos. Estos datos se incorporaron a un SIG en el que se construyeron los modelos de susceptibilidad, amenaza, vulnerabilidad y riesgo específico. Los modelos construidos ofrecen una clara radiografía de la problemática ambiental ocasionada por este tipo de procesos, así como una herramienta de interés para la gestión del territorio. Permitiendo, además, proponer medidas para la mitigación de los efectos producidos por los bloques desprendidos sobre posibles transeúntes.

ABSTRACT

In this work a methodological proposal for development of a specific risk model on rockfalls, which can be used in the management of natural spaces, is presented. The area chosen to carry out this work was the Sebrango's landslide, whose activity regularly produces rock-falls affecting both its crown as well as the Sebrango landslide deposit. In this work, different tools are used (image processing, Geographic Information Systems (GIS), two-dimensional propagation models on rock-falls) to allow recording on data used in the generation of risk models. After a detailed field analysis, that includes the data captures of geological variables, which are many of them conditional factors of the instability, an image processing was performed using a Digital Photogrammetric Station. This treatment was carried out using photogrammetric images from existing flights. Through them, fundamental geomorphic data of the landslide was recorded, taking particular relevance the main rock-falls features (take-off areas, trajectories, accumulation areas and block sizes appearing on the affected hillslope). The dimensional simulation models obtained on rock-falls have allowed knowing the most common passing places of the simulated block-sizes, as well as its energy. These data were incorporated into a GIS where susceptibility, hazard, vulnerability and specific risk models were developed. The models elaborated offer a clear X-ray of the environmental problems caused by this process as well as an interesting tool for natural spaces management. This also allow the proposal of mitigation measures for reducing the effects of crashes produced by these blocks on the visitors that crossing this place.

1 INTRODUCCIÓN

Los espacios naturales protegidos s.l. se han convertido en una pieza fundamental de la explotación turística del territorio. La presencia en dichos espacios de procesos naturales activos, como son por ejemplo: los desprendimientos de tierras o cualquier otro tipo de movimiento de ladera, terremotos, vulcanismo, etc., constituye una pieza importante para el reclamo turístico del lugar, especialmente si ha sufrido episodios paroxismales recientemente. Uno de los principales problemas que presenta la gestión sostenible de dichos espacios es el de disponer de herramientas que faciliten su gestión, especialmente si en ellos se ubican procesos activos. Estas herramientas tienen que indicar, no sólo, cuáles son las zonas peligrosas, sino cómo es la dinámica del proceso o cómo ocupar el territorio. El análisis de riesgos naturales es una herramienta de gestión ambiental que permite responder a dichas preguntas, así como proponer medidas de mitigación para minimizar los efectos producidos por estos procesos sobre los potenciales usuarios del espacio.

En el presente trabajo se presenta una aproximación metodológica para la construcción de mapas de riesgo por alcance de rocas desprendidas, en espacios naturales. Estos modelos permiten al gestor del espacio llevar a cabo una correcta planificación del uso sostenible del mismo; delimitando los lugares adecuados para su uso y disfrute; e informando del tipo de conflicto que puede surgir, así como de la magnitud del mismo.

Para desarrollar esta metodología se ha elegido un deslizamiento activo dentro de la Comunidad Autónoma de Cantabria, como es el Deslizamiento de Sebrango (Camaleño), que, aun estando limitado al uso y disfrute por su grado de actividad, recibe anualmente centenares de visitantes. Visitantes que pueden sufrir daños si son alcanzados por bloques desprendidos al cruzar el cuerpo del deslizamiento, puesto que sufre reactivaciones episódicas.

La estructura de la presente memoria parte del Planteamiento del Problema, en el cual se presentan los procesos de ladera; las tipologías que componen este proceso, así como sus factores determinantes. Asimismo, se describen las diferentes herramientas de modelización desarrolladas para su estudio, análisis y evaluación, incluyendo los modelos de riesgo aplicados a dichos procesos, herramientas de teledetección, SIG y modelos de cálculo. Este apartado concluye con la presentación de la principal hipótesis a verificar en este trabajo. Posteriormente, en el apartado de objetivos se presentan las metas a alcanzar. A continuación, en el apartado Área de Estudio se describen las principales características geológicas, climáticas y ambientales de la zona en la que se desarrolla este ejercicio. El apartado de Metodología incluye una descripción de los diferentes pasos llevados a cabo en este trabajo, así como de los criterios seguidos en cada método. A continuación, en el apartado de Resultados y Discusión se presentarán los principales datos obtenidos discutiendo su validez para el tipo de trabajo descrito. Finalmente, en el apartado Conclusiones se señalan los principales logros alcanzados.

2 PLANTEAMIENTO DEL PROBLEMA

En este trabajo se lleva a cabo un análisis de riesgo sobre procesos naturales; los procesos seleccionados son los movimientos en masa o deslizamientos, y en particular dentro de estos últimos, los desprendimientos. Este análisis se realizará con ayuda de una serie de herramientas de teledetección y SIG, así como de modelización. Con los datos extraídos de estas herramientas, se construirá el soporte con el que se evaluará el riesgo generado por estos procesos sobre los posibles transeúntes que crucen la zona.

2.1 DESLIZAMIENTOS

Los procesos de inestabilidad de laderas o movimiento en masa, también llamados deslizamientos s.l, son fenómenos controlados por la gravedad. En Cantabria son conocidos popularmente como argayos (término aceptado por el DRAE). En Cantabria presentan un gran desarrollo espacial, y así mismo constituyen un proceso activo que implica anualmente importantes pérdidas económicas. Esa importancia se manifiesta también a escala planetaria. Así por ejemplo, en Estados Unidos se ha estimado que los costes directos e indirectos generados por los movimientos de ladera son superiores a 1.000 millones de dólares anuales (Schuster, 1988). En Europa, según datos aportados por la Agencia Europea de Medio Ambiente, las pérdidas económicas generadas por la ocurrencia de procesos de inestabilidad de laderas son muy cuantiosas. Por ejemplo, en la cuenca mediterránea, los costes ocasionados por deslizamientos y arrolladas se han multiplicado por seis entre las décadas de los 80 y los 90. Volviendo a España, se han llevado a cabo evaluaciones que predicen las pérdidas ocasionadas por estos procesos; éstas oscilan entre 6-12 y más de 4.500 millones de €, para el periodo del 1986 al 2016 (Ayala-Carcedo, 2002). En cuanto a víctimas ocasionadas, los movimientos de ladera suponen el tercer riesgo natural a nivel mundial por número de víctimas producidas, por detrás de terremotos e inundaciones (Ayala-Carcedo, 2002), por lo que ha sido un tema abordado de forma intensa por un gran número de autores. En resumen, la ocurrencia de estos fenómenos conlleva un gran impacto económico, generando pérdidas en vidas, bienes y recursos (Bonachea et al., 2006).

Desde un punto de vista geográfico, la mayoría de los movimientos de ladera se localizan en grandes sistemas montañosos: Pirineos, Cordilleras Béticas y Cordillera Cantábrica (Corominas, 2006; Hervás, 2016) debido a su litología, orografía y elevada pluviosidad. Aunque es la Comunidad Autónoma de Cantabria la que la mayor densidad de deslizamientos tiene registrados en España (Hervás, 2016).

En este trabajo se ha seguido la definición de Varnes (1978) de procesos de inestabilidad de laderas (Tabla 2.1), cuyos términos pictóricos aparecen en la Figura 2.1. En sentido amplio son aquellos fenómenos naturales que propician desplazamientos de los materiales geológicos por la acción de la gravedad. Éstos se mueven hacia abajo y hacia afuera de las laderas, dando lugar a un conjunto de tipos diverso. La mayoría de las clasificaciones de deslizamientos tienen en cuenta el tipo de material involucrado (ya sea roca, derrubio o materiales finos), y el tipo cinemático del movimiento: caídas, vuelcos, deslizamientos, extensiones o flujos (Terzaghi, 1950; Skempton y Hutchinson, 1969; Varnes, 1978; Morgenstern, 1992; WP/WLI, 1995; Cruden y Varnes, 1996; Dikau et al., 1996; Highland y Bobrowsky, 2008; Hungr et al., 2014). Es cierto que la clasificación de Varnes resulta un poco anticuada, ya que existen otras propuestas más novedosas como la de Hungr et al. (2014), que intentan armonizar algunos términos. No obstante, la sencillez de la misma permite una rápida aplicación al estudio. Por otra parte, la propuesta de Hungr et al. (2014) está basada íntimamente en la propuesta de Varnes (1978), por lo que los datos obtenidos en este trabajo se pueden extrapolar con facilidad hacia estas clasificaciones. Un factor importante para clasificar los deslizamientos es su morfología. Los deslizamientos contienen una serie de rasgos geomorfológicos que los caracterizan como la corona, el pie, el cuero principal, los flancos (Figura 2.2 y 2.3). Una descripción más detallada de estos elementos aparece en Brunsden (1973).

TYPE OF MOVEMENT			TYPE OF MATERIAL			
			0.500.004	ENGINEERING SOILS		
			BEDROCK	Predominantly coarse	Predominantly fine	
FALLS			Rock fall	Debris fall Earth fall		
TOPPLES			Rock topple	Debris topple	Earth topple	
	ROTATIONAL	FEW UNITS	Rock slump	Debris slump	Earth slump	
SLIDES	TRANSLATIONAL		Rock block slide	Debris block slide	Earth block slide	
		MANY	Rock slide	Debris slide	Earth slide	
LATER	AL SPREADS		Rock spread	Debris spread Earth spread		
FLOWS			Rock flow (deep creep)	Debris flow [Earth flow (soil creep)		
COMPL	Ė×	Co	mbination of two	or more principal type	s of movement	

Tabla 2.1. Clasificación de movimientos de ladera. Tomada de (Varnes, 1978)

Figura 2.1. Tipos de movimientos de ladera. Tomado de González de Vallejo, 2002.

Para poder analizar bien estos procesos, se deben conocer todos los factores que los determinan. Tal y como describen Palmquist y Bible (1980), existen una serie de factores que favorecen la aparición de estos procesos activos denominados factores determinantes. Estos a

su vez, se subdividen en factores que condicionan la aparición del movimiento (factores condicionantes) y los que desencadenan el mismo (factores desencadenantes). Los factores condicionantes pueden agruparse en cuatro grandes conjuntos: los de naturaleza topográfica, geológica, relacionados con la vegetación y con la climatología. Todos ellos actúan de manera "pasiva" dentro de la inestabilidad de laderas ya que, como describe González-Díez, (2005), pueden mantenerse estables durante largos periodos de tiempo aun siendo necesarios para que el proceso se desarrolle. Los factores de naturaleza topográfica dependen de la geometría del relieve. La fuerza de la gravedad se ve más o menos acentuada por efecto de los mismos (pendiente, curvatura horizontal, curvatura vertical, orientación, etc.) (Revuelta, 2015). Los factores relacionados con la geología determinan las características geomecánicas del material (ángulo de rozamiento interno, cohesión, límites líquido y plástico, resistencia a la compresión, mineralogía, quimismo, fluidos y tipos, etc.), o de la estructura en la que se encuentran (si las anisotropías del macizo rocoso son favorables o desfavorables a la inestabilidad). La vegetación condiciona la aparición de inestabilidades; por un lado, favorece la infiltración y por tanto, la saturación del terreno; por otro lado favorece la disgregación del material por tanto la perdida de cohesión del mismo; pero por contra, puede actuar como un elemento de resistencia del terreno, dado que las raíces cohesionan los materiales en los que se encuentran, y también regulan la humedad interna del material (Gray y Leiser, 1982). Por último, y no menos importante, es el papel jugado por la climatología. Las lluvias frecuentes favorecen la saturación del terreno, lo que genera una modificación en la resistencia de los materiales existentes.

Respecto a los factores desencadenantes, Palmquist y Bible (1980) los clasifican como: sismicidad, actividades antrópicas, tectonismo, relajación litostática y clima. Cada uno de estos parámetros estimula externamente al sistema, provocando que éste cambie sus condiciones de equilibrio inestable, apareciendo la rotura. La actividad sísmica conlleva la existencia de aceleraciones en el terreno que modifican las componentes normal y tangencial de los esfuerzos existentes. A nivel microscópico, se produce también un debilitamiento de los enlaces entre las partículas que favorecen un descenso en la cohesión de los materiales, lo que puede implicar que el material fluya. Uno de los factores más determinantes en los últimos años, y que más está incrementando la inestabilidad de laderas son las actuaciones antrópicas. Las modificaciones artificiales de la geometría de la ladera (bien por excavaciones en su pie, que afectan a su apoyo, o bien por rellenos en la cabecera, que incrementan su peso; o bien por modificaciones del régimen hídrico de las aguas superficiales, que modifican las presiones hidrostáticas dentro del material) propician la inestabilidad. Los cambios en el nivel de base también suponen otro factor desencadenante importante pues inciden de una manera similar a los cambios en la geometría producidos por el hombre; aunque su actuación es más dilatada en el tiempo. Otro de los parámetros desencadenantes de inestabilidades en ladera es la relajación litostática, ya que puede conllevar la rotura del material por fatiga mecánica. En algunos casos, este efecto se puede sumar a los anteriores; pueden aparecer acciones cíclicas de tensiónrelajación, como consecuencia de cambios del nivel de base producidos periódicamente. El clima también se considera un factor desencadenante ya que las variaciones súbitas de precipitación, generan cambios bruscos en las presiones efectivas de los materiales situados en las laderas. Por otra parte, las oscilaciones térmicas favorecen el agotamiento mecánico del material y como consecuencia su rotura.

En este trabajo se analizan fundamentalmente desprendimientos en roca (rockfall, rock avalanche, según la clasificación de Varnes de 1978). En esta tipología los materiales se desprenden desde una corona o cantil, netamente reconocible en el paisaje; recorren un itinerario (corredor), por el que descienden ladera abajo saltando, rodando o combinando ambos tipos de desplazamientos; y se acumulan al pie de la ladera, dando formas de tipo cónico que se denominan cono de derrubios. Una corona de deslizamiento presenta diferentes zonas de despegue, que tienden a confluir en unos pocos corredores debido a la geometría del terreno, construyendo finalmente un gran cono de derrubios. Estos conos presentan una gradación de tamaños. Los mayores se encuentran en la parte distal del cono (producto de una mayor energía potencial con la que partieron), mientras que los más pequeños se encuentran más cerca del ápice (debido a su menor energía). Un aspecto importante a tener en cuenta en el estudio de este proceso es que las trayectorias seguidas por estos bloques, a lo largo de su desplazamiento ladera abajo, dependen de la rugosidad del terreno y de la capacidad elástica de los materiales que construyen la superficie del terreno y conforman el propio bloque; dichas capacidades elásticas se explican a partir del coeficiente de restitución (Newton). También es importante el ángulo de carrera del derrubio (run out angle), ya que su inclinación marca la diferencia entre rockfall y rock avalanche, siendo menor en estos últimos.

Figura 2.2. Elementos morfológicos y morfométricos de un deslizamiento, (tomado de González de Vallejo, 2002).

Los desprendimientos suelen aparecer, como patología constructiva, en muchos taludes de obras lineales (carreteras, vías férreas, etc.) generando graves daños en las infraestructuras, bienes o personas que transcurren por ellas; por lo que su estudio resulta de gran interés en el ámbito ingenieril. Durante el año pasado se han registrado numerosos ejemplos de desprendimientos en Cantabria, como los vividos en la carretera nacional N-623 a la altura de Corvera de Toranzo, en marzo de este mismo año (Diario, 2016), cortando la vía; o el desprendimiento en la N-621 a la altura de Lebeña (Figura 2.4), en noviembre de 2015 (Alvac, 2015). La mayoría de los mismos se desencadenan en carreteras de montaña durante los meses de mayor frío y lluvia; aunque en muchas ocasiones también son producidos por el paso de animales por laderas recubiertas por una gran cantidad de derrubios, como ocurre en el Desfiladero de la Hermida en Cantabria. Muchas de las medidas de mitigación son de carácter estructural, instalando mallas y barreras mecánicas para frenar la energía del bloque desprendido. Sin embargo, existen otro tipo de medidas de mitigación no estructural como son los mapas de riesgo que permiten modelar y conocer el peligro ocasionado por los bloques desprendidos.

Figura 2.4. Desprendimiento en N-621 (Cantabria)

2.2 ANÁLISIS DE RIESGOS NATURALES

Desde un punto de vista técnico se entiende el riesgo como la pérdida o daño de un bien ocasionado por la acción de un fenómeno natural (Panizza, 1987). En una concepción más amplia, como señala Ferrer y García López-Davadillo (2005), se pueden incluir adicionalmente los daños generados por las propias actividades industriales o tecnológicas, o por cualquier otro tipo de acción, o actividad humana sobre dichos bienes. Según UNDRO (1991), los estudios de riesgos constituyen la herramienta más ampliamente utilizada en la gestión del territorio en los países industrializados.

El concepto de riesgo contiene tres importantes componentes como son: la amenaza (o peligrosidad (A), la exposición (E) y la vulnerabilidad (V); de manera que el riesgo es el resultado de la combinación de estos tres factores ($R = f\{A, E, V\}$, según UNDRO (1991). El análisis de riesgo pretende dar respuesta a las siguientes preguntas: dónde, cuándo y por qué se producen los procesos activos que amenazan a un determinado bien expuesto, y además, qué valor económico tiene el bien expuesto y cuánto puede ser la pérdida de dicho valor por la acción de fenómenos naturales. Entando en detalle, los modelos de peligrosidad o amenaza aportan las respuestas a las preguntas concretas de: dónde, por qué y cuándo se van a producir estos fenómenos. Los datos de exposición aportan la valoración económica del bien. Mientras que los modelos de vulnerabilidad aportan respuestas del grado de pérdida que puede sufrir el bien como consecuencia del desarrollo paroxismal del fenómeno estudiado. Tanto la medida de la amenaza como de la vulnerabilidad se expresan en términos probabilísticos. Así por ejemplo, en la literatura científica, se entiende por amenaza la probabilidad, tanto en el espacio como en el tiempo, de que ocurra un determinado fenómeno natural, de una determinada magnitud o intensidad, potencialmente dañino. La amenaza implica dos tipos de conceptos: por un lado, determinar el área más probablemente afectada por dicho proceso (probabilidad espacial) y por otro, cada cuánto ocurre dicho proceso (probabilidad temporal del mismo). La probabilidad temporal de ocurrencia de un determinado suceso se puede expresar con la siguiente ecuación:

$$Prob\{X\} = 1 - (1 - Prob\{a\})^X$$
[1]

Donde: $Prob{X}$ es la probabilidad de ocurrencia de un proceso a largo plazo (tiempo considerado); $Prob{a}$ es la probabilidad anual; X es el número de años elegido dentro del rango temporal considerado.

La valoración de los bienes expuestos se obtiene a partir de análisis catastrales además de otras valoraciones de mercado que pueden modificarse a lo largo del tiempo. Los modelos de vulnerabilidad permiten determinar el grado de afección, tanto social como estructural que sufre el bien expuesto, expresándolo como el tanto por ciento de deterioro o destrucción.

Un formulación más actualizada del riesgo es presentada por Morgan et al. (1992):

$$R = Prob\{D\} * Prob\{S|D\} * V(\in|S) * E$$
[2]

en el que el riesgo (*R*) son las pérdidas anuales en el valor del elemento; $Prob\{D\}$ es la probabilidad anual de que se produzca un deslizamiento; $Prob\{S|D\}$ es la probabilidad anual de que un elemento del espacio sea afectado por el deslizamiento; $V(\in|S)$ es la vulnerabilidad del elemento o proporción del valor perdido (\in) de ese elemento de espacio; y E es el valor del elemento.

Posteriormente, Fabbri y Chung (2004) reformulan las expresiones del riesgo descritas por la UNDRO mediante la siguiente expresión:

 $R = Valor \ del \ elemento * Prob\{G \cap D\}$ [3]

donde $Prob\{G \cap D\}$ es la probabilidad de que un elemento quede dañado o afectado o golpeado (G) por un deslizamiento en el futuro (D). A su vez, este término se puede descomponer, como señala Bonachea (2006) en:

$$Prob\{G \cap D\} = Prob\{G|D\} * Prob\{D\}$$
^[4]

donde $Prob\{G|D\}$ es la probabilidad condicionada de que el elemento expuesto sea golpeado (G) si la unidad de superficie del territorio, que normalmente suele ser un pixel (p), está afectada por un futuro deslizamiento (D); mientras que $Prob\{D\}$ es la probabilidad de que el pixel quede afectado por un futuro deslizamiento, que en este trabajo es una roca desprendida. Por lo tanto, la expresión final del riesgo quedaría como:

 $R = Valor \ del \ elemento * \ Prob\{G|D\} * Prob\{D\}$ [5]

Una forma de incorporar los factores condicionantes (F_c) a la expresión anterior puede ser la siguiente:

$$R = Valor \ del \ elemento * \ Prob\{G \cap D|F_C\}$$
[6]

donde $Prob\{G \cap D|F_C\}$ es la probabilidad condicionada de que un elemento sea golpeado por un futuro bloque desprendido, dado que en el pixel (p) existen unos factores condicionantes (F_c). Nuevamente, esta probabilidad se puede reformular en la siguiente expresión:

$$Prob\{G \cap D|F_C\} = Prob\{(G|D)|F_C\} * Prob\{D|F_C\}$$
[7]

donde $Prob\{(G|D)|F_C\}$ es la probabilidad condicionada de que un elemento sea golpeado, si al pixel (p) llega un bloque desprendido, dado que se han identificado una serie de factores condicionantes en el mismo, que favorecen que a ese pixel llegan bloques desprendidos. Lógicamente, este término equivale a la vulnerabilidad (V). Por otra parte, $Prob\{D|F_C\}$ es la probabilidad de ocurrencia (de llegada) de un futuro bloque desprendido al pixel (p), dado que en él existen factores condicionantes que indican que esto puede suceder; este término equivale a la peligrosidad. Esta última probabilidad depende mucho de la magnitud o intensidad con las que actúe el proceso (bloques de pequeño o gran tamaño), por lo que la magnitud está implícita en los factores condicionantes. Por lo tanto, y en resumen, la propuesta de riesgo puede quedar de la siguiente manera:

$$R = Valor \ del \ elemento * \ Prob\{(G|D)|F_C\} * Prob\{D|F_C\}$$
[8]

Volviendo al concepto de riesgo; habitualmente, el riesgo se expresa en valores económicos indicando las pérdidas alcanzadas por cada bien ante la acción del fenómeno estudiado; este tipo de expresión del riesgo se suele conocer como riesgo total o RT (Ayala-Carcedo 1973; Corominas 1988; González de Vallejo 1988; Remondo, 2001; Bonachea 2006). Existe otra forma de expresar el riesgo de manera más simplificada, que excluye el valor de los daños causados en el bien por la acción del fenómeno natural; este tipo de expresión del riesgo se conoce como riesgo específico o R_s (Remondo 2001; Bonachea 2006). En esta consideración del riesgo se tiene en cuenta la amenaza producida por el fenómeno natural el daño que puede ser producido por dicha amenaza exclusivamente. Este es el tipo de aproximación que se va a seguir en este trabajo, es decir, se evaluará el riesgo específico producido por bloques caídos de un desprendimiento. En términos matemáticos, la expresión de riesgo específico es la siguiente:

$$R_{S} = Prob\{(G|D)|F_{C}\} * Prob\{D|F_{C}\}$$
[9]

Como menciona González Valle (2014), este tipo de tratamiento de riesgo es útil a la hora de priorizar entre diferentes partes de un mismo proyecto, tal y como se va a efectuar en este trabajo.

Como se ha comentado anteriormente, los estudios de riesgos son un instrumento para la gestión ambiental y sostenible del territorio. Y por lo tanto, el resultado de dicha evaluación tiene que expresarse de manera cartográfica a través de mapas de riesgos. Evidentemente, dichos mapas contienen implícitamente un modelo, que es fruto de la combinación de los parámetros anteriormente indicados (en nuestro caso: amenaza y vulnerabilidad).

En este trabajo, el análisis del área más probablemente afectada se desarrolla, a partir del concepto de modelo de susceptibilidad (Chung y Fabbri, 1993; Remondo 2001; Corominas et al. 2005; Ferrer y García López, 2005; Bonachea 2006). Se puede entender como susceptibilidad la potencialidad de un territorio para generar, o facilitar, o propiciar la existencia de un determinado proceso geológico (alcance de un bloque desprendido), a través de unos factores propiciatorios (litología, agua, pendientes, curvaturas del relieve, insolación, etc.), que presenta ese lugar. Estos modelos se construyen a partir de la combinación de unidades de condición única procedentes de las diferentes variables consideradas (geometría, procesos, litología, etc.). En este estudio, la estimación de la amenaza se va a llevar a cabo en dos fases, siguiendo la metodología propuesta por Bonachea (2006). Por una parte se construirá un modelo de susceptibilidad de alcance de bloques de una determinada magnitud. Y por otro lado, se analizará la frecuencia de ocurrencia del paso de estos bloques, lo que se denomina probabilidad temporal. No obstante, para comprobar que esta aproximación probabilística es correcta se requiere de la captura de una serie de datos que nos permita validar la veracidad de los modelos obtenidos. Para validar dichas zonas susceptibles se tiene en cuenta la geomorfología. Una corona susceptible es aquella en la que se aprecian muchos desprendimientos recientes, con muchos fragmentos rocosos de tamaño grava en su pie. Un corredor susceptible es aquel que ocupa la mayor depresión dentro del cuerpo del deslizamiento; suele contener fragmentos de diferente tamaño que producen numerosas marcas de arrastre (estrías en el terreno generadas por los cantos al desplazarse). Un cono de derrubios susceptible es aquel que presenta, a lo largo del tiempo de estudio, cambios notables en su morfología, por la incorporación continua de materiales.

Una vez aclarado el concepto de riesgo que se va a utilizar en este trabajo (riesgo específico), conviene clarificar en qué sentido se va a evaluar la vulnerabilidad. Anteriormente, se ha considerado la vulnerabilidad como el grado de pérdida que sufre un elemento expuesto como consecuencia de la acción de un proceso activo, que en nuestro caso es una roca desprendida. La zona elegida para analizar el riesgo de desprendimientos en este trabajo, es una zona peculiar puesto que tras la última fase paroxismal, los terrenos y los bienes allí expuestos fueron expropiados a sus propietarios, tras el pago de indemnizaciones; por lo que el único "bien" que puede estar expuesto es aquel transeúnte que desobedeciendo las limitaciones impuestas por las autoridades, pretende visitar dicha zona, entrando en el área de actuación de los desprendimientos. Una primera consideración, derivada de la propuesta inicialmente planteada, es que cualquier transeúnte tiene la misma probabilidad de situarse en un punto del espacio afectado por la amenaza. Por lo que solo queda evaluar el daño que es posible que sufra. A la hora de evaluar la vulnerabilidad de una persona como consecuencia del impacto de bloques desprendidos, se pueden buscar diferentes análogos procedentes de estudios biomecánicos. Los estudios clínicos realizados a partir de daños producidos por accidentes de tráfico (MAPFRE, 2015) muestran que cuando las velocidades de colisión se encuentran por encima de 15 km/h, se producen lesiones importantes en los ocupantes. En estos estudios se muestra una horquilla de valores límite que oscilan entre 8 km/h (en golpes traseros) y 24 km/h (en frontales). Hay que tener en cuenta que los vehículos que poseen elementos de seguridad para proteger a los ocupantes, los cuales absorben gran parte de la energía desprendida en una colisión. A nivel deportivo, estudios similares muestran que dichos límites son más reducidos para deportes de aventura, donde, como mucho, el único elemento de protección es el casco. En términos teóricos, una energía de 10 J puede ocasionar graves daños en una cabeza sin proteger, ascendiendo a 175 J en el caso de que se lleve un casco homologado (Enfermería de urgencias, 2016). Sin entrar en más detalles biomecánicos se podría fijar una escala de vulnerabilidad a usar en este trabajo. El límite mínimo de dicha escala se situaría en aquellos fragmentos que alcancen al transeúnte por debajo de 10 J, mientras que el límite máximo de daño estaría en más de 175 J.

Volviendo al análisis de la amenaza, en el presente trabajo se evaluarán los desprendimientos desarrollados sobre el cuerpo del Deslizamiento de Sebrango, desde la zona de despegue situada en la corona del deslizamiento, hasta la zona donde el bloque pierde su

energía y se para (cono de derrubios del desprendimiento, que está obviamente situado dentro del propio cuerpo del Deslizamiento de Sebrango). Los bloques que se analizarán son aquellos que poseen tamaños mínimos superiores a 0,001 m³, cuya energía de caída es completamente letal para los transeúntes, y permiten una clara identificación por técnicas fotogramétricas, usando imágenes aéreas. Otros tamaños menores no se contemplan en este trabajo debido a la profusión de medidas que se requieren. Los factores que condicionan dicho proceso son concretamente: el prisma de roca desprendido, sus propiedades geomecánicas, la altura del cantil, las características geomorfológicas de la superficie del corredor, la geometría del corredor y del cono de derrubios, y la energía con la que recorre cada roca esa trayectoria. En este caso, la susceptibilidad se analizará a través de la frecuencia con la que los bloques desprendidos atraviesan esa unidad del territorio, teniendo en cuenta simulaciones de desprendimientos desarrolladas "ad-hoc" para todas las posibles trayectorias que se pueden generar. Mientras que la ocurrencia temporal se analizará a través de datos de ocurrencia temporal tomados entre los años 2013 y la fecha de finalización de este trabajo.

2.3 HERRAMIENTAS UTILIZADAS PARA LA TOMA DE DATOS

Las zonas sujetas a desprendimientos son generalmente inaccesibles o con grandes dificultades de acceso. Normalmente, se sitúan en grandes desniveles, donde la toma de información está reñida con la seguridad de los científicos durante la captura de datos. En este tipo de ambientes, juegan un papel primordial las herramientas de tratamiento de imagen, teledetección *s.l.*, puesto que permiten capturar información de zonas inaccesibles desde puntos de vista externos al problema.

En la literatura se han propuesto diferentes herramientas para el análisis de procesos de ladera mediante herramientas de tratamiento de imagen y teledetección, como por ejemplo las imágenes SAR (radar de apertura sintética), los sistemas aéreos mediante láser como LiDAR o la fotogrametría aérea (González-Díez et al., 2014). Las técnicas interferométricas aplicadas a imágenes (SAR) aportan mediciones precisas de desplazamientos en deslizamientos, incluso por debajo de los 10 mm (Kimura y Yamaguchi, 2000; Canuti et al., 2004; Strozzi et al., 2005; Farina et al., 2006; Fernández et al., 2009; Casagli et al., 2010; Herrera et al., 2011) cubriendo amplias zona de trabajo (100x100 km) y con alta resolución espacial (Herrera et al. 2011). Sin embargo, esta técnica tiene una serie de inconvenientes, como es la imposibilidad de analizar imágenes correspondientes a momentos precedentes al año 1991, que fue cuando se comenzó a trabajar con estas herramientas. Las herramientas de escaneo por láser aéreo o LiDAR, comienzan a usarse en geomorfología los años 90 (Baltsavias, 1999), permitiendo analizar los cambios

manifestados en laderas debido a procesos activos (Brideau et al., 2012; Jaboyedoff et al., 2012). Como citan algunos autores (Cardenal et al., 2008^a; 2008b; 2009), las técnicas LiDAR aportan nubes de puntos de alta resolución, que pueden ser complejas de manipular, por lo que la edición de las nubes de puntos conlleva un gran esfuerzo. A pesar de ello, esta técnica resulta una buena alternativa si se combina con otras técnicas basadas en imágenes (Dewitte et al., 2008; Cardenal et al., 2009; 2009a; 2009b; Fernández et al., 2009; Brideau et al., 2012). Las herramientas fotogramétricas se han aplicado intensamente en el análisis de laderas inestables (Power et al., 1996; Chandler, 1999; kääb, 2002; Casson et al., 2003; Mora et al., 2003; Olague et al., 2004; Walstra et al., 2004; Yamagishi et al., 2004; Tralli et al., 2005; Chandler et al. 2007; Cardenal et al. 2008a, b, c, 2009; González-Díez et al. 2008; 2009a,b; Fernández et al. 2011; Brideau et al. 2012; González-Díez et al. 2014). La razón por la que son tan demandadas es porque permiten extraer la información tanto semántica como métrica de las mismas (Cardenal et al., 2008a, 2008 b, 2009). Las imágenes aéreas pueden cubrir áreas relativamente grandes, entre 10 y 100 km², con precisiones de entre 10 y 100 cm respectivamente. Hoy en día, es posible encontrar imágenes de vuelos correspondientes a varios años, en países industrializados, con las que poder realizar análisis multitemporales (Gary et al., 1972). La fotogrametría digital permite, llevar a cabo observaciones estereoscópicas del terreno por varios operadores simultáneamente, así como la captura rápida de miles de puntos, en un corto periodo de tiempo, posibilitándose la generación de modelos precisos de alta densidad y resolución espacial (González-Díez et al. 2009a, b). Además, los vectores cartografiados pueden exportarse cómodamente a Sistemas de Información Geográfica (SIG). Estos tratamientos permiten, en el caso de los estudios de inestabilidad de laderas, llevar a cabo una correcta identificación de los principales límites del deslizamiento (escarpes principales, corredores, conos de derrubios), así como medir elementos en la superficie de la ladera (tamaños de bloques desprendidos, saltos de cantiles, geometría de formas, etc.), y caracterizar la ocurrencia temporal de los bloques desprendidos, a partir de rasgos geomorfológicos basados en relaciones de yacencia, de los depósitos del propio deslizamiento o de otros rasgos existentes fuera del mismo. También es posible cartografiar diferentes elementos geomorfológicos indicativos de la actividad del proceso. Todos estos elementos pueden además reforzarse mediante medidas topométricas, y usar para ello estaciones totales de topografía o GPS.

2.4 MODELO DE CÁLCULO DE PROPAGACIÓN DE CAÍDA DE ROCAS

Se han desarrollado muchos modelos diferentes para calcular trayectorias de desprendimientos, pero todos ellos pueden agruparse en tres grandes grupos: modelos empíricos, modelos basados en procesos y modelos basados en sistemas de información geográfica (SIG).

Los modelos empíricos usan fundamentalmente la geometría de la ladera, considerando las relaciones entre factores topográficos y longitud de los recorridos de uno o varios desprendimientos. A veces, estos modelos están referidos a modelos estadísticos (Keylock y Domaas, 1999). El primer modelo empírico para el cálculo de propagación de caída de rocas fue definido por Tianchi (1983), que estableció dos relaciones (logarítmica positiva y negativa) en base a datos recopilados de 76 grandes desprendimientos, para la estimación de la extensión de la amenaza de un desprendimiento. Posteriormente, otros autores sugirieron el principio de desplazamiento por terraplén (Fahrböschung) para predecir trayectos de desprendimientos. Éste, se basa en el ángulo entre: un plano horizontal, y una línea que va desde el punto de despegue del bloque que hasta el punto de parada (que es donde se produce la pérdida de energía) (Heim, 1932). Posteriormente, Evans y Hungr (1993) sugirieron un principio alternativo denominado "ángulo mínimo de la sombra". Este ángulo es generado por una línea recta que une el punto más alto del deslizamiento y el punto de parada, seguido por la trayectoria más larga realizada por un desprendimiento), siguiendo a Lied (1977).

Los modelos basados en procesos describen o simulan los modos de movimiento de las rocas que caen sobre superficies escarpadas. Los dos modelos más importantes son los desarrollados por Kirkby y Statham (1975) y Keylock y Domaas (1999). El primero supone que las rocas solamente se deslizan sobre una superficie. Este modelo calcula primero las componentes normal y tangencial de la velocidad de la roca que cae en la base del acantilado a partir de su energía cinética y, a continuación, estima la posición de parada utilizando para ello la relación entre la velocidad de caída y la fuerza de fricción (que se determina por el ángulo de fricción dinámico). El segundo modelo (Keylock y Domaas, 1999) denominado modelo de dinámica simple, se basa en el anteriormente mencionado. Éste calcula la distancia de recorrido sobre la superficie de la pendiente usando: la fuerza de fricción, tal y como es entendida Kirkby y Statham (1975), y la aceleración de la gravedad. Keylock and Domaas (1999) llegaron a la conclusión de que el modelo de la dinámica simple no parece tener una ventaja significativa sobre los modelos empíricos analizados en su estudio. Además de los descritos, existe otro gran grupo de modelos (Wu, 1985; Bozzolo y Pamini, 1986; Bozzolo et al., 1988; Hungr y Evans, 1984; Pfeiffer y Bowen, 1989; Kobayashi et al., 1990; Evans y Hungr, 1993; Budetta y Santo, 1994; Chen

et al., 1994; Azzoni et al., 1995, Chau et al., 1998) bastante similares entre si. Éstos utilizan las siguientes consideraciones: el concepto de pendiente-escala bidimensionales, restringiendo al bloque a moverse solamente en el plano vertical, por lo que los movimientos laterales no son simulados; el corredor se define como un compuesto de líneas rectas conectadas con un ángulo de inclinación, igual a la inclinación de la pendiente media, que es medida en el segmento representado por el corredor; los movimientos se simulan como una sucesión de fases de vuelo y fases de contacto. Las principales diferencias entre todos estos modelos son dos. Por un lado, la roca que cae con su masa concentrada en un punto (Wu, 1985; Hungr y Evans, 1988; Pfeiffer y Bowen, 1989; Kobayashi et al., 1990; Evans y Hungr, 1993); o la roca que cae como un cuerpo elipsoidal (Bozzolo y Pamini, 1986; Bozzolo et al, 1988; Azzoni et al, 1995). Por otro lado, algunos modelos simulan el movimiento en la superficie de la pendiente de manera detallada, caracterizando el rebote, deslizamiento y volteo (Bozzolo y Pamini, 1986; Kobayashi et al, 1990; Evans y Hungr, 1993; Azzoni et al, 1995); mientras que otros modelos consideran los movimientos de manera idéntica, pudiendo ser descritos como una sucesión de impactos y rebotes (Bozzolo et al, 1988; Pfeiffer y Bowen, 1989).

En la actualidad, varios programas informáticos han sido desarrollados y testados para simular la caída de un bloque a lo largo de una ladera, así como las trayectorias que ejecutan (Tabla 2.2). Un ejemplo son los programas de simulación bidimensionales presentados por Piteau y Clayton (1976); Bassato et al. (1985); Falcetta (1985); Bozzolo y Pamini (1986); Hoek (1987); Pfeiffer y Bowen (1989); Pfeiffer et al. (1991); Azzoni et al. (1995); Stevens (1998); Paronuzzi y Artini (1999); Jones et al. (2000).

		·			
Year	Author(s)	Program name	Dimensions	Approach	Probabilistic
1976	Piteau and Clayton	Computer Rockfall Model	2-D	Lumped mass	Partly
1982-86	Bozzolo and Pamini	SASS-MASSI	2-D	Hybrid	Yes
1985	Bassato et al.	Rotolamento Salto Massi	2-D	Lumped mass	No
1987	Descouedres and Zimmermann	Eboul	3-D	Rigid body	No

2-D

2-D

2-D

3-D

2-D

2-D

2-D

3-D

Hybrid

Hybrid

Hybrid

Hybrid

Rigid body

Lumped mass

Lumped mass

Lumped mass

Yes

No

Yes

No

Yes

Yes

Yes

Yes

CRSP

CADMA

Rotomap

Mobyrock

CRSP 4.0

STONE

RocFall

1989-91

1991-95

1990

1991

1998

1999

2000

2002

Pfeiffer and Bowen

Paronuzzi and Artini

Kobayashi et al.

Pfeiffer et al.

Azzoni et al.

Scioldo

Stevens

Jones et al.

This work

Tabla 2.2. Principales programas informáticos para cálculo de caidas de rocas. Tomado de Guzzetti et al. (2002)

Los modelos basados en Sistemas de Información Geográfica, SIG son aquellos que se ejecutan dentro de este entorno usando, como datos de entrada variables almacenadas en su

Página 16 de 205

GeoDataBase, como es la: altura sobre el nivel del mar, rugosidad de la superficie, cubierta vegetal, geología, etc., y evaluaciones matriciales "raster". Estos modelos se basan principalmente en tres procedimientos. El primero identifica las áreas de origen caída de rocas (zonas de despegue), el segundo determina la trayectoria de caída (corredor) y el tercer procedimiento calcula la longitud de la zona de desviación (Hegg y Kienholz, 1995). Meissl (1998) desarrolló dos modelos SIG usando un modelo empírico para el cálculo de la zona de descentramiento. En el primer modelo usó el ángulo de sombra *(Schattenwinkel)*, mencionado anteriormente (Evans y Hungr, 1993). En el segundo modelo de Meissl (1998) usa un gradiente geométrico (*geometrische Gefälle*). Este modelo se basa en el ángulo de la línea más corta entre la parte superior de la zona de despegue y el punto de parada. No obstante, ambos modelos son idénticos en cuanto método usado para el cálculo de las trayectorias de caída de los bloques y las zonas de despegue.

Van Dijke y van Westen (1990) presentaron unos modelos simples de simulación espacial de caídas de rocas basados en tecnología raster dentro de un GIS. La mayoría de estos programas implementan, o las características de la masa desplazada, o aproximaciones de cuerpos rígidos (a esferas, cilindros, etc.). Posteriormente, se utilizó una geometría simple para el bloque (esfera, disco, cilindro, etc.) de determinadas características. Bozzolo y Pamini (1986); Pfeiffer y Bowen (1989); Azzoni et al. (1995); Stevens (1998), y Jones et al. (2000) utilizaron aproximaciones híbridas, por ejemplo, una aproximación a partir de la masa para simular las caídas libres y una aproximación de cuerpo rígido para simular movimiento rotacional, impactos y rebotes. Varios autores (Descouedres y Zimmermann, 1987; Scioldo, 1991) propusieron programas tridimensionales de simulación de caída de rocas. La mayoría de los programas funcionan a partir de perfiles longitudinales definidos por el usuario, requiriendo información detallada de los materiales (suelo, detritos, rocas) que afloran a lo largo de la ladera como, por ejemplo: sus coeficientes de restitución y fricción. La conclusión a la que llegan muchos autores en la literatura es que los programas disponibles son inadecuados para determinar riesgos de desprendimientos de rocas en grandes áreas, tales como toda una provincia o una cuenca que se extiende por decenas o cientos de kilómetros cuadrados, para las que tanta información detallada no se encuentre disponible. Sin embargo, la mayoría de estos programas funcionan razonablemente bien sólo en pequeñas áreas, para las que se encuentra disponible la información temática (incluyendo topografía) detallada (Guzzetti et al., 2002).

En el presente trabajo se va a utilizar una aproximación novedosa, que combina el análisis del desprendimiento en perfiles de simulación, como los descritos con un SIG. Para ello se utilizará el programa RocFall (RocScience V5, licencia educación). Rocfall es un programa de análisis estadístico diseñado para ayudar en la evaluación de las pendientes en riesgo de

Página 17 de 205

desprendimientos de rocas. Basado en las leyes del movimiento y la teoría de colisiones. El programa calcula la trayectoria de los bloques de roca, la energía cinética, altura de los saltos y puntos finales, es decir la máxima distancia alcanzada. También facilita la determinación de medidas de mitigación, con los datos de la energía cinética y localización de los impactos, permitiendo determinar la capacidad, tamaño y localización de las barreras de protección. Con variaciones de los datos de entrada y de las propiedades de los materiales, se pueden hacer análisis de sensibilidad y comparar los resultados. Una utilidad importante del programa es que permite hacer análisis retrospectivos, conocidos los puntos de origen de los bloques, su tamaño y el punto final alcanzado (Yilmaz et al., 2008). El programa también permite hacer análisis para determinar el coeficiente normal de restitución. La generación de los informes de resultados es sencillo, y los gráficos, así como los datos en bruto se pueden exportar a Excel de forma sencilla. Para ayudar en la determinación de los coeficientes de restitución, RocFall incluye una gran colección de coeficientes de restitución, de fricción dinámica y los coeficientes de fricción de rodadura y la densidad de la roca. Ésta fue compilada después de una extensa búsqueda en la literatura, así como de ensayos *AdHoc* (ROCSCIENCE, 2016).

2.5 HIPÓTESIS A FALSIFICAR

Como colofón al planteamiento del problema descrito anteriormente, surge la hipótesis a verificar en el presente trabajo. La principal hipótesis que pretende verificar en este trabajo es la siguiente: es posible llevar a cabo modelos de riesgo específico de desprendimientos de roca utilizando de manera combinada herramientas de fotogrametría digital, SIG y modelos de simulación de propagación de caídas de roca. Para llevar a cabo dicha verificación, dentro del contexto de un Trabajo de Fin de Máster, algunas de las aproximaciones, coeficientes o parámetros a usar, serán tomados de la literatura y no medidos. No obstante, si se pondrá atención en el estudio geológico de los desprendimientos existentes en la zona de trabajo seleccionada, la toma de datos relevantes para la validación de los modelos de simulación creados, la generación de modelos de desprendimientos, el paso de los mismos al SIG y la elaboración de modelos de riesgo.

Dicha hipótesis principal está apoyada en una serie de hipótesis específicas que se quieren también validar en el presente trabajo y que se describen a continuación:

 Que las técnicas de fotogrametría digital permiten, no sólo tomar datos de la geometría del Deslizamiento de Sebrango, sino de los desprendimientos que afectan a su superficie, caracterizando las zonas de despegue, los corredores utilizados por los bloques y los conos de acumulación de bloques. Mediante estas técnicas es posible estimar con precisión el tamaño de los bloques desprendidos, así como de otros elementos que constituyen la geomorfología de estos procesos, incluyendo criterios geomorfológicos sobre la frecuencia de ocurrencia del proceso.

- Que los vectores obtenidos a través de fotogrametría digital permiten construir simulaciones de caídas de roca (mediante el uso del programa Rocfall) construyendo escenarios para diferentes tamaños y geometrías de corredor.
- Que los datos extraídos de fotogrametría digital y del programa de simulación pueden incorporarse a un SIG (ArcGis) para construir modelos de riesgo por desprendimiento.

3 OBJETIVOS

El principal objetivo que se marca en este trabajo es generar una serie de modelos de riesgos de desprendimientos de rocas en el Deslizamiento de Sebrango que sean de utilidad para la posible gestión de este espacio.

La consecución de este objetivo principal está sujeta a la consecución de los siguientes objetivos específicos:

- Validar las principales unidades geológicas que afloran en el deslizamiento
- Obtener vectores geomorfológicos tanto del deslizamiento como de los desprendimientos situados sobre su superficie, mediante modelos estereoscópicos digitales (MStD) desarrollados fotogramétricamente. Mediante dichos modelos se cartografiarán los principales elementos geomorfológicos de los desprendimientos: zonas de despegue, corredores y conos de derrubios.
- Construir mapas geomorfológicos de la zona de estudio mediante técnicas de campo y fotogrametría digital, e incorporar los mismos al SIG.
- Obtener perfiles topográficos de los desprendimientos existentes mediante técnicas de fotogrametría digital y modelos digitales de elevaciones (MDE) construidos a partir de las imágenes tratadas fotogramétricamente.
- Obtener de modelos de simulación de los desprendimientos identificados mediante *rocfall* y validarlos.
- Importar los datos de los modelos a un SIG, para allí crear modelos de susceptibilidad, amenaza y vulnerabilidad por desprendimientos.
- Construcción dentro del SIG de los modelos de riesgo específico.
- Propuestas de medidas de mitigación.

4 ÁREA DE ESTUDIO

El presente trabajo se ha llevado a cabo en la zona inestable de Sebrango (González-Díez et al., 2016), ubicada entre las coordenadas de Longitud: 4º 43'37" W – 4º 42'44" W y Latitud: 43º 08' 43"N- 43º 08'19"N (Sistema de Coordenadas ETRS89). Esta zona se localiza en una ladera meridional del Macizo Oriental de Picos de Europa, dentro de la Comarca de Liébana, y del ayuntamiento de Camaleño (Cantabria). Y más concretamente, el área afectada por desprendimientos dentro del cuerpo de ese deslizamiento (Figura 4.1).

Figura 4.1. Localización del área de estudio dentro de Liébana; Comunidad Autónoma de Cantabria

En la citada zona se localizan los pueblos de Los Llanos y Sebrango. Estas dos localidades se sitúan entre los barrancos de Mogrovejo y Pembes. Las cumbres más elevadas situadas al norte (Peña Vieja, 2.613 m.s.n.m) están conectadas con los puertos de montaña de Pembes, Peña Oviedo y otras colinas situadas entre 1500-1000 m.s.n.m, por un desnivel de hasta 50 ° de inclinación (Página Web: Facultad de Ciencias. Universidad de Cantabria, 2013). Desde esta superficie las laderas caen de nuevo bruscamente hacia el río Deva, con pendientes de alrededor de 30 °. El fondo del valle es profundo y estrecho; localizándose el cauce cerca de Los Llanos a unos 300 m.s.n.m. En esta parte de la ladera, a lo largo de la comarca de Liébana se esculpen grandes deslizamientos que dan formas de tipo cónico (Página Web: Facultad de

Ciencias. Universidad de Cantabria, 2013). Estas formas, según señala (González-Díez, 1995), se producen por la acumulación de depósitos de antiguos movimientos en masa, que han funcionado durante innumerables ciclos, al igual que en otras zonas de montaña de la Cordillera Cantábrica. En la comarca de Liébana hay inventariados más de 400 deslizamientos de tierra (González-Díez et al., 2016). El área de Sebrango-Los Llanos se encuentra cartografiada en mapas geomorfológicos desde 1981, (CIDS, 1981) y catalogada en diferentes inventarios de deslizamientos de tierra desde entonces.

4.1 GEOLOGÍA

En la zona de estudio dominan materiales paleozoicos recubiertos por una cobertera de depósitos cuaternarios (Heredia et al., 1990). El sustrato está compuesto por dos unidades estructurales. La más antigua corresponde a la Unidad de Pisuerga-Carrión, formada por materiales fundamentalmente siliciclásticos correspondientes al Silúrico, Devónico y Carbonífero Inferior. La más moderna, denominada Unidad de Picos de Europa, está formada por rocas predominantemente carbonatadas del Carbonífero Inferior (Visiense-Namurianse). Sobre estas dos unidades se desarrolla un rosario de depósitos superficiales cuaternarios de origen fluvial, periglaciar-glaciar y de ladera fundamentalmente. Ambas unidades se encuentran dentro de grandes estructuras de deformación, desarrolladas a través de mantos de cabalgamiento. El contacto entre la unidad inferior y la superior es mediante un plano de cabalgamiento.

4.1.1 Descripción litoestratigráfica

Desde un punto de vista estratigráfico, La Unidad de Pisuerga-Carrión abarca un periodo de tiempo que va desde el Devónico Medio-Superior hasta el Carbonífero Inferior. Tres unidades devónicas aparecen en la zona: La Formación Gustalapiedra-Cardaño, la Formación Murcia y la Formación Vidrieros. La Formación Gustalapiedra-Cardaño (Eifelliense-Frasniense Inferior) está compuesta por 150 m de pizarras pardas y lutitas negras; se intercalan niveles de areniscas ferruginosas y calizas nodulosas. La Formación Murcia (Frasniense Inferior-Fameniense Medio), tiene un espesor de entre 50 a 100 m de calizas nodulosas con intercalaciones pizarrosas; donde las calizas tienen bastante fauna. La Formación Vidrieros (Fameniense Medio-Superior) está formada por unos 50 m de calizas nodulosas grises con intercalaciones de pizarras y lutitas negras. La sedimentación del Carbonífero Inferior está formada por los materiales pertenecientes al Grupo Potes (Namuriense-Westfaliense A), son lutitas oscuras, areniscas lenticulares con conglomerados silicio-carbonatados y calizas; muchas de estas calizas

constituyen olistolitos; la potencia de este grupo oscila entre 1.000 m y 2.000 m. La Unidad Picos de Europa está constituidas por calizas grises, microcristalinas con mucha materia orgánica correspondientes al (Carbonífero medio-superior) aparecen bancos de gran potencia con un espesor superior a 1.000 m (Heredia et al., 1990). Este material forma las laderas verticales características del paisaje lebaniego situadas entre los collados antes descritos (a 1.500 m.s.n.m.) y las cumbres.

El Cuaternario, con un espesor irregular, aparece como derrubios de ladera o depósitos de origen glaciar-periglaciar en las cumbres. Estos depósitos se componen por bloques y gravas proporcionalmente similares, englobados por una matriz de arena y arcilla. En las zonas medias e inferiores de las laderas, entre 1.500 m.s.n.m. y la parte inferior del valle aparece el Cuaternario más desarrollado. Está formado por materiales gruesos: bloques, gravas y arenas, englobados por una matriz de areno-limosa y arcillosa. Esto materiales suelen presentar rasgos típicos de haber sido remoldeados por procesos de ladera (Página Web: Facultad de Ciencias. Universidad de Cantabria, 2013). En el fondo de valle dominan los depósitos fluviales, dando bloques y gravas heterométricos y poco maduros texturalmente, de naturaleza diversa, que suelen estar matri-soportados. Sobre estos depósitos aparecen leptosoles con desarrollo de unos 10 cm (Página Web: Facultad de Ciencias. Universidad de Cantabria, 2013).

4.1.2 Descripción estructural

Estructuralmente, las dos unidades anteriores están bastantes deformadas, puesto que se emplazan dentro de mantos de cabalgamiento. La Unidad de Pisuerga-Carrión se compone de materiales muy replegados y mecanizados; apareciendo pliegues de dirección E-W, así como mantos de cabalgamiento con la misma orientación (Figura 4.2). Es frecuente que las unidades devónicas aparezcan limitadas por planos de cabalgamiento. Además de este sistema de fracturas existe otro de componente NE-SW producto de la compresión y distensión post-alpina. En campo se aprecia como las proximidades de los planos mecánicos descritos la roca está muy mecanizada, apareciendo en muchos afloramientos con lajas de roca cortadas por las diferentes discontinuidades estructurales presentes (Figura 4.3)

Figura 4.2. Mapa geológico con estructura (DCITYMAC)

Figura 4.3. Afloramiento de roca mecanizada por efecto de planos de cabalgamiento

El análisis de la red de fracturación realizado en el área del deslizamiento por (González-Díez et al., 2016) muestra el predominio de las fracturas dirección N-S sobre las de E-W, y en segundo nivel de abundancia aquellas de dirección NW-SE y NNE-SSW. Este mismo sistema de fracturas se identifica en la corona del Deslizamiento de Sebrango mediante técnicas de tratamiento de imagen (González-Díez et al., 2016).

4.1.3 Hidrogeología

Desde un punto de vista hidrogeológico, la Unidad de Picos de Europa supone el principal acuífero de Liébana, dirigiéndose sus aguas hacia el norte. Esta Unidad tiene una porosidad secundaria debido a fallas y karstificación. Sin embargo, Unidad de Carrión-Pisuerga es un sistema acuitardo-acuicludo con niveles de los acuíferos desconectados y una baja permeabilidad.

4.1.4 Geomorfología

Geomorfológicamente hablando, y tal como se señala en la literatura (Página Web: Facultad de Ciencias. Universidad de Cantabria, 2013), en las zonas altas y medias de la ladera aparece dos sistemas morfogenéticos principalmente, que moldean el paisaje: el sistema kárstico y el sistema de periglaciar-glaciar. El primero domina en esta zona gracias a la combinación de temperaturas frías y la existencia de rocas calizas. Por otro lado, el sistema periglaciar-glaciar se encuentra tanto en las cumbres como en las partes medias de la ladera, aprovechándose de condiciones climáticas con bajas temperaturas y frecuentes precipitaciones de nieve. En este sistema se dan geoformas periglaciares activas tales como pedregales, conos de talud, suelos poligonales, etc., y relieves glaciares heredados (arcos morrénicos y lóbulos, círcos, etc.) (Página Web: Facultad de Ciencias. Universidad de Cantabria, 2013). Los procesos de vertiente esculpen el paisaje, principalmente por debajo de 1000 m.s.n.m. hasta el fondo del valle, cerca del río Deva.

La reactivación del año 2013 ha sido trata en la literatura en varios trabajos (González-Díez et al., 2014); (González-Díez et al., 2016). En el trabajo más recientemente publicado (González-Díez et al., 2016) se realiza una detalla descripción de las diferentes reactivaciones identificadas en la zona del deslizamiento hasta la reactivación de 2013, así como una descripción de las diferentes unidades que componen la misma. La frecuencia de reactivación de la corona durante el presente siglo está ocurriendo con menos de 10 años de periodo de retorno. Por otra parte, se han identificado 10 unidades de comportamiento mecánico diferenciado. Cada una de ellas posee sus propios rasgos geomorfológicos internos (corona, escarpes, depósito, grietas longitudinales, grietas radiales, grietas en "echelón", charcas, repliegues, etc.), tal como señala (González-Díez et al., 2016). Estos autores describen el área inestable con un predominio de desprendimientos en la cabecera y parte media del depósito; mientras que las fases más fluidas se instalan sobre el cuerpo y punta de la reactivación de 2013. En el mismo trabajo también se detallan los materiales que aparecen en el cuerpo del deslizamiento. Se indica que los materiales del sustrato son fácilmente alterables, a excepción de los olistolitos calcáreos del Carbonífero, que además constituyen una barrera muy resistente a la deformación. El cuerpo del deslizamiento está formado en más de un 65 % por materiales de granulometría gruesa (bloques, cantos, etc., superiores al tamaño grava). La proporción de finos es relativamente escasa (inferior al 15%); con límites plásticos de entre 25,6 y 34,7 %, mientras que los límites líquidos oscilan entre 26 y 41 % e índices de plasticidad de entre 4,66 y 10,4. (González-Díez et al., 2016).

Desde el punto de vista climático, aparecen dos dominios climáticos importantes (Página Web: Facultad de Ciencias. Universidad de Cantabria, 2013). En las áreas que van desde las cumbres hasta los 1.500 m.s.n.m. (laderas medias), predomina el dominio Orocantábrico. Laderas abajo, entre las laderas medias y el fondo del valle, aparece el dominio del Mediterráneo, (Cano, 1999; Gutiérrez et al., 2010; Alonso del Val et al., 2012). En las cimas las temperaturas que pueden ser negativas, incluso en verano. Sin embargo, en las partes bajas de los valles las temperaturas de verano son altas, superior a 20 ºC; mientras que en invierno descienden por debajo de 5 ºC. La duración media del período de heladas en la zona del deslizamiento es de 4-7 meses. Por encima de 1.800 m.s.n.m. no es sorprendente que pueda registrarse precipitación en forma de nieve incluso en verano (Página Web: Facultad de Ciencias. Universidad de Cantabria, 2013). En las zonas de cumbres la precipitación media anual puede sobrepasar los 1900 mm. No obstante, en las laderas medias bajas, las precipitaciones medias registradas presentan un gran contrate con las registradas en las cimas alcanzando máximos próximos a 1.000 mm a media ladera e inferiores a 700 mm en las zonas bajas, con un número de días de lluvia que oscila entre 90-120 días. Los valores máximos de precipitación registrados se localizan en otoño, invierno y finales de la primavera, con intensidades mayores de 50 mm/24 horas. Por otra parte, el período seco se sitúa en verano, con una longitud media de entre 3 y 4 meses (Página Web: Facultad de Ciencias. Universidad de Cantabria, 2013).

5 METODOLOGÍA

La metodología desarrollada en este Trabajo de Fin de Máster se presenta en un diagrama de flujo en la Figura 5.1

Parte de la recopilación de la información base de la zona de estudio, fundamentalmente: Vuelos fotogramétricos *AdHoc* (DCITYMAC); mapa geológico-

Geomorfológico (Gobierno de Cantabria, DCITYMAC); además del resto de la información bibliográfica requerida para la preparación de la memoria, y el estudio del problema planteado.

A continuación, se realiza un trabajo campo-gabinete, primero para la confirmación y validación de la información base recopilada, como las unidades geológicas; y segundo, para la medida de algunos de los parámetros necesarios para la simulación de caídas de rocas como tipos de rocas, tamaños, etc., que permitan acotar los parámetros a usar en los modelos, así como validar los mismos.

Posteriormente, a partir de las imágenes procedentes de vuelos *AdHoc* se realiza un tratamiento de las mismas mediante técnicas de fotogrametría digital, en una estación fotogramétrica digital (EFD), empleando el programa SOCET SET V.5.2. Mediante los modelos estereoscópicos digitales obtenidos (MStD) con este tratamiento e imágenes se ha llevado a cabo la restitución de vectores geomorfológicos, validados posteriormente gracias a los datos obtenidos en el trabajo de campo. Paralelamente, se ha generado un modelo digital de elevaciones (MDE) de alta resolución espacial (0,5 x 0,5 m) para la extracción de los perfiles topográficos de las trayectorias analizadas.

La información obtenida de los tres pasos anteriormente mencionados se ha incorporado aun SIG Sistema de Información Geográfica (SIG); se ha construido una GeoDataBase (GDB) en el entorno de ArcGis (ArcGis V10.4) en este caso. Los datos de los perfiles de caídas de rocas (corredores), obtenidos del MDE generado por fotogrametría, han sido tratados mediante un pequeño programa diseñado por el autor para poder ser incorporados al programa de simulación de caída de rocas. El programa utilizado para la simulación ha sido RocFall V5.0 (RocScience) cuya licencia de educación está en poder del Departamento de Ciencias de la Tierra y Física de la materia Condensada, y se puede emplear en este tipo de trabajos académicos. Los resultados de las caídas de rocas simuladas se han introducido de nuevo en ArcGis para construir los modelos de riesgo s.l., usando nuevamente un algoritmo diseñado por el autor. Principalmente, se han creado mapas de susceptibilidad, amenaza y de riesgo específico; que corresponden con el objetivo general del presente trabajo. Como consecuencia del análisis de los modelos obtenidos se proponen una serie de medidas de mitigación del nivel de riesgo obtenido para desprendimientos, así como recomendaciones para la gestión del espacio.

Respecto a las herramientas fotogramétricas, hay que indicar que las imágenes del vuelo empleado corresponden al año 2013, y poseen una resolución espacial (*Ground Sample Distance*, GSD) de 0.2 m y es a color (bandas: azul, verde y rojo); contienen además una banda de Infra rojo cercano, así como una pancromática, sumando un total de 5 bandas; con una

resolución espectral que va desde los 300 hasta los 800 μm. Éstas han sido tratadas fotogramétricamente con anterioridad a la realización del presente estudio por el DCITYMAC. Se ha elegido estas imágenes por la fiabilidad obtenida en la geometría del vuelo. En términos generales, la metodología que se empleó para su triangulación sigue la presentada en (González-Díez et al., 2013). En una primera operación, se llevó a cabo una orientación absoluta de las imágenes tomando los datos de su foto-centro y ángulos omega, Phi y Kappa siguiendo las propuestas presentadas en la literatura (Novak 1992; Devenecia et al. 1996; Kersten and Haering 1997; Kersten 1999; Mikhail et al. 2001). El RMS de la primera triangulación obtenida es de 0,03 en planimetría y 0,05 en altimetría. Posteriormente, en una segunda operación; se obtuvieron nuevos puntos para el apoyo de las mismas mediante técnicas GPS. Los puntos medidos fueron elementos del relieve, fácilmente identificables en las imágenes. El RMS de la nueva aero-triangulación es de 0,027 en planimetría y 0,03 en altimetría; no obstante, considerando los errores de propagación las precisiones finales son 0,029 en planimetría y 0,04 en altimetría. Con dicho modelo se llevó a cabo todo el trabajo de riesgos. Los MStD que han sido empleados en este proyecto, tanto para la cartografía como para el análisis geomorfológico, permitieron obtener una panorámica de la zona más inaccesible del deslizamiento, donde predominan los desprendimientos. Mediante el mismo, se obtuvo un MDE de alta precisión (0,5 x 0,5 m), utilizando técnicas de extracción automática de puntos, basadas en métodos de correlación de imágenes (Ackerman 1996; Krzystek and Wild 1998; Cory and McGill 1999).

El programa usado para la simulación de caídas de rocas ha sido RocFall. Para comenzar a utilizar el software, hay que incorporar un perfil topográfico del área de estudio indicando el tipo de superficie en cada tramo del mismo. La identificación de cada tipo de terreno se lleva a cabo mediante de los coeficientes de restitución normal (R_N) y tangencial (R_T), además de su ángulo de fricción (Phi) y la rugosidad. El programa incorpora la posibilidad de cálculo automático de la rugosidad a partir de los parámetros R_N y R_T. Una vez realizado este proceso sobre el perfil se debe introducir el punto de partida del modelo, o zona de inicio del desprendimiento, donde habrá que indicar la masa del bloque que se quiera lanzar en cada simulación. Es posible hacer variaciones de los datos de entrada y de las propiedades de los materiales; y de esta manera se pueden hacer análisis de sensibilidad y comparar los resultados.

Una de las tareas más laboriosas en el presente Trabajo es la de pasar los perfiles topográficos de los corredores desde la EFD hasta RocFall y, posteriormente de este a ArcGis. Para comenzar, se dibujan las trayectorias en el foto-restituidor corrigiendo la elevación de los puntos del mismo para obtener la geometría más fiable posible. Tras haber hecho esto con todos los corredores, se exporta un archivo shape a ArcGis y se introducen las coordenadas de cada uno de los puntos de estas trayectorias. A continuación, estos datos son tratados mediante un pequeño algoritmo gracias a hojas de cálculo para obtener las coordenadas finales bidimensionales X (distancia) e Y (elevación), para introducir este perfil a RocFall.

Una de las partes interesantes de la metodología presentada en este trabajo, es la caracterización de los corredores, así como de los bloques desprendidos. De los primeros, hay que obtener la rugosidad, así como cuál es el tamaño típico que se localizada en su interior. De los segundos hay que caracterizar el tamaño, el tipo de roca. La medida del volumen del bloque se ha llevado a cabo a partir de la aproximación propuesta por Guzzetti et al. (2009), el cual relaciona el volumen (V_L) y el área (A_L) de la siguiente forma:

$$V_L = 0.074 x A_L^{1.450}$$

Esta ecuación permite estimar el volumen de masas rocosas individuales de la ladera cuando el área es conocida, Y a partir de la densidad del material determinar el peso del material del material que es la variable utilizada en el modelo.

Tanto las aproximaciones de Guzzetti et al. (2009), para evaluar el tamaño del bloque, como los coeficientes de restitución y rozamiento (Tabla 5.1, ver Anejo) se han usado en primera aproximación. Dentro del contexto de este tipo de ejercicio didáctico (Trabajo de Fin de Master), tiene sentido emplear dichas consideraciones. Máxime si los objetivos generales son muy ambiciosos. Por supuesto, en otro ejercicio de mayor envergadura científica se requiere de una medida de ambos parámetros sobre los materiales que aparecen en el terreno.

En este trabajo, tal y como se indica en el Planteamiento del Problema, se ha considerado como tamaño mínimo 0,001 m³. Todos los bloques superiores a ese tamaño se han identificado y cartografiado mediante la EFD. Posteriormente, en el campo se han realizado test de validación de las medidas.

Figura 5.1. Diagrama de flujo de la metodología

Página 29 de 205
6 RESULTADOS – DISCUSIÓN

A continuación, se presentan todos los resultados obtenidos en el presente Trabajo relativos a los objetivos anteriormente marcados.

6.1 ANÁLISIS GEOMORFOLÓGICO

Conviene tener presente que los trabajos cartográficos realizados se basan en las imágenes del año 2013, previamente descritas, con el fin de evaluar la ocurrencia temporal del proceso. Los resultados del inventario geológico-geomorfológico realizado se presentan en la Figura 6.1 y 6.2. Mediante los trabajos de campo y foto-restitución digital se realizó una comprobación de las unidades del sustrato y cartografía de afloramientos que aparecen en el cuerpo del deslizamiento (lutitas devónicas, olistolitos y otras litologías del Grupo Potes) que son importantes para la caracterización del coeficiente de restitución y rugosidad del recubrimiento por el que trascurren los bloques desprendidos desde la corona. En el cuerpo del deslizamiento se ha localizado un afloramiento de las lutitas devónicas (Figura 6.3.A) de pequeña extensión (445 m²). Los materiales del Grupo Potes afloran a lo largo de la corona y flanco occidental del deslizamiento con una superficie de 721 m² (Figura 6.3.B).

Alejandro Lara Hidalgo

Figura 6.1. Mapa geológico-geomorfológico

Página 31 de 205

Figura 6.2. Modelo de rasgos geomorfológicos cartografiados en la superficie del Deslizamiento de Sebrango

Página 32 de 205

Mediante muestras recogidas en el campo se determinó en el laboratorio la densidad de las principales unidades descritas. Así, las lutitas devónicas presentan densidades de 2315 kg/m³; mientras que las cuarcitas, pizarras y calizas del Grupo Potes dan valores más elevados de 2680 Kg/m³. Las muestras procedentes del depósito (fundamentalmente materiales inferiores al tamaño arena) aportan valores de 1980 kg/m³. Los valores de las lutitas devónicas son un poco más bajos que los que ofrece la literatura, probablemente debido a la descompresión que han tenido estos materiales por efecto de la erosión.

Figura 6.3. A, afloramiento de lutitas devónicas sobre el cuerpo del Deslizamiento de Sebrango. B, materiales del Grupo Potes presentes en los cantiles de la corona del Deslizamiento de Sebrango

En la Figura 6.2 se presenta una cartografía de tipo geomorfológico de los rasgos más relevantes correspondientes a los desprendimientos existentes (coronas, corredores, zonas de acumulación de bloques, escarpes, áreas con cobertera vegetal). Se han identificado 5 zonas de despegue de desprendimientos situadas en la corona del Deslizamiento de Sebrango. La superficie total afectada por dichas coronas es suprior a 1900 m². La unidad más pequeña se encuentra en la parte central de la corona y posee una superficie de 127 m²; mientras que la mayor, situada en la parte occidental de la corona, tiene más de 600 m². En la zona oriental de la corona aparece una cicatriz de despegue que está relacionada con la reactivación de 2013, o con otra reactivación anterior, pero que no es fuente de desprendimientos de roca actualmente. En esta zona aparecen, además, manchas de recubrimiento vegetal (Figura 6.4) lo que indica cierto grado estabilidad en el terreno sobre el que se desarrollan.

Figura 6.4. Vegetación cercana al flanco oriental

Al pie de las zonas de despegue aparecen conos de derrubios de menor importancia; formados por aquellos bloques que no se han podido desplazar por el cuerpo del deslizamiento, al no disponer de energía para ello. Granulométricamente en este tipo de conos de pie de cantil dominan los tamaños grava-arena (Figura 6.5). Los percentiles máximos medidos se sitúan en torno a 1.4 m³; mientras que los percentiles de tamaño más pequeño están en torno a 0,001 m³ (tamaño mínimo elegido en este proyecto); el tamaño más frecuente, dentro éstos tiene un volumen inferior al 0,08 m³.

Figura 6.5. Pie de cantiles

Se han identificado 13 corredores de descenso de bloques (Figura 6.2). Las distancias medias alcanzadas por los mismos son de cerca 650 m de longitud. El corredor más largo posee

750 m de longitud. La amplitud media de los corredores está en el entorno a metro y medio; aunque en varios ejemplos de confluencias de corredores, se han generado canales con amplitudes entorno a los 6 metros. Estas canales presentan perfiles en forma de "v" con calados (profundidad de la canal) del orden de 1,8 metros de máximo (Figura 6.6). Estos corredores presentan un recubrimiento irregular de grandes bloques. Desde un punto de vista textural prensan cierto grado de envejecimiento puesto que hay un número importante de bloques con aristas pulidas y romas, fruto, probablemente, de la erosión causada al rozar el contra la superficie durante el transporte (Figura 6.7). Los tamaños medios que presenta el decil de los mayores bloques es de 0,05 m³; mientras que el mayor tamaño es de 14,01 m³; aunque el mínimo tamaño medido en los corredores es de 0,014 m³.

Figura 6.6. Corredor

Figura 6.7. Detalle del grado de maduración textural de los bloques presentes en los corredores.

Se han localizado dos zonas de acumulación de bloques (conos de derrubios) a lo largo del deslizamiento (Figura 6.2). La zona superior situada a una altura de 860 m.s.n.m. tiene una superficie de 1179 m² que posee un área de expansión de hasta 6300 m², para ser ocupada por

nuevos bloques que se incorporen a ella. Los bloques estudiados presentan una amplia variedad de tamaños (Figura 6.8). Los mayores 1,51 m³, mientras que el mínimo está en 0,011 m³; con una moda de 0,26 m³. La segunda zona, situada en las proximidades del Barrio de Sebrango, a unos 760 m.s.n.m. tiene una superficie aproximada de 21.000 m². El mayor de los bloques que ha alcanzado esta zona es de 21,57 m³, con dos modas (7-0,11 m³). Como el número de bloques que ha alcanzado esta zona es muy reducido no se ha generado una forma típica de cono de derrubios como en la zona superior.

Figura 6.8. Cono de derrubios superior (2013)

Sobre el resto del cuerpo del deslizamiento, aparece un rosario de bloques sueltos dispersos que con toda probabilidad son fruto de otros desprendimientos no ligados a los corredores descritos. El bloque con de mayor tamaño es de 1,74m³ y la moda es de 0,05 m³

Adicionalmente y a través de criterios geomorfológicos se ha identificado el área excluida de cualquier alcance de bloques desprendidos por caídas (Figura 6.9) durante el tiempo de realización de este trabajo (desde el año 2013 hasta el presente), así como la zona como mayor frecuencia de aparición de estos procesos elementos. La aparición de bloques en el área azul de la figura muestra aquéllos que ocurrieron con anterioridad a este trabajo, probablemente durante la fase paroxismal de 2013.

Figura 6.9. Detalle de la superficie del Deslizamiento de Sebrango afectada por desprendimientos desde 2013

La Figura 6.10 muestra el detalle cartográfico de todos los bloques sueltos identificados usando las técnicas descritas en el trabajo. En esta figura se presenta, además un ejemplo de medida de bloque, así como el histograma de la distribución de bloques medidos (Tabla 9.1, Anexo). En su conjunto se han identificado 839 bloques con tamaños que oscilan entre los 0,011 m³ y los 21, 57 m³. Esta población presenta dos modas. La primera, que se ha denominado de tamaños menores, con 0,05 m³; la segunda, denominada de tamaños mayores, con 0,2 m³. Salvo con técnicas de campo, no se han podido identificar bloques más pequeños que los descritos. Su abundancia es enorme, desbordando las expectativas de inventario planteadas. Geomorfológicamente, no se puede diferenciar si son producto de llegada de ese tipo de tamaños o de la fragmentación de otros mayores a lo largo del descenso. Por lo que se ha considerado que en toda la zona de estudio es altamente probable la presencia de dicho tamaño

Figura 6.10. Mapa de la superficie del Deslizamiento de Sebrango en la que se han cartografiado los bloques mayores de 0.01 m3 (25 kg) (areas en rojo). Inferior izquierda, histograma de la población de bloques medida. Superior Derecha, detalle de la medida de un bloque mediante las técnicas descritas.

Página 38 de 205

6.2 SIMULACIONES

En total, se han usado cincuentaiocho perfiles topográficos para llevar a cabo la simulación de los desprendimientos. Trece de ellos, son los presentados anteriormente. Corresponden a los corredores identificados por criterios geomorfológicos claros (Figura 6.2), es decir, en los que es evidente la zona de desprendimiento, corredor y acumulación. Otros doce se han creado con el fin de validar la presencia de bloques en otras zonas del cuerpo y pie del Deslizamiento de Sebrango (Figura 6.11). Adicionalmente, se han creado otros 33 perfiles topográficos de la cabecera del deslizamiento, con el fin de validar las zonas de presencia de bloques (área naranja) descritas en la Figura 6.9. A estos últimos se les ha denominado trayectorias para distinguirlos (Figura 6.12).

Los datos geométricos de todos los corredores se han extraído de la EFD y de los MDE generados. En cada uno de los perfiles se ha identificado el tipo de recubrimiento atendiendo a los datos anteriormente descritos. Este tipo de recubrimiento está definido por su coeficiente de restitución normal y tangencial. Los valores de éstos se han tomado de las tablas comentadas anteriormente (Tabla 9.3, Anexo). Alguno de estos corredores está representado por más de 6.500 puntos espaciales, con una longitud de hasta 700 metros. En los treinta y tres perfiles de la cabecera se ha lanzado exclusivamente un bloque de tamaño similar al percentil cien (21,57 m3), los resultados de la simulación se presentan en los Anejos (Figura 6.13). Para el resto de los perfiles se han considerado los siguientes tamaños de bloque: 0,001 m³ (mínimo bloque buscado); 0,05 m³ (primer tamaño modal), 0,2 m³ (primer tamaño modal); 21,57 m³ (máximo tamaño de bloque medido); que corresponden con los siguientes pesos 2,5 kg, 125 kg; 5 TN y 54 TN, utilizando el valor medio de los materiales del sustrato anteriormente descritos (2,5 TN/m³). Además, se han considerado que las velocidades de partida para todos los perfiles de este trabajo (horizontal y vertical) son cero. En cada uno de los corredores descritos se han lanzado 100 rocas. Lo que da un total de 149 modelos de simulación de desprendimiento evaluados en este trabajo. Un ejemplo de uno de los corredores se presenta en la Figura 6.13; mientras que el conjunto de todas las simulaciones realizadas se presenta en los anexos del trabajo (Figura 9.1 y 9.2).

Figura 6.11. Doce corredores adicionales

Figura 6.12. Treinta y tres trayectorias en la cabecera

Total Kinetic Energy Envelope

Horizontal Location of Rock End-points

Figura 6.13. Ejemplo de simulación de caída de rocas con RocFall (Corredor 8)

Respecto a los bloques de 2,5 kg, como se puede apreciar en los anexos, la probabilidad que alguno de estos bloques alcance las proximidades del pueblo de Sebrango es nula, aunque pueden alcanzar la zona central de la cabecera usando como vía de acceso, el corredor 17 (Figura 6.14). Este bloque llega con una energía de 45 julios. En este caso, el bloque podría causar daños graves a un transeúnte que no lleve puesto ni casco ni protecciones. En el resto de los corredores, habría que tener presente los fragmentos desprendidos solamente en las inmediaciones de la corona, donde una roca de 2,5 kg puede alcanzar una energía de 93 J, ocasionando daños muy graves. La frecuencia de aparición de fragmentos superiores a 0,001 m3 por encima de la cota que marca el extremo del corredor 17 es muy elevada, lo que indica que el modelo es plausible. No obstante, la presencia de fragmentos por debajo de este nivel es también abundante. Al carecer de una muestra de dicha población no es posible validar con rotundidad que el modelo propuesto sea correcto.

Respecto a los bloques de 125 kg, hay una probabilidad del 2% de que rocas con este tamaño alcancen las proximidades del pueblo de Sebrango usando como vía de acceso el corredor 24 (Figura 6.15). Estos bloques llegar con una energía de 175 julios. En este caso, causarían daños fatales a cualquier transeúnte que sea alcanzado por él, lleven o no medidas de protección. En otros 5 perfiles, es probable que rocas del mismo tamaño alcancen las inmediaciones del pueblo, con probabilidades de entre 2% y 4%, y energías entre 275 J y 4.650 KJ, respectivamente. La validación de este modelo se produce a través de los bloques de tamaño equivalente identificados en el territorio. Existen 578 bloques con un volumen en el entorno de 0.05 m³ sobre toda la superficie del deslizamiento. Como se aprecia en la figura 6.17 hay una razonable coincidencia entre los bloques identificados y el modelo. No obstante, existen dos zonas dispares. La primera y más notoria se da en la supuesta zona libre de actividad. Los bloques presentes sobre esta zona proceden de la reactivación de 2005, la cual disponía de otra fisonomía de corona, que permití la llegada de los mismos a esta zona. Este planteamiento es coincidente con el presentado por González Díez et al., 2016. La segunda, zona de discrepancia se sitúa en el pie del Deslizamiento de Sebrango. En este caso hay un modelo que explica la llegada de bloques a través de un corredor central. Presencia de bloques fuera de este corredor puede ser debido a un defecto en la estimación de corredores o a que han sido portados por otro tipo procedo de ladera (deslizamiento). Este último planteamiento es también coincidente con la propuesta de González Díez et al., 2016. Sin embargo, no invalidad el razonamiento implícito en el modelo, porque es posible que bloques de este volumen se desprendan de la corona y alcancen las proximidades del pueblo.

Figura 6.14. Modelo de alcance de bloques de 2,5 kg

Figura 6.15. Modelo de alcance de bloques de 125 kg

Página 44 de 205

Respecto a los bloques de 5000 kg (Figura 6.16), como se puede apreciar en los perfiles hay una probabilidad de 2% de que alcancen las proximidades del pueblo de Sebrango usando como vía de acceso los corredores 29, 9 y 8. Estos bloques llegan con una energía de entre 140 J y 2.457 KJ. En este caso, causarían daños fatales a cualquier transeúnte e incluso a cualquier vehículo o estructura que alcance a su paso. En otros 4 perfiles, rocas del mismo tamaño podrían alcanzar las inmediaciones del pueblo, con probabilidades del orden a un 2%. Las energías recogidas están entre 1.014 KJ y 5.245 KJ. Puede observarse como la energía con la que llegan estos fragmentos aumenta considerablemente en comparación con los anteriormente descritos. Además, al tratarse de bloques de mayores dimensiones, la superficie que abarcan los mismos también es mucho mayor. Existen 1498 bloques con un volumen en el entorno de 0.2 m³ sobre toda la superficie del deslizamiento. Como se aprecia en la Figura 6.16, hay una razonable coincidencia entre los bloques identificados y el modelo. No obstante, existen las mismas zonas dispares que en el modelo anterior, que se pueden explicar por los mismos razonamientos, sin invalidar el modelo. Existen 17 bloques de tamaño equivalente al muestreado con el modelo, identificados en el cuerpo del depósito. En este caso la distribución espacial de los bloques presenta una notable coincidencia con el modelo.

Respecto a los bloques de 54.000 kg (Figura 6.17); poseen una probabilidad de 2,5% de que bloques de este tamaño alcancen las proximidades del pueblo de Sebrango usando como vía de acceso los corredores 26, 9, 23 y 28. Estos bloques llegan con una energía de entre 683 J y 6.038 KJ. Evidentemente, en estas simulaciones los posibles daños serían devastadores. En los perfiles 15 y 24 se aprecia como rocas de este tamaño alcanzan las inmediaciones del pueblo, con una probabilidad del 1%. Las energías recogidas para estas están entre 76,9 KJ y 164 KJ. Como resulta lógico, al tener una mayor energía potencial, estos grandes bloques alcanzan la zona del pueblo con mayor facilidad y a través de un mayor número de los corredores simulados.

Figura 6.16. Modelo de alcance de bloques de 5000 kg

Figura 6.17. Modelo de alcance de bloques de 54.000 kg

6.3 MODELOS DE RIESGO

En el presente apartado se incorporan y comentan los diferentes modelos de riesgo obtenidos en el presente trabajo, ya sea de forma individual, para cada tamaño de bloque analizado, como la suma de todos ellos para la obtención de un modelo global.

6.3.1 Modelos de susceptibilidad

Las figuras 6.14, 6.15, 6.16, 6.17 ilustran las zonas del territorio con una probabilidad espacial de ocurrencia de bloques con pesos de 2,5 kg, 125 kg; 5 TN y 54 TN, respectivamente. Cada uno de éstas puede considerarse en sí misma, un modelo de susceptibilidad específico para cada uno de los tamaños, es decir para cada peso de bloque desprendido. Tamaño que se puede entender como un indicador de una determinada magnitud. La combinación de los cuatro modelos en uno solo constituye un nuevo modelo de susceptibilidad. En este caso, un modelo multi-magnitud (Figura 6.18) que puede interpretarse como un mapa de susceptibilidad para cualquier desprendimiento. Como se aprecia en la figura, no toda la superficie abarcada por el corredor es susceptible. Lo es la corona del deslizamiento, y a continuación parte de algunos tramos de los 29 corredores; algunos de los cuales llegan hasta las inmediaciones del pueblo. Dentro de estos últimos, los valores de probabilidad son relativamente altos, porque es posible alcanzar las zonas bajas del pie del deslizamiento, con las rocas de mayor tamaño. El área externa se ha considerado de nula susceptibilidad, ya que no hay evidencia de simulación que justifique la llegada de bloques a las mismas. Los existentes en las zonas superiores del flanco oriental corresponden, razonablemente, a reactivaciones previas a las estudiadas con otra geometría de la ladera y corona.

Figura 6.18. Modelo de susceptibilidad

Página 49 de 205

6.3.2 Modelo de amenaza

Para la obtención de un modelo de amenaza a partir del mostrado anteriormente de susceptibilidad, se debe incorporar el valor de la frecuencia temporal, tal y como se explicó en el planteamiento del problema. Para ello, se va a utilizar la información aportada por investigadores del DCITYMAC de la Universidad de Cantabria. Ellos han registrado en los últimos 3 años 7 reactivaciones por desprendimientos que han afectado a la cabecera del Deslizamiento de Sebrango. Cuatro reactivaciones se registraron tras la fase de junio de 2013, entre el otoño de 2013 y primavera 2014. Dos reactivaciones más se registraron en 2015 y una a principios de 2016. Siguiendo la expresión de la probabilidad temporal presentada en el Planteamiento del Problema, la probabilidad de ocurrencia de uno de los desprendimientos descritos durante el primer año se puede expresar con sus frecuencias relativas, siendo de 4/7 en el primer año; en el segundo año es de 2/7; en el tercer año es de 1/7. Una fórmula de evaluar esa probabilidad es a través de una probabilidad media. Así, la probabilidad de que se produzca al menos un desprendimiento anualmente es:

$$Pa = \frac{\frac{4}{7} + \frac{2}{7} + \frac{1}{7}}{3} = \frac{1}{3} = 0,33$$

Luego la probabilidad en tres años es de:

$$P(3a\tilde{n}os) = 1 - (1 - Pa)^3 = 1 - (1 - 0.33)^3 = 0.7$$

Ahora bien, en el resto de la zona no hay evidencias de reactivación dentro de ese lapso de tiempo, por lo que su probabilidad debiera ser cero. Sin embargo, en este trabajo se ha considerado que existe una mínima probabilidad del 10% de que a esa unidad del territorio lleguen bloques desprendidos desde la corona, por motivo de estar siempre del lado de la seguridad.

La incorporación de los datos de la probabilidad temporal a los del modelo de susceptibilidad, permite obtener un modelo de amenaza de desprendimientos. Este modelo se presenta en la Figura 6.19. Éste muestra claramente un incremento de los valores en la zona de la cabecera y parte superior del cuerpo del Deslizamiento de Sebrango, hasta la localización de la zona de acumulación superior. En la misma figura, se presentan también los bloques cartografiados, con el fin de validar el modelo obtenido. Como se aprecia hay presencia de bloques en las zonas verdes, que se atribuyen a reactivaciones previas. Asimismo, se observa una población importante de bloques de gran tamaño en la parte inferior del cuerpo del Deslizamiento de 2013. Esta afirmación se

Página 50 de 205

constata ya que no hay evidencias de llegada de bloques a esta zona durante el tiempo en el cual se ha llevado a cabo la investigación presentada en este trabajo. Sin embargo, esta circunstancia no invalida la posibilidad de que algún nuevo desprendimiento, cuyo tamaño sea en torno a 1 m³ pueda alcanzar el pueblo, como señala el modelo.

Figura 6.19. Modelo de amenaza

Página 52 de 205

6.3.3 Modelo de vulnerabilidad

A continuación se presentan los modelos de vulnerabilidad obtenidos para cada tamaño de bloque analizado. Estos modelos han sido confeccionados a partir de las energías registradas en los diferentes perfiles de simulación (Figura 9.2, Anexo). Llama la atención como la mayoría de los perfiles muestran un nivel de baja energía, inferior a 10J, al comienzo del perfil. Mientras que en la mayoría de los perfiles la perdida de energía final se produce por efecto de la rugosidad del terreno. Esta situación es simétrica para la energía situada entre 10J-175J. Lo que fluctúa es la amplitud de estas zonas dentro de cada perfil debido a la topografía del terreno. Entre los extremos descritos, aparece un área de elevada energía cinética. Cualquier fragmento rocoso que contacte a un transeúnte le ocasionará daños fatales.

El modelo de vulnerabilidad obtenido para bloques de 2.5 kg se muestra en la Figura 6.20. Se observa una menor energía en las zonas más próximas a los puntos de despegue, pero rápidamente estos pequeños fragmentos adquieren una gran energía (rojo) sin apreciarse apenas intervalos de media energía. Los bloques que recorren más distancia se frenan en la parte central de la cabecera manteniendo una energía media de 10-175 J, que tiende a disiparse.

El modelo de vulnerabilidad obtenido para bloques de 125 kg se muestra en la Figura 6.21. Pueden observarse como en la mayoría de la superficie por la que discurren estos bloques, su energía contenida es muy elevada (rojo). Incluso los bloques que alcanzan las inmediaciones del pueblo, lo hacen con gran energía. Solamente se aprecian zonas menos vulnerables en las zonas de despegue y por algunos puntos de rugosidad elevada situados en los corredores, a lo largo del cuerpo del deslizamiento.

El modelo de vulnerabilidad obtenido para bloques de 5.000 kg se muestra en la Figura 6.22. En él puede observarse como, en la mayoría de los corredores por donde discurren los bloques, la energía de los fragmentos desplazados es muy elevada (rojo). Al igual que los anteriores, se aprecian algunas zonas de baja en los puntos de despegue de las caídas y por la parte central del cuerpo del deslizamiento, junto cerca de la zona en la que se encuentra el cono de derrubios superior. Probablemente, este efecto es debido a la pérdida de energía que sufren estos bloques por impacto contra los ya decantados en esta zona de acumulación. No obstante, los bloque que son capaces de traspasar esta barrera, discurriendo hasta las proximidades del pueblo; donde llegan con energías que oscilan en un rango medio y bajo, por lo que los daños producidos por estos fragmentos en el pueblo serían limitados.

Figura 6.20. Modelo de vulnerabilidad de los bloques de 2,5 kg

Página 54 de 205

Figura 6.21. Modelo de vulnerabilidad de los bloques de 125 kg

Página 55 de 205

Figura 6.22. Modelo de vulnerabilidad de los bloques de 5.000 kg

Página 56 de 205

Considerando una hipótesis conservadora, es decir por el lado de seguridad, el modelo final de vulnerabilidad será el mismo que corresponde a los bloques de mayor tamaño, ya que serán los que abarquen una mayor área de influencia y los que se desprendan con mayores energías. Este modelo de vulnerabilidad corresponde, lógicamente al obtenido para los bloques de 54.000 kg, (Figura 6.23). Puede observarse que en la zona central del cuerpo del deslizamiento y la cercana al flanco occidental, los valores de energía fluctúan entre bajos (, < 10 J, amarillo) y medios (10-175 J, naranja), por lo que puede considerarse como la zona menos vulnerable para que los transeúntes puedan recorrer la superficie del deslizamiento, aunque sí, pueden sufrir daños por los bloques desprendidos, si no van debidamente equipados para protegerse de éstos. Por otro lado, los bloques que alcanzan las inmediaciones del pueblo llegan con menor energía en el lado occidental del pie, y con mucha mayor en la zona oriental del mismo. En definitiva, tal y como se aprecia en la Figura 6.23, existe una gran superficie del deslizamiento en la cual, la energía que lleva un bloque a lo largo de su trayectoria es muy elevada (175 J-10.000 KJ) y, por tanto, resultaría mortal para cualquier transeúnte que camine por la zona.

Figura 6.23. Modelo de vulnerabilidad de los bloques de 54.000 kg

Página 58 de 205

6.3.4 Modelo de riesgo específico

El objetivo final del presente trabajo, tal y como se dijo anteriormente, es el de obtener un modelo de riesgo específico. El modelo, tal y como se mostró en el apartado de planteamiento del problema, resulta de la multiplicación de la probabilidad condicionada de que un elemento sea golpeado por un desprendimiento, de una determinada magnitud (es decir, la vulnerabilidad), por la probabilidad de llegada de un futuro bloque (es decir, la amenaza). El resultado se muestra en la Figura 6.24.

Como puede observarse en esta figura, la superficie bajo riesgo supone más de la mitad del deslizamiento. Exactamente, de los 86.553 m² que abarca el Deslizamiento de Sebrango, 53.496 m² pueden verse afectados por el riesgo específico de sufrir el paso de un bloque desprendido, es decir, un 61,8 % del deslizamiento. La zona con mayor riesgo es la parte occidental de la cabecera, sobre todo los puntos más cercanos a las zonas de despegue de estos bloques. Esta zona de mayor riesgo abarca una superficie de unos 5.000 m², lo que corresponde con un 6 % de la zona afectada por el deslizamiento. La siguiente superficie afectada por un riesgo considerable, es la más cercana al flanco oriental en la parte superior del cuerpo del deslizamiento. Esta zona supone cerca de un 1,5 % del deslizamiento. Por otro lado, existen corredores que avanzan a través de la parte central del cuerpo del deslizamiento con mayor riesgo específico, alcanzando incluso alguno de ellos las inmediaciones del pueblo. Aparentemente, el riesgo es mínimo cerca del pueblo, sin embargo si se diese la situación de ocurrencia del paso de un bloque desprendido por esta zona, los daños sería catastróficos. Además, se debe tener en cuenta que las zonas bajo riesgo cercanas al pueblo, se deben a la posibilidad de llegada de los mayores bloques encontrados en el deslizamiento de hasta 54.000 Kg (hecho poco probable temporalmente), lo que supone prácticamente la reducción de cualquier posibilidad de escapatoria debido a la envergadura del bloque desprendido.

Figura 6.24. Modelo de riesgo especígico

Página 60 de 205

6.3.5 Medidas de mitigación

Tras el análisis del modelo de riesgo generado se pueden plantear medidas de mitigación para poder recorrer la zona afectada. Estas pueden ser de dos tipos: estructurales o no estructurales.

Las medidas no estructurales son más económicas. Limitaciones de acceso al paso, uso de casco, arneses, instalación de anclajes para arneses, etc. Estas medidas de mitigación pueden utilizarse en las zonas "seguras" dentro del deslizamiento. Tal y como se observa en la Figura 6.24, estas zonas se sitúan en las inmediaciones del flanco occidental del deslizamiento (a la izquierda del pueblo), y llegan hasta el cono de derrubios superior. Adicionalmente, se incluye el área situada junto al flanco oriental del deslizamiento (desde el pie hasta la cabecera); y asimismo la parte oriental de la cabecera, donde se observa la aparición de cierta vegetación. Aunque en estas zonas no haya riesgo de desprendimientos, conviene aconsejar del uso de cascos homologados ya que pueden rodar bloques situados sobre la superficie de estos flancos. Este tipo de casco suele soportar un impacto de hasta 44 J (Tecnología Minera, 2016), por lo que este equipo de protección solamente sería útil en estas zonas de riesgo nulo, y en la parte centro-occidental del cuerpo, donde la energía de los bloques varía entre los 10 y 175 J. Otra medida a implantar en esta zona de menor riesgo podría ser la colocación de anclajes para arneses debido a la gran pendiente que existe en algunos tramos del deslizamiento. Al menos, si no se puede restringir el paso, estos anclajes permiten la reducción del riesgo de resbalones y caídas de los transeúntes que recorran la zona. En el resto de las zonas, y especialmente en las inmediaciones de la cabecera, se debería restringir el paso mediante obstáculos físicos como señales con carteles informando del riesgo.

Algunas de las medidas estructurales existentes hoy en día se muestran en la Figura 6.25. En este caso, el mayor inconveniente es que la mayoría de estas medidas requieren de un anclaje en el cuerpo del Deslizamiento de Sebrango. Un problema que hace prácticamente insalvable su instalación es la dificultad de cimentar las mismas. Pues para ello, se requiere de un conocimiento detallado de las características geomecánicas del cuerpo del deslizamiento. Este tipo de datos es difícil de tomar en áreas muy activas y dinámicas del relieve, donde el grado de actividad es muy elevado como es el caso de estudio. Sin embargo, se podría plantear la posibilidad de colocación de un sistema de redes simples o ancladas en las zonas con mayor riesgo de desprendimientos del escarpe principal. Este sistema permite la acumulación de los bloques desprendidos al pie del cantil, evitando su propagación deslizamiento abajo y, por lo tanto, reduciendo el riesgo en la zona del cuerpo. Un ejemplo de este sistema se muestra en la Figura 6.26. Por otro lado, en las inmediaciones del pueblo existen al menos tres vías de alcance de bloques; dos en la parte central del pie del deslizamiento, y una en la parte oriental del mismo. Tal y como se dijo antes, la implantación de cualquier medida estructural a lo largo del deslizamiento es complicada; sin embargo, se pueden colocar trincheras, barreras o pantallas en esta zona cercana al pueblo para mitigar los efectos de un posible desprendimiento. Existen dos tipos de pantallas dinámicas: elásticas y elasto-plásticas. Las primeras pueden trabajar con rangos cercanos a los 500 KJ de energía, mientras que las elasto-plásticas permiten hasta 5.000 KJ (IBEROBARRERA, 2004). Como ya se señaló anteriormente, los mayores bloques pueden llegar al pueblo con una energía de 6.038 KJ como máximo, por lo que si se plantea la colocación de este tipo de estructuras, deberían ser pantallas dinámicas elasto-plásticas. Un ejemplo de estas pantallas se muestra en la Figura 6.27. Además de estas pantallas, Se debería estudiar la posibilidad de construir trincheras y escolleras como las presentadas en la figura 6.28. Estas medidas podrían ser una solución interesante para absorber gran parte de la energía posible de los bloques que llegaran a alcanzar el lugar.

	Acción	Finalidad	Aplicaciones típicas
Pasivas	Trincheras – diques al pie del talud.	Interceptar y parar rocas de peque- ñas y grandes dimensiones.	Protección de carreteras situadas al pie de taludes de corte.
	Barreras contra la caída de ro- cas de elevada energía de disi- pación.	Interceptar y parar rocas de varias dimensiones.	Protección de carreteras y con- strucciones al pie de taludes naturales.
	Estructuras contra la caída de ro- cas de red realizadas en sitio. Sistemas de redes o mallas.	Interceptar y parar rocas de varias dimensiones. Interceptar y parar rocas durante la caída. Controlar la caída de rocas, permi- tiendo su acumulación al pie de la ladera.	Cierre de coladeros en paredes rocosas. Protección de taludes en carreteras y edificaciones también en con- junto con trincheras – diques.
Activas	Refuerzos superficiales.	Consolidar la parte superficial del bloque rocoso y contener en la ladera eventuales desprendimientos.	Protección de taludes en carreteras y edificaciones.
	Soil nailing.	Estabilización global del talud.	Manipulación de frentes de exca- vación.
	Consolidaciones profundas con anclajes y tirantes.	Estabilización de cuerpos rocosos de grandes proporciones, singularmente o en grupo, susceptibles a movimien- tos sísmicos.	Taludes rocosos naturales, frentes de excavación.

Figura 6.25. Tipo de medidas estructurales contra caídas de roca (Tomado de MACCAFERRI, 2008)

Figura 6.26. Sistema de redes en cantiles (Tomado de MACCAFERRI, 2008)

Figura 6.27. Pantallas dinámicas elasto-plásticas (Tomado de IBEROBARRERA, 2004)

Figura 6.28. Sistema de terraplén contra caída de rocas (Tomado de MACCAFERRI, 2008)

7 CONCLUSIONES

Se ha podido validar la hipótesis presentada en este trabajo, siendo posible llevar a cabo modelos de riesgo específico de desprendimientos de roca utilizando de manera combinada herramientas de fotogrametría digital, SIG y modelos de simulación de propagación de caídas de roca.

Se ha conseguido verificar que mediante la fotogrametría digital, es posible la obtención de parámetros geomorfológicos lo suficientemente precisos para un estudio de esta índole, tales como zonas de acumulación de bloques, corredores, escarpes, etc. Sin embargo, en lo que se refiere a cartografiado de bloques de roca, no se consigue restituir bloques por debajo de los 0,01 m³, lo que supone un problema si se precisa un estudio granulométrico más preciso. Esta dificultad puede resolverse a partir de técnicas de objeto cercano, mejoradas con granulometrías de bloques.

Se ha demostrado que para bloques de mayor tamaño, la EFD es válida. Además, a través de esta técnica, se ha conseguido generar un MDE preciso (0,5 m x 0,5 m) muy útil para la generación de algunos perfiles topográficos requeridos.

Mediante el programa RocFall se ha podido llevar a cabo la simulación de cada uno de los corredores considerados, obteniendo resultados convincentes. Los modelos obtenidos se han validado mediante los datos geomorfológicos cartografiados mediante la EFD. Por lo tanto, se demuestra la validez de los vectores obtenidos mediante técnicas fotogramétricas a la hora de llevar a cabo simulaciones de este estilo. Sin embargo, en un futuro sería interesante la utilización de programas tridimensionales con capacidad para simulación de avalanchas de rocas, ya que mediante RocFall solamente pueden cubrirse ciertas zonas de la superficie a analizar al tener que simular corredor a corredor, lo que puede suponer que el usuario desprecie algunos recorridos que puedan realizar los bloques desprendidos.

Mediante la fotogrametría digital, se ha podido obtener la información requerida para poder generar los diferentes modelos de riesgo marcados como objetivo en el presente trabajo, por lo que se confirma la validez y utilidad de este procedimiento para tal fin. Del mismo modo, el programa RocFall ha permitido la extracción de datos relativos a las caídas de roca suficientes para la generación de estos modelos. Estos modelos, en un análisis ulterior, quedarán mejor definidos incorporando otras variables de entrada medidas en el terreno que tales como los coeficientes de restitución, ángulo de fricción y rugosidad.

Mediante el programa ArcGis se han podido crear los modelos de riesgo incorporando la información obtenida tanto en RocFall como en la EFD. Además, este programa SIG permite incorporar modelos con datos extraídos de otros entornos de programación, como los presentados en este trabajo o modelos dinámicos.

Los modelos obtenidos son de gran utilizada en la gestión ambiental de espacios naturales como el analizado; aportando una idea solvente de las zonas más o menos peligrosas para los transeúntes o estructuras situadas en las proximidades.

8 **BIBLIOGRAFÍA**

Alvac, 2015. *Desprendimientos en la carretera N-631: emergencia en Cantabria.* [En línea] Available at: <u>http://www.alvac.es/desprendimientos-encarretera-emergencia-cantabria</u> [Último acceso: 24 06 2016].

Anon., 2003. User guide. Isomap & Rotomap: 3D Surface Modelling & Rockfall Analysis., s.l.: Geo&Soft International.

Antonio Abellán Fernández, J. M. V. F., 2003. UTILIZACIÓN Y VALIDACIÓN DE UN MODELO DE SIMULACIÓN EN 3D para el cálculo de la peligrosidad residual por caídas de rocas sobre el tren cremallera de Vall de Núria., s.l.: s.n.

Ayala-Carcedo, 2002. Una reflexión sobre los mapas de susceptibilidad a los movimientos de ladera, su naturaleza, funciones, problemática y límites. *Instituto geológico y minero de España,* Volumen 4, pp. 7-20.

Azzoni et al., 1995. Experimentally gained parameters, decisive for rockfall analysis.. *Rock Mechanics and Rock Engineering*, 28(2), pp. 111-124.

Baltsavias, 1999. Airborne laser scanning: basic relations and formulas,. *ISPRS*, Volumen 54, pp. 199-214.

Bassato et al. , 1985. Programma di simulazione per lo scoscendimento di blocchi rocciosi.. *Dendronatura*, 6(2), pp. 34-36.

Bonachea et al., 2006. ¿Cambio geomorfológico global? Implicaciones para la evaluación y predicción del riesgo de deslizamientos (CAMGEO). *X Reunion Nacional de geomorfología (Cádiz).*

Bozzolo y Pamini , 1986. Modello matematico per lo studio della caduta dei massi.. Laboratorio di Fisica Terrestre ICTS. Dipartimento Pubblica Educazione, p. 89.

Brideau et al., 2012. Stability analysis of the 2007 Chehalis lake landslide based on long-range terrestrial photogrammetry and airborne LIDAR data. *Landslides*, Volumen 9, pp. 75-91.

Brunsden, 1973. The application of systems theory to the study of mass movement. *Geologia Applicata e Idrogeologia*, Volumen 8, pp. 185-207.

Canuti et al., 2004. Landslide activity as a geoindicator in Italy: significance and new perspectives from remote sensing. *Environ Geol*, Volumen 45, pp. 907-919.

Cardenal et al., 2008a. Close range digital photogrammetry, Remote Sensing and Spatial Information. *Sciences*, Volumen 37, pp. 235-240.

Cardenal et al., 2008b. Slope Instability evolution by close range photogrammetric techniques. *33th. International Geological Congress.*
Cardenal et al., 2008c. Detección y cuantificación de cambios geomorfológicos a partir del análisis de vuelos históricos. *GeoFocus*, Volumen 9, pp. 150-165.

Cardenal et al., 2009. Integration of terrestrial laser scanner and photogrammetric techniques for monitoring rock avalanches. *7th International International.*

Casagli et al., 2010. Monitoring, prediction, and early warning using ground-based radar interferometry. *Landsildes*, Volumen 7, pp. 291-301.

Casson et al., 2003. Seventeen years of the "La Clapière" landslide evolution analysed from ortho-rectified aerial photographs. *Eng Geol,* Volumen 68, pp. 123-139.

Chandler, 1999. Effective application of automated digital photogrammetry for geomorphological research. *Earth Surf Processes*, Volumen 24, pp. 51-63.

CIDS, 1981. Modelo de procesado de datos para la ordenación territorial. *Centro de Investigación y Desarrollo de Santander.*

Corominas, 1988. Criterios para la confección de mapas de peligrosidad de movimientos de ladera. *Riesgos geológicos.*

Corominas et al., 2005. Quantitative assessment of the residual risk in a rockfall protected area. *Landslides*, Volumen 2, pp. 343-357.

Corominas, J., 2006. EL CLIMA Y SUS CONSECUENCIAS SOBRE LA ACTIVIDAD DE LOS MOVIMIENTOS DE LADERA EN ESPAÑA. *Revista C&G*.

Cruden & Varnes, 1996. Landslide types and processes. *US National Research Council*, Special Report 247(Chapter 3), pp. 36-275.

Das, B. M., 2001. Fundamentos de Ingeniería Geotécnica, s.l.: s.n.

Descouedres y Zimmermann , 1987. Three-dimensional dynamic calculation of rockfalls.. *Proceedings of the Sixth International Congress of Rock Mechanics, Montreal, Canada*, pp. 337-342.

Dewitte et al., 2008. Tracking landslide displacement by multi-temporal DTMs: a combined aerial stereophotogrammetric and LiDAR approach in western Belgium. *Eng Geol*, Volumen 99, pp. 11-22.

Diario, E., 2016. Un desprendimiento de rocas y tierra corta la carretera nacional N-623 a la altura de Corvera de Toranzo. [En línea] Available at: <u>http://www.eldiario.es/norte/cantabria/ultima-hora/desprendimiento-</u> <u>carretera-N-623-Corvera-Toranzo 0 493101171.html</u> [Último acceso: 24 06 2016].

Dikau et al., 1996. Landslide recognition: Identification, movement, and causes. *Wiley, New York*, p. 210p.

Dorren, 2003. A review of rockfall mechanics and modelling approaches. *Progress in Physical Geography*, 27(1), pp. 69-87.

Enfermería de urgencias, 2016. Los cascos, su utilidad para prevenvión de acccidentes. [En línea]

Available at: [Último acceso: 16 09 2016].

Evans y Hungr, 1993. The assessment of rockfall hazard at the base of talus slopes. *Canadian Geotechnical Journal*, Issue 30, pp. 620-636.

http://www.enferurg.com/anexos/cascos.pdf

Fabbri y Chung, 2004. A Software Approach To Spatial Predictions Of Natural Hazards And Consequent Risks. *WIT Transactions on Ecology and the Environment,* Volumen 77.

Falcetta, 1985. Un nouveau mod"ele de calcul de trajectoires de blocs rocheux. Revue Francaise de Geotechnique. *Revue Francaise de Geotechnique*, Volumen 30, pp. 11-17.

Farina et al., 2006. Permanent scatterers for landslide investigations: outcomes from the ESA-SLAM project. *Eng Geol,* Volumen 88, pp. 200-217.

Fernández et al., 2009. First delimitation of areas affected by ground deformations in the Guadalfeo River Valley and Granada metropolitan area (Spain) using DinSAR technique. *Eng Geol,* Volumen 105, pp. 84-101.

Ferrer y García López-Davadillo, 2005. *Análisis de la vulnerabilidad por movimientos de ladera*. *Desarrollo de las metodologías para evaluación y Cartografía de la Vulnerabilidad.* s.l.:s.n.

Gary et al., 1972. Glossary of geology. American Geological Institute, Washintong DC.

Gili, J. H. A. C. J., 1993. Contribution to the strudy of mass movements: mudflow slides and clock fall simulation, s.l.: s.n.

González de Vallejo, 1988. LA IMPORTANCIA SOCIOECONOMICA PE LOS RIESGOS GEOLOGICOS EN ESPAÑA. *Riesgos Geológicos*.

González de Vallejo, 2002. Ingeniería Geológica. Prentice Hall, p. 175.

González Valle, F. E., 2014. *Evaluación del riesgo en la remodelación de la carretera autonómica CA-170.* Máster Oficial en Técnicas de Análisis, Evaluación y Gestión sostenile de procesos y riesgos naturales ed. Universidad de Cantabria: Facultad de Ciencias.

González-Díez, 1995. *Cartografía de movimientos de ladera y su aplicación al desarrollo temporal de los mismos y de la evaluación del paisaje.* Tesis doctoral ed. Oviedo: Universidad de Oviedo.

González-Díez, 2005. Consideraciones sobre la relación entre movimientos de ladera y el Clima. *VI Simposio Nacional sobre Taludes y Laderas Inestables. UPC Valencia,* Volumen 3, pp. 1103-1130.

González-Díez et al., 2009a. A methodological approach for the analysis of landslide changes using LIDAR and ADP. 7th International Conference on Geomorphology (ANZIAG).

González-Díez et al., 2009b. Identification of latent faults using a radon test. *Geomorphology,* Volumen 110, pp. 11-19.

González-Díez et al., A., 2014. Development of a methodological approahc for the accurate measurement of slope changes due to landslides, using digital photogrammetry. *Landslides,* Volumen 11, pp. 615-628.

González-Díez et al., 2016. Tres años después de la reactivación del argayo de Sebrango (Cantabria). XIV Reunión Nacional de Geomorfología.

Gray y Leiser, 1982. Biotechnical slope protection and erosion control. *Van Nostrand Reinhold, New York.*

Gutiérrez, 2008. Geomorfología. Zaragoza: Universidad de Zaragoza.

Guzzetti et al., F., 2002. STONE: a computer program for the three-dimensional simulation of rock-falls. *Computers and Geosciences*, Issue 28, p. 1079–1093.

Guzzetti et al., 2009. Landslide volumes and landslide mobilization rates in Umbria, central Italy. *Earth and Planetary Science Letters*, 279(3-4), pp. 222-229.

Hegg y Kienholz, 1995. Determining paths of gravity-driven slope processes – the 'Vector Tree Model'.. *Geographic information systems in assessing natural hazards,* pp. 79-92.

Heim, 1932. Bergsturz und Menschenleben. Beiblatt zur Vierteljahrschrift der Naturforschenden. *Gesellschaft in Zürich,* Issue 77, p. 218.

Heredia et al., 1990. *Mapa geológico-minero de Cantabria*. Santander: Diputación Regional de Cantabria- Instituto tecnológico geominero de España.

Herrera et al., 2011. Analysis with C- and X-band satellite SAR data of the Portalet landslide area. *Landslides*, Volumen 8, pp. 195-206.

Hervás, J., 2016. Elaboración de inventarios nacionales de movimientos de ladera en España y Chipre para la evaluación de su susceptibilidad a escalas nacional y europea. *Comprendiendo el relieve: del pasado al futuro,* Issue 978-84-9138-013-9, pp. 237 - 242.

Highland & Bobrowsky, 2008. The landslide handbook: a guide to understanding landslides. *U.S. Geological Survey*, Volumen Circular 1325, p. 129p.

Hoek, 1987. Rockfall—a program in BASIC for the analysis of rockfall from slopes.. *Golder* Associates.

Hungr et al., 2014. The Varnes classification of landslide types, an update. *Landslides,* Issue 11, pp. 167-194.

IBEROBARRERA, 2004. Protección pasiva contra desprendimientos, s.l.: s.n.

Instituto Nacional de Seguridad e Higiene en el Trabajo, 2008. *Cascos de protección; Guías para la elección, uso y mantenimiento,* s.l.: s.n.

International Geotechnical Society's UNESCO Working Party on World Landslide Inventory (WP/WLI), 1995. A suggested method for describing the rate of movement of a landslide. *Bull Inter Assoc Eng Geol*, Volumen 52, pp. 75 - 78.

Jaboyedoff et al., 2012. Use of LIDAR in landslide investigations: a review. *Nat Hazards,* Volumen 61, pp. 5-28.

Jones et al. , 2000. Colorado Rockfall Simulation Program Version 4.0.. Colorado Department of Transportation, Colorado Geological Survey, p. 127.

kääb, 2002. Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data.. *ISPRS Int Soc Photograme,* Volumen 57, pp. 39-52.

Keylock y Domaas, 1999. Evaluation of topographic models of rockfall travel distance for use in hazard applications. *Arctic, Antarctic, and Alpine Research,* 31(3), pp. 312-320.

Kimura y Yamaguchi, 2000. Detection of landslide areas using radar interferometry. *Photogramm Eng Rem*, Volumen 63, pp. 337-344.

Kirkby y Statham, 1975. Surface stone movement and scree formation. *Journal of*, Volumen 83, pp. 349-362.

Lied, 1977. Rockfall problems in Norway. ISMES Publication, Issue 90, pp. 51-53.

MACCAFERRI, 2008. Sistemas contra la caída de rocas. Necesidades y Soluciones, s.l.: s.n.

MAPFRE,	2015.	Informe.	[En	línea]
Available	at:	<u>https://ww</u>	vw.mapfre.com/co	<u>rporativo-es/</u>
[Último acceso: 1	.4 09 2016].			

Meissl, 1998. Modellierung der Reichweite von Felsstürzen. Fallbeispeile zur GISgestützten Gefahrenbeurteilung aus demBeierischen und Tiroler Alpenraum. *Innsbrucker Geografischen Studien,* Volumen 28, p. 249.

Mora et al., 2003. Global positioning systems and digital photogrammetry for the monitoring of mass movemovements: application to the Ca' di Malta landslide (northern Apennines, Italy).. *Eng Geol*, Volumen 68, pp. 103-121.

Morgan et al., 1992. Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. *Cambridge University Press.*

Morgenstern, 1992. The evaluation of slope stability; 25 year perspective. In: Seed RB, Boulanger RW (eds). ASCE Geotechnical Special Publication, 31(1), pp. 1 - 26.

Novak, 1975. Rectification of digital imagery. *Photogrammetric engineering and remote sensing*, 58(3), pp. 339-344.

Olague et al., 2004. The study of temporal occurrence of landslides using digital photogrammetry. *32nd International Geology Congress,* Volumen 216.

Página Web: Facultad de Ciencias. Universidad de Cantabria, 2013. Deslizamiento deSebrango.[Enlínea]Availableat:http://www.argayosebrango.unican.es/[Último acceso: 20 09 2016].

Páginaweb:ROCSCIENCE,2016.ROCFALL.[Enlínea]Availableat:https://www.rocscience.com/rocscience/products/rocfall[Último acceso:18 09 2016].

Palmquist y Bible, 1980. Conceptual modelling of landslide distribution in time and space. Bull. *I.A.E.G.*, Volumen 21, pp. 178-186.

Panizza, 1987. Neotectonic research in applied geomorphological studies. Z. Geomorph. N. F., Volumen 63, pp. 173-211.

Paronuzzi y Artini , 1999. Un nuovo programma in ambiente Windows per la modellazione della caduta massi. *Geologia Tecnica e Ambientale*, 99(1), pp. 13-24.

Peng, B., 2000. *Rockfall Trajectory Analysis - Parameter Determination and Application*. Canterbury: University of Canterbury.

Pfeiffer y Bowen, 1989. Computer simulation of rockfalls. *Bulletin of the Association of Engineering Geologists*, 26(1), pp. 135-146.

Pfeiffer et al. , 1991. Colorado Rockfall Simulation Program Users Manual for Version 2.1.. *Colorado Department of Transformation, Denver*, p. 127.

Pfeiffer, T. J. H. J. A. D., 1995. *Colorado Rockfall Simulation Program*, s.l.: Colorado School of Mines.

Piteau y Clayton , 1976. Computer Rockfall Model. In: Proceedings of the Meeting on Rockfall Dynamics and Protective Works Effectiveness, Bergamo, Italy, *ISMES Publication*, Volumen 90, pp. 123-125.

Power et al., 1996. Digital photogrammetric method for measuring horizontal surficial movements on the Slumgullion earthflow, Hinsdale County, Colorado. *Comput Geosci,* Volumen 22, pp. 651-663.

Remondo, 2001. Elaboración y validación de mapas de susceptibilidad de deslizamientos mediante técnicas de análisis espacial. Oviedo: Universidad de Oviedo.

Revuelta, E. S. M., 2015. *TFM: Influencia de las precipitaciones en la ocurrencia de los movimientos de ladera en Cantabria*. Cantabria: Universidad de Cantabria.

desprendimientos de roca para espacios naturales

RocScience, 2003. Advanced Tutorial. RocNews Fall.

RocScience,2016.RocFall.[Enlínea]Availableat:https://www.rocscience.com/rocscience/products/rocfall[Último acceso: 18 09 2016].

Santamaría, J., 1996. Protección Contra Desprendimientos de Rocas: Pantallas Dinámicas, s.l.: Ministerio de Fomento.

Schuster, R. L., 1988. Socioeconomic significance of landslides. *Landslides: Investigation and Mitigation. Washington (DC): National Academy Press. Transportation Research Board Special Report,* Issue 247, pp. 12-35.

Scioldo , 1991. La statistica Robust nella simulazione del rotolamento massi.. *Proceedings Meeting La meccanica delle rocce a piccola profondit"a, Torino, Italy,* pp. 319-323.

Skempton & Hutchinson, 1969. Stability of natural slopes and embankment. *International conference of soil mechanics and*, Volumen State of the Art volume, pp. 291 - 340.

Stevens, 1998. ROCFALL: A TOOL FOR PROBABILISTIC ANALYSIS DESIGN OF REMEDIAL MEASURES AND PREDIC'MON OF ROCKFALLS. University of Toronto: s.n.

Stevens, 1998. RocFall: a tool for probabilistic analysis, design of remedial measures and prediction of rockfalls.. *Thesis, Department of Civil Engineering, University of Toronto. Ontario, Canada*, p. 105.

Strozzi et al., 2005. Survey and monitoring of landslide displacements by means of Lband satellite SAR interferometry. *Landslides*, Volumen 2, pp. 193-201.

TecnologíaMinera,2016.CascosdeSeguridad.[Enlínea]Availableat:http://www.tecnologiaminera.com/tm/d/novedad.php?id=109[Último acceso:01102016].

Terzaghi, 1950. Mechanics of landslides (Berkey volume). *Geological Society of America*, pp. 83 - 124.

Tianchi, 1983. A mathematical model for predicting the extent of a major rockfall.. *Zeitschrift für Geomorphologie*, 27(4), pp. 473-482.

Topppe, 1987. Terrain models – a tool for natural hazard mapping. *IAHS Publication*, Issue 162, pp. 629-638.

Tralli et al., 2005. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards.. *ISPRS Int Soc Photograme*, Volumen 59, pp. 185-198.

UNDRO, 1991. Mitigation Natural Disaster Phenomena, Effects and action. Manual for policy makers and Planners.. *Office of the UN Disaster..*

UNDRO, 1991. Vulnerability and risk assessment.

Varnes, 1978. Slope movement types and processes. *Transportation research board, National Academy of Sciences,* pp. 11 - 33.

VÉLEZ, I. F. A., 2014. DESPRENDIMIENTO DE ROCAS EN LADERAS UNA GUÍA PARA LA EVALUACIÓN DEL RIESGO EN VÍAS, s.l.: UNIVERSIDAD EAFIT.

Walstra et al., 2004. Time for change-quantifying landslide evolution using historical aerial photographs and modern photogrammetric methods. *International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences*, Volumen 34, pp. 475-481.

Yamagishi et al., 2004. Estimation of the sequence and size of the Tozawagawa landslide, Niigata, Japan, using aerial photographs.. *Landslides*, Volumen 1, pp. 299-303.

Yilmaz et al., 2008. A method for mapping the spatial distribution of RockFall computer program analyses results using ArcGIS software. *Bull Eng Geol Environ*, Volumen 67, pp. 547-554.

desprendimientos de roca para espacios naturales

9 ANEXOS

A. INFORMACIÓN COMPLEMENTARIA A LA MEMORIA

Tabla 9.1. Tamaños de los bloques medidos mediante las técnicas descritas. Se han identificado 839 bloques.

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (T
0	4778162 852	359775 292	1.085	0.083	208 206	0.2
1	4778165 714	350775 373	0.821	0.000	130 080	0.2
2	4778161 693	359778 769	0.722	0.046	115 252	0.1
3	4778163 683	359772 305	0.861	0.06	148 81	0.1
4	4778166.54	359763 667	1 014	0.076	188 895	0.1
5	4778137 657	359726.369	0.439	0.022	56.039	0.0
6	4778165.04	359723 225	0.853	0.059	146 812	0.1
7	4778106 083	359706 158	0.000	0.067	166 085	0.1
8	4778201.845	359708 222	0.902	0.065	163 736	0.4
0	4778206 71	350710 085	0.276	0.000	28 553	0.0
10	4778203 521	350714 662	0.275	0.015	36.32	0.0
11	4778207.602	350726.806	0.320	0.018	45 545	0.0
12	4778108 657	350761 115	6.513	1 12	2700 818	0.0
12	4778180.660	350763 208	2 025	0.351	2799.010	0.9
14	4778187 013	350783 107	2.925	0.351	662 17	0.0
14	4770107.913	350776 051	0.949	0.200	145 700	0.0
16	4770101.131	250702 012	1 220	0.030	202 626	0.
10	4770101.709	250704 010	1.559	0.113	1425.020	1.4
10	4770107.294	350703 325	4.000	0.07	727 766	0.7
10	4770167.000	250700 600	1 /20	0.291	212 121	0.1
20	4770155.175	250797 742	2 430	0.120	660.55	0.0
20	4770157.062	3509/01.142	2.420	0.200	1100 950	1
21	4770104.000	250900 524	3.01	0.476	211 766	0.5
22	4770100.044	359609.024	1.455	0.120	047 151	0.0
20	4770149.000	250010 005	1.245	0.379	204 247	0.5
24	4770105.097	250924 009	1.345	0.114	204.347	0.2
20	4770400 4	359024.900	1.145	0.09	224.040	0.2
20	4//0109.4	309824.406	1.091	0.145	362,000	0.0
21	4770193.220	359920.065	4.273	0.606	1019.000	0.6
20	4770470 500	309923.426	2.207	0.233	000.100	0.0
29	4778173.003	309946.186	0.885	0.062	100.033	0.
30	4770404.055	309960.676	1.77	0.169	423.293	0.4
31	4778194.200	309902.026	2.009	0.203	008.610	0.0
32	4770102.904	300032.900	1.90	0.195	407.310	0.4
24	4770445 202	360022.309	1.201	0.106	204.940	0.4
25	4770110.000	20002045	2.212	0.245	174 470	0.0
20	4770119.073	360062.043	0.90	0.07	1/4.4/9	0.
27	4770105.510	300000.200	1.002	0.039	140.730	0.
00	4770100.016	360005.716	1.014	0.175	400.741	0.4
20	4770103.091	260076 605	1.002	0.003	207.010	0.4
39	4770004.044	300070.095	1.072	0.104	409.109	0.4
40	4770094.941	360069.275	1.114	0.007	210.001	0.2
41	4778095.024	360064.094	0.429	0.022	34.203	0.0
42	4//808/.58	300064.867	0.823	0.006	139.573	0
43	4770000 450	300055,738	1.30/	0.115	207.098	0.2
44	4770405 504	360055.086	1.641	0.152	3/9.281	0.3
40	4770000 450	360075.381	0.624	0.037	93.449	0.0
46	4//8088.158	360086.532	1.423	0.123	308.497	0.3
47	4//8089.21	360089.617	1.205	0.097	242.534	0.2
48	4//8067.676	360099.177	1.249	0.102	255.336	0.2
4.00	1770001015	000010102	~ ~ ~ ~ ~ ~			-

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
51	4778060.702	360136.287	1.514	0.135	337.572	0.338
52	4778062.022	360138.563	1.865	0.183	456.741	0.457
53	4778060.496	360143.12	2.155	0.225	563.157	0.563
54	4778053.829	360139.758	1.732	0.164	410.382	0.41
55	4778045.506	360154.285	1.005	0.074	186.229	0.186
56	4778049.811	360158.605	0.716	0.046	113.952	0.114
57	4778047.013	360136.909	1.049	0.079	198.244	0.198
58	4778046.53	360133.872	1.014	0.076	188.768	0.189
59	4777972.915	360170.074	12.411	2.853	7132.002	7.132
60	4777984.133	360183.865	8.911	1.764	4411.179	4.411
61	4777983.855	360199.98	3.012	0.366	915.133	0.915
62	4777983.719	360209.531	2.94	0.353	883.68	0.884
63	4777980.687	360208.616	7.923	1.488	3720.31	3.72
64	4778002.596	360214.531	1.358	0.115	288.181	0.288
65	4777986.781	360209.223	0.997	0.074	184.131	0.184
66	4777983.14	360212.156	0.487	0.026	65.184	0.065
67	4777991.8	360212.226	0.702	0.044	110.701	0.111
68	4777993.129	360213.914	0.598	0.035	87.79	0.088
69	4777960.109	360209.013	2.323	0.251	627.998	0.628
70	4778013.403	360210.428	1.248	0.102	255.121	0.255
71	4778031.422	360222.563	1.2	0.096	241.055	0.241
72	4778042.205	360226.954	4.772	0.713	1783.348	1.783
73	4778045.537	360120.605	7.267	1.313	3281.903	3.282
74	4778044.924	360124.938	7.254	1.309	3273.487	3.273
75	4778040.907	360106.443	5.09	0.783	1958.448	1.958
76	4778033.51	360105.876	2.17	0.228	568.816	0.569
77	4778049.93	360115.44	2.75	0.321	801.887	0.802
78	4778054.936	360117.943	1.088	0.084	209.054	0.209
79	4778050.885	360131.882	1.789	0.172	429.878	0.43
80	4778049.611	360133.119	2.521	0.283	706.95	0.707
81	4778054.93	360136.872	1.126	0.088	219.677	0.22
82	4778057.365	360140.53	1.019	0.076	190.077	0.19
83	4778054.822	360146.617	0.915	0.065	162.626	0.163
84	4778061.584	360140.373	1.444	0.126	315.045	0.315
85	4778064.014	360133.958	0.466	0.024	61.111	0.061
86	4778065.686	360133.21	0.332	0.015	37.412	0.037
87	4778064.71	360132.543	0.311	0.014	34.044	0.034
88	4778084.232	360120.305	1.071	0.082	204.407	0.204
89	4778082.258	360063.073	2.651	0.304	760.533	0.761
90	4778085.073	360064.616	0.656	0.04	100.306	0.1
91	4778082.627	360074.503	0.898	0.063	158.343	0.158
92	4778084.258	360076.603	1.309	0.109	273.43	0.273
93	4778094.122	360068.234	0.64	0.039	96.912	0.097
94	4778158.864	360030.026	5.11	0.788	1969.812	1.97
95	4778149.161	360035.286	1.662	0.155	386.366	0.386
96	4778152.684	360029.615	1.229	0.1	249.478	0.249
97	4778194.89	359937.638	2.298	0.247	618.386	0.618
98	4778190.357	359941.437	0.722	0.046	115.352	0.115
99	4778197.859	359862.726	4.868	0.734	1835.869	1.836
100	4778213.774	359868.734	5.092	0.784	1959.446	1.959

101 4778192.17 359829.090 1.439 0.125 313.539 0.31 102 4778178.2749 359864.717 1.397 0.12 300.321 0.3 104 4778162.749 359862.66 0.573 0.033 82.473 0.032 105 4778076.729 360104.371 4.887 0.674 1684.383 1.684 106 4778051.701 360151.741 0.687 0.043 107.334 0.105 108 4778051.701 360123.165 1.986 0.2 500.37 0.51 109 4778075.395 360123.346 1.107 0.086 214.479 0.214 111 4778107.595 360052.219 1.252 0.103 256.351 0.256 112 4778105.374 359829.007 3.73 0.499 1247.953 1.244 114 4778152.03 359829.007 3.73 0.499 1247.953 1.244 114 4778132.075 359804.511 0.84 0.057	FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
102 477814 909 359752.339 3.881 0.529 1321601 1322 103 4778182.749 359664.717 1.397 0.12 300.321 0.3 104 4778176.575 3598682.66 0.573 0.033 82.473 0.082 105 4778055.729 360143.371 4.587 0.674 1684.333 1684 106 4778051.701 360151.741 0.687 0.043 107.334 0.407 109 4778070.579 360122.751 0.805 0.054 135.196 0.133 110 4778070.579 360123.346 1.107 0.066 214.479 0.214 111 4778102.736 360052.219 1.252 0.103 256.361 0.256 113 4778152.03 359820.007 3.73 0.499 1247.953 1.244 114 4778152.03 359829.007 3.73 0.499 1247.953 1.244 115 4778152.05 359729.005 1.706 0.161 <t< th=""><th>101</th><th>4778192.17</th><th>359829.989</th><th>1.439</th><th>0.125</th><th>313.539</th><th>0.314</th></t<>	101	4778192.17	359829.989	1.439	0.125	313.539	0.314
103 4778182.749 359864.717 1.997 0.12 300.321 0.5 104 4778076.729 360104.371 4.587 0.674 1684.383 1.684 106 4778055.069 360137.229 1.948 0.195 4465.342 0.462 107 4778051.071 360121.741 0.687 0.043 107.334 0.107 108 4778075.797 360122.751 0.805 0.054 135.196 0.133 110 4778075.95 360123.346 1.107 0.0865 162.67 0.166 112 4778102.736 360052.219 1.252 0.103 256.351 0.256 113 4778150.288 35982.007 3.73 0.499 1247.953 1.244 116 4778130.867 35980.9752 0.967 0.071 145.729 0.144 116 4778132.752 35972.9205 1.708 0.684 0.028 70.401 0.077 117 4778150.285 35973.006 0.987	102	4778174.999	359752.339	3.881	0.529	1321.691	1.322
104 4778176.575 359880.266 0.673 0.033 82.473 0.062 105 47780576.729 360104.371 4.587 0.674 1684.383 1.684 106 4778055.1701 360151.741 0.687 0.043 107.334 0.107 108 4778051.374 360123.165 1.986 0.2 500.37 0.5 109 4778070.579 360122.751 0.805 0.054 135.196 0.133 110 4778070.579 360123.346 1.107 0.086 214.479 0.214 111 4778102.736 360052.219 1.252 0.103 256.351 0.256 113 4778152.03 359829.007 3.73 0.499 1247.953 1.244 116 4778137.221 359809.752 0.967 0.071 176.302 0.174 118 4778137.221 359804.511 0.845 0.058 145.014 0.145 118 4778127.158 359730.006 1.038 0.074	103	4778182.749	359864.717	1.397	0.12	300.321	0.3
105 4778076.729 360104.371 4.587 0.674 1684.383 1.684 106 4778065.069 360137.229 1.948 0.195 486.342 0.486 107 4778057.701 360151.741 0.687 0.043 107.334 0.107 108 4778057.395 360123.165 1.996 0.2 500.37 0.5 109 4778075.395 360123.346 1.107 0.065 162.67 0.135 112 4778107.53 36002219 1.252 0.103 256.351 0.256 113 4778163.514 359971.363 3.292 0.416 1041.144 1.044 114 4778130.883 359823.178 0.84 0.057 143.729 0.144 116 4778130.867 359823.178 0.844 0.058 145.014 0.144 116 4778132.752 35972.9205 1.708 0.161 402.165 0.420 119 4778152.023 35973.008 1.038 0.078 <t< td=""><td>104</td><td>4778176.575</td><td>359889.266</td><td>0.573</td><td>0.033</td><td>82.473</td><td>0.082</td></t<>	104	4778176.575	359889.266	0.573	0.033	82.473	0.082
106 4778065.069 360137.229 1.948 0.195 486.342 0.486 107 4778051.701 360121.741 0.687 0.043 107.334 0.107 108 4778051.374 360122.751 0.805 0.054 135.196 0.135 110 4778075.395 360123.346 1.107 0.086 214.479 0.214 111 4778107.05 360052.219 1.252 0.103 256.351 0.256 112 4778105.314 359829.007 3.73 0.499 1247.953 1.242 115 4778150.088 359823.178 0.84 0.057 143.729 0.144 116 4778137.21 359804.511 0.845 0.058 145.014 0.145 118 4778127.158 359730.008 1.038 0.076 195.32 0.195 120 4778126.502 359790.967 0.47 0.022 504.264 0.562 121 4778165.525 359709.971 0.63 0.038	105	4778076.729	360104.371	4.587	0.674	1684.383	1.684
107 4778051701 360151741 0.687 0.043 107.334 0.107 108 4778075.797 360122751 0.805 0.054 135.196 0.135 110 4778075.395 360123.346 1.107 0.086 214.479 0.214 111 4778102.753 360085.219 1.252 0.103 256.351 0.656 112 4778102.736 360085.219 1.252 0.103 256.351 0.256 113 4778102.736 359829.007 3.73 0.499 1247.953 1.244 116 4778130.88 359809.752 0.967 0.071 176.302 0.174 118 4778132.752 359729.205 1.708 0.058 145.32 0.402 119 4778126.502 35973.008 1.038 0.078 195.32 0.192 120 4778162.633 359709.067 0.47 0.025 61.464 0.062 122 4778162.652 359709.067 0.47 0.025 <td< td=""><td>106</td><td>4778065.069</td><td>360137.229</td><td>1.948</td><td>0.195</td><td>486.342</td><td>0.486</td></td<>	106	4778065.069	360137.229	1.948	0.195	486.342	0.486
108 4778051374 360123165 1.986 0.2 500.37 0.5 109 477807539 360122751 0.805 0.054 135.196 0.133 110 4778075395 360123346 1.107 0.065 162.67 0.163 111 4778107.05 360088.915 0.915 0.065 162.67 0.163 112 4778107.05 360082.219 1.252 0.103 256.351 0.256 113 4778150.088 359823.178 0.84 0.057 143.729 0.144 116 4778130.087 359809.752 0.967 0.071 176.302 0.176 117 4778137.221 359804.511 0.845 0.058 145.014 0.142 118 4778126.502 359730.08 1.038 0.076 195.32 0.197 120 4778126.502 359718.02 1.997 0.202 504.264 0.504 122 4778163.675 359768.255 1.125 0.088 2.919516<	107	4778051.701	360151.741	0.687	0.043	107.334	0.107
109 4778070.579 360122.751 0.805 0.054 135.196 0.135 110 4778075.395 360123.346 1.107 0.086 214.479 0.214 111 4778102.736 360052.219 1.252 0.103 256.351 0.256 112 4778102.736 360052.219 1.252 0.103 256.351 0.256 113 4778152.03 359829.007 3.73 0.499 1247.953 1.244 115 4778130.088 359823.178 0.84 0.057 143.729 0.144 116 4778132.21 359809.752 0.967 0.071 176.302 0.176 117 4778132.752 35973.008 1.038 0.078 195.32 0.195 120 4778162.502 35973.76 0.514 0.022 504.264 0.504 122 4778163.675 359709.067 0.47 0.025 61.864 0.062 123 4778163.675 359764.322 0.232 504.264	108	4778051.374	360123.165	1.986	0.2	500.37	0.5
110 4778075.395 360123.346 1.107 0.086 214.479 0.214 111 4778107.05 360088.915 0.915 0.065 162.67 0.163 112 4778102.736 360022.19 1.252 0.103 256.351 0.256 113 4778163.514 359971.363 3.292 0.416 1041.144 1.041 114 4778152.008 359829.007 3.73 0.499 1247.953 1.246 115 4778102.088 359823.178 0.84 0.057 143.729 0.144 116 4778138.087 359809.752 0.967 0.071 176.302 0.176 118 4778127.158 359733.008 1.038 0.078 195.32 0.196 120 4778126.502 359718.02 1.997 0.202 504.264 0.504 122 4778163.675 359769.2325 1.125 0.088 219.516 0.22 124 4778160.683 359776.277 2.875 0.342	109	4778070.579	360122.751	0.805	0.054	135.196	0.135
111 4778107.05 360088.915 0.915 0.065 162.67 0.163 112 4778102.736 360052.219 1.252 0.103 256.351 0.256 113 4778163.514 359929.007 3.73 0.499 1247.953 1.246 115 4778150.088 359823.178 0.84 0.057 143.729 0.144 116 4778130.087 359809.752 0.967 0.071 176.302 0.176 117 4778132.752 359729.205 1.708 0.161 402.165 0.402 119 4778126.502 35973.008 1.038 0.078 195.32 0.195 120 4778165.502 35973.0067 0.47 0.022 504.264 0.504 123 4778163.675 35976.2325 1.125 0.038 94.774 0.095 124 4778163.675 35976.277 2.875 0.342 855.577 0.856 127 4778150.401 359797.328 0.514 0.028 <	110	4778075.395	360123.346	1.107	0.086	214.479	0.214
112 4778102.736 360052.219 1.252 0.103 256.351 0.256 113 4778152.03 359829.007 3.73 0.499 1247.965 1.247.965 114 4778152.03 359809.752 0.967 0.071 176.302 0.176 117 4778132.087 359809.752 0.967 0.071 176.302 0.176 117 4778132.752 359729.205 1.708 0.161 402.165 0.402 119 4778127.158 35973.008 1.038 0.078 195.32 0.195 120 4778165.525 359709.067 0.47 0.022 504.264 0.504 122 4778165.675 359752.325 1.125 0.088 219.516 0.22 124 4778159.975 359766.232 1.777 0.174 425.672 0.452 125 4778150.01 359794.426 1.777 0.17 425.62 0.426 126 4778150.412 359799.173 0.999 0.074	111	4778107.05	360088.915	0.915	0.065	162.67	0.163
113 4778163.514 359971.363 3.292 0.416 1041.144 1.041 114 4778152.03 359829.007 3.73 0.499 1247.953 1.248 115 4778150.088 359823.178 0.84 0.057 143.729 0.144 116 4778137.221 359804.511 0.845 0.058 145.014 0.142 118 4778137.221 359804.511 0.845 0.058 1495.32 0.192 119 4778126.502 35973.008 1.038 0.078 195.32 0.192 120 4778162.331 359719.067 0.47 0.025 614.864 0.062 123 4778164.603 359709.067 0.47 0.025 614.864 0.062 124 4778163.675 35975.225 1.125 0.088 219.516 0.22 124 4778163.675 35976.6843 2.2 0.232 580.47 0.56 126 4778150.401 359794.426 1.777 0.17 4	112	4778102.736	360052.219	1.252	0.103	256.351	0.256
114 4778152.203 359829.007 3.73 0.499 1247.953 1.248 115 4778150.088 359823.178 0.84 0.057 1143.729 0.144 116 4778138.087 359809.752 0.967 0.071 176.302 0.176 117 4778132.752 359729.205 1.708 0.161 402.165 0.402 118 4778132.752 359731.76 0.514 0.028 70.401 0.070 120 4778165.253 359709.971 0.63 0.038 94.774 0.962 124 4778165.675 359752.325 1.125 0.088 219.516 0.22 125 4778160.083 359794.426 1.777 0.17 425.577 0.855 126 4778160.083 35979.77 2.875 0.342 855.577 0.856 127 4778150.401 35979.377 0.433 0.022 54.962 0.077 130 4778149.701 359791.845 0.789 0.052 <td< td=""><td>113</td><td>4778163.514</td><td>359971.363</td><td>3.292</td><td>0.416</td><td>1041,144</td><td>1.041</td></td<>	113	4778163.514	359971.363	3.292	0.416	1041,144	1.041
115 4778150.088 359823.178 0.84 0.057 143.729 0.144 116 4778138.087 359809.752 0.967 0.071 176.302 0.176 117 4778137.221 359804.511 0.845 0.058 145.014 0.145 118 4778132.752 359729.205 1.708 0.161 402.165 0.402 119 4778127.158 35973.008 1.038 0.078 195.32 0.195 120 4778162.502 359718.02 1.997 0.202 504.264 0.504 122 4778164.603 35979.971 0.63 0.038 94.774 0.092 124 4778164.603 35976.2325 1.125 0.088 219.516 0.22 126 4778160.083 359776.277 2.875 0.342 855.577 0.856 127 4778150.401 359799.426 1.777 0.17 425.762 0.426 128 4778149.701 359796.552 0.514 0.028 <t< td=""><td>114</td><td>4778152.203</td><td>359829.007</td><td>3.73</td><td>0.499</td><td>1247.953</td><td>1.248</td></t<>	114	4778152.203	359829.007	3.73	0.499	1247.953	1.248
116 4778138.087 359809.752 0.967 0.071 176.302 0.176 117 4778137.221 359804.511 0.845 0.058 145.014 0.145 118 4778132.752 359729.205 1.708 0.161 402.165 0.402 119 4778127.158 359731.76 0.514 0.028 70.401 0.07 120 4778126.502 359718.02 1.997 0.202 504.264 0.504 122 4778165.525 359709.071 0.63 0.038 94.774 0.095 124 4778163.675 359752.325 1.125 0.088 219.516 0.22 125 4778150.403 359776.27 2.875 0.342 855.577 0.856 126 4778150.401 359799.173 0.999 0.074 184.708 0.185 129 4778150.401 35979.7328 0.663 0.061 149.301 0.149 130 4778149.806 35979.2466 0.625 0.037 <	115	4778150.088	359823.178	0.84	0.057	143,729	0.144
117 4778137.221 359804.511 0.845 0.058 145.014 0.145 118 4778132.752 359729.205 1.708 0.161 402.165 0.402 119 4778127.158 359730.08 1.038 0.078 195.32 0.195 120 4778126.502 359731.76 0.514 0.028 70.401 0.07 121 4778165.252 359709.067 0.47 0.022 504.264 0.504 122 4778165.525 359709.071 0.63 0.038 94.774 0.092 124 4778163.675 359762.325 1.125 0.088 219.516 0.22 125 4778160.083 359776.277 2.875 0.342 855.577 0.856 126 4778160.043 35979.173 0.999 0.074 184.708 0.185 129 4778149.701 35979.35976.522 0.514 0.022 54.962 0.055 131 4778150.549 359777.377 0.433 0.022	116	4778138.087	359809.752	0.967	0.071	176.302	0.176
118 4778132.752 359729.205 1.708 0.161 402.165 0.402 119 4778127.158 35973.008 1.038 0.078 195.32 0.195 120 4778126.502 359731.76 0.514 0.028 70.401 0.07 121 4778165.525 359709.067 0.47 0.025 61.864 0.062 123 4778164.603 359779.971 0.63 0.038 94.774 0.095 124 4778163.675 359768.43 2.2 0.232 580.47 0.65 126 4778160.083 359776.277 2.875 0.342 855.577 0.856 129 4778150.401 359796.552 0.514 0.022 54.962 0.055 130 4778150.549 359797.377 0.433 0.022 54.962 0.055 131 4778145.264 359797.377 0.433 0.022 54.962 0.055 133 4778145.264 359790.314 0.533 0.03 74.283<	117	4778137.221	359804.511	0.845	0.058	145.014	0.145
119 4778127.158 359733.008 1.038 0.078 195.32 0.195 120 4778126.502 359731.76 0.514 0.028 70.401 0.07 121 4778162.331 359718.02 1.997 0.202 504.264 0.504 122 4778165.525 359709.971 0.63 0.038 94.774 0.062 123 4778163.675 359752.325 1.125 0.088 219.516 0.22 125 4778150.975 359766.843 2.2 0.232 580.47 0.56 126 4778160.083 359779.27 2.875 0.342 855.577 0.866 128 4778154.121 359799.173 0.999 0.074 184.708 0.185 129 4778149.701 359796.552 0.514 0.022 54.962 0.055 131 4778149.701 359797.328 0.863 0.06 149.301 0.144 132 4778149.896 359792.466 0.625 0.037 93.6	118	4778132.752	359729.205	1.708	0.161	402,165	0.402
120 4778126.502 35973.76 0.514 0.028 70.401 0.07 121 4778162.331 359718.02 1.997 0.202 504.264 0.504 122 4778165.525 359709.067 0.47 0.025 61.864 0.062 123 4778165.525 359709.971 0.63 0.038 94.774 0.095 124 4778160.083 359776.277 2.875 0.342 855.577 0.856 126 4778150.401 359796.543 2.2 0.232 580.47 0.566 127 4778150.401 359794.426 1.777 0.17 425.762 0.426 129 4778149.701 359796.552 0.514 0.028 70.506 0.071 130 4778149.701 359797.377 0.433 0.022 54.962 0.052 131 4778149.896 359792.466 0.625 0.037 93.691 0.094 133 4778157.212 359790.314 0.533 0.03 74.283	119	4778127,158	359733.008	1.038	0.078	195.32	0.195
121 4778162.331 359718.02 1.997 0.202 504.264 0.504 122 4778165.525 359709.067 0.47 0.025 61.864 0.062 123 4778164.603 359709.971 0.63 0.038 94.774 0.092 124 4778163.675 359752.325 1.125 0.088 219.516 0.22 125 4778159.975 359766.843 2.2 0.232 580.47 0.56 126 4778160.083 359776.277 2.875 0.342 855.577 0.856 127 4778150.401 359796.552 0.514 0.028 70.506 0.071 130 4778149.701 359796.552 0.514 0.028 70.506 0.071 130 4778149.896 359797.377 0.433 0.022 54.962 0.052 131 4778149.896 359791.845 0.789 0.052 131.11 0.134 132 4778149.896 359792.466 0.627 0.038 93.	120	4778126.502	359731.76	0.514	0.028	70.401	0.07
122 4778165.525 359709.067 0.47 0.025 61.864 0.062 123 4778164.603 359709.971 0.63 0.038 94.774 0.095 124 4778163.675 359752.325 1.125 0.088 219.516 0.22 125 4778159.975 359766.843 2.2 0.232 580.47 0.56 126 4778150.083 359776.277 2.875 0.342 855.577 0.856 127 4778150.401 359799.173 0.999 0.074 184.708 0.185 128 4778149.701 359796.552 0.514 0.028 70.506 0.071 130 4778145.264 359797.328 0.863 0.06 149.301 0.148 132 4778145.264 359792.466 0.625 0.037 93.691 0.094 133 4778148.729 359791.845 0.789 0.052 131.11 0.131 134 4778163.344 359792.636 1.551 0.14 349	121	4778162.331	359718.02	1,997	0.202	504.264	0.504
123 4778164.603 359709.971 0.63 0.038 94.774 0.095 124 4778163.675 359752.325 1.125 0.088 219.516 0.22 125 4778159.975 359766.843 2.2 0.232 580.47 0.56 126 4778160.083 359776.277 2.875 0.342 855.577 0.856 127 4778150.401 359794.426 1.777 0.17 425.762 0.426 128 4778154.121 359790.173 0.999 0.074 184.708 0.185 129 4778150.549 359797.377 0.433 0.022 54.962 0.055 131 4778145.264 359797.328 0.863 0.06 149.301 0.149 132 4778149.896 359792.466 0.625 0.037 93.691 0.094 133 4778157.212 359790.314 0.533 0.03 74.283 0.074 135 4778153.344 359792.636 1.551 0.14 349	122	4778165.525	359709.067	0.47	0.025	61.864	0.062
124 4778163.675 359752.325 1.125 0.088 219.516 0.22 125 4778159.975 359766.843 2.2 0.232 580.47 0.58 126 4778160.083 359776.277 2.875 0.342 855.577 0.856 127 4778150.401 359794.426 1.777 0.17 425.762 0.426 128 4778151.421 359796.552 0.514 0.028 70.506 0.071 130 4778150.549 359797.377 0.433 0.022 54.962 0.055 131 4778145.264 359797.328 0.863 0.06 149.301 0.146 132 4778148.729 359791.845 0.789 0.052 131.11 0.131 134 4778157.212 359790.433 0.627 0.038 93.932 0.094 135 4778153.344 359792.636 1.551 0.14 349.703 0.35 136 4778163.344 359794.581 2.454 0.272 68	123	4778164 603	359709 971	0.63	0.038	94 774	0.095
125 4778159.975 359766.843 2.2 0.232 580.47 0.56 126 4778160.083 359776.277 2.875 0.342 855.577 0.856 127 4778150.401 359794.426 1.777 0.17 425.762 0.426 128 4778154.121 359799.173 0.999 0.074 184.708 0.182 129 4778149.701 359795.52 0.514 0.028 70.506 0.071 130 4778150.549 359797.377 0.433 0.022 54.962 0.055 131 4778149.806 359792.466 0.625 0.037 93.691 0.044 132 4778149.896 359791.845 0.789 0.052 131.11 0.131 134 4778145.212 359790.433 0.627 0.038 93.932 0.094 135 4778153.344 359792.636 1.551 0.14 349.703 0.35 134 4778163.44 359794.581 2.454 0.272 680	124	4778163 675	359752 325	1 125	0.088	219 516	0.22
126 4778160.083 359776.277 2.875 0.342 855.577 0.866 127 4778150.401 359794.426 1.777 0.17 425.762 0.426 128 4778154.121 359799.173 0.999 0.074 184.708 0.185 129 4778149.701 359795.552 0.514 0.028 70.506 0.071 130 4778150.549 359797.328 0.863 0.06 149.301 0.148 132 4778149.806 359792.466 0.625 0.037 93.691 0.094 133 4778148.729 359791.845 0.789 0.052 131.11 0.149 134 4778154.391 359792.466 0.627 0.038 93.932 0.094 135 4778154.391 359790.433 0.627 0.038 93.932 0.094 135 4778163.344 359792.636 1.551 0.14 349.703 0.352 135 4778154.391 359792.636 1.551 0.14 <t< td=""><td>125</td><td>4778159.975</td><td>359766.843</td><td>2.2</td><td>0.232</td><td>580.47</td><td>0.58</td></t<>	125	4778159.975	359766.843	2.2	0.232	580.47	0.58
127 4778150.401 359794.426 1.777 0.17 425.762 0.426 128 4778154.121 359799.173 0.999 0.074 184.708 0.185 129 4778154.121 359796.552 0.514 0.028 70.506 0.071 130 4778150.549 359797.377 0.433 0.022 54.962 0.054 131 4778152.64 35979.328 0.863 0.066 149.301 0.149 132 4778148.7264 35979.328 0.863 0.052 131.11 0.131 133 4778148.729 359791.845 0.789 0.052 131.11 0.131 134 4778157.212 359790.314 0.533 0.03 74.283 0.074 135 4778163.344 359792.636 1.551 0.14 349.703 0.35 137 4778163.364 359788.073 0.778 0.051 128.618 0.122 138 4778165.478 359904.104 1.117 0.087	126	4778160.083	359776 277	2 875	0.342	855 577	0.856
128 4778154.121 359799.173 0.999 0.074 184.708 0.185 129 4778149.701 359796.552 0.514 0.028 70.506 0.071 130 4778150.549 359797.377 0.433 0.022 54.962 0.055 131 4778145.264 359797.328 0.863 0.06 149.301 0.149 132 4778149.896 359791.845 0.759 0.052 131.11 0.131 133 4778157.212 359790.433 0.627 0.038 93.932 0.044 135 4778163.344 359792.636 1.551 0.14 39.703 0.351 136 4778163.644 359794.581 2.454 0.272 680.022 0.66 137 4778165.478 359794.581 2.454 0.272 680.022 0.66 138 4778165.478 359794.581 2.454 0.272 680.022 0.66 139 4778158.042 359805.913 2.033 0.207 <td< td=""><td>127</td><td>4778150.401</td><td>359794.426</td><td>1.777</td><td>0.17</td><td>425.762</td><td>0.426</td></td<>	127	4778150.401	359794.426	1.777	0.17	425.762	0.426
129 4778149.701 359796.552 0.514 0.028 70.506 0.071 130 4778150.549 359797.377 0.433 0.022 54.962 0.055 131 4778145.264 359797.328 0.863 0.06 149.301 0.144 132 4778149.896 359792.466 0.625 0.037 93.691 0.094 133 4778148.729 35979.314 0.533 0.03 74.283 0.074 135 4778157.212 35979.0.433 0.627 0.038 93.932 0.094 136 4778163.344 359792.636 1.551 0.14 349.703 0.35 137 4778165.478 359792.636 1.551 0.14 349.703 0.35 138 4778165.478 359794.581 2.454 0.272 680.022 0.66 139 4778158.042 359805.913 2.033 0.207 517.722 0.518 140 4778158.363 359804.104 1.117 0.087 2	128	4778154.121	359799.173	0.999	0.074	184,708	0.185
130 4778150.549 359797.377 0.433 0.022 54.962 0.055 131 4778145.264 359797.328 0.863 0.06 149.301 0.148 132 4778149.896 359792.466 0.625 0.037 93.691 0.094 133 4778148.729 359791.845 0.789 0.052 131.11 0.131 134 4778157.212 359790.433 0.627 0.038 93.932 0.094 135 4778163.344 359792.636 1.551 0.14 349.703 0.35 136 4778163.344 359792.636 1.551 0.14 349.703 0.35 137 4778165.478 359794.581 2.454 0.272 680.022 0.66 139 4778165.478 359794.581 2.454 0.272 680.022 0.66 140 4778158.042 359805.913 2.033 0.07 517.722 0.51 140 4778158.363 359803.624 1.212 0.098 24	129	4778149,701	359796.552	0.514	0.028	70.506	0.071
131 4778145.264 359797.328 0.863 0.06 149.301 0.149 132 4778149.896 359792.466 0.625 0.037 93.691 0.094 133 4778148.729 359791.845 0.789 0.052 131.11 0.131 134 4778157.212 359790.314 0.533 0.03 74.283 0.074 135 4778153.491 359792.636 1.551 0.14 349.703 0.35 136 4778163.344 359792.636 1.551 0.14 349.703 0.35 137 4778165.478 359792.636 1.551 0.14 349.703 0.35 138 4778165.478 359794.581 2.454 0.272 680.022 0.66 139 4778156.478 359794.581 2.033 0.207 517.722 0.51 140 4778158.063 359803.624 1.212 0.098 244.543 0.245 142 4778150.133 359813.474 0.732 0.047 11	130	4778150.549	359797.377	0.433	0.022	54.962	0.055
132 4778149.896 359792.466 0.625 0.037 93.691 0.094 133 4778148.729 359791.845 0.789 0.052 131.11 0.131 134 4778157.212 359790.314 0.533 0.03 74.283 0.074 135 4778157.212 359790.433 0.627 0.038 93.932 0.094 136 4778163.344 359792.636 1.551 0.14 349.703 0.35 137 4778165.364 359794.581 2.454 0.272 680.022 0.666 139 4778158.042 359805.913 2.033 0.207 517.722 0.516 140 4778158.363 359804.104 1.117 0.087 217.25 0.217 141 4778160.743 359803.624 1.212 0.048 24543 0.244 0.136 142 4778150.133 359815.474 0.732 0.047 117.635 0.118 143 4778154.18 359815.613 0.972	131	4778145.264	359797.328	0.863	0.06	149.301	0.149
133 4778148.729 359791.845 0.789 0.052 131.11 0.131 134 4778157.212 359790.314 0.533 0.03 74.283 0.074 135 4778157.212 359790.433 0.627 0.038 93.932 0.094 136 4778163.344 359792.636 1.551 0.14 349.703 0.35 137 4778165.364 359794.581 2.454 0.272 680.022 0.66 138 4778158.042 359805.913 2.033 0.207 517.722 0.51 140 4778158.363 359804.104 1.117 0.087 217.25 0.217 141 4778160.743 359803.624 1.212 0.098 244.543 0.245 142 4778150.133 359815.245 0.81 0.054 136.244 0.136 143 4778154.18 359815.613 0.972 0.071 177.482 0.177 144 4778154.18 359815.613 0.972 0.071 1	132	4778149.896	359792.466	0.625	0.037	93.691	0.094
134 4778157.212 359790.314 0.533 0.03 74.283 0.074 135 4778154.391 359790.433 0.627 0.038 93.932 0.094 136 4778163.344 359792.636 1.551 0.14 349.703 0.35 137 4778165.364 359788.073 0.778 0.051 128.618 0.122 138 4778165.478 359794.581 2.454 0.272 680.022 0.66 139 4778158.042 359805.913 2.033 0.207 517.722 0.518 140 4778158.363 359803.624 1.212 0.098 244.543 0.245 142 4778150.133 359813.474 0.732 0.047 117.635 0.118 143 4778154.18 359815.618 0.827 0.056 140.459 0.14 145 4778154.18 359815.613 0.972 0.071 177.482 0.177 146 4778161.63 359815.048 1.65 0.153	133	4778148.729	359791.845	0.789	0.052	131.11	0.131
135 4778154.391 359790.433 0.627 0.038 93.932 0.094 136 4778163.344 359792.636 1.551 0.14 349.703 0.33 137 4778165.364 359788.073 0.778 0.051 128.618 0.122 138 4778165.478 359794.581 2.454 0.272 680.022 0.66 139 4778158.042 359805.913 2.033 0.207 517.722 0.516 140 4778158.363 359803.624 1.212 0.098 244.543 0.245 141 4778150.133 359813.474 0.732 0.047 117.635 0.118 143 4778154.18 359915.245 0.81 0.054 136.244 0.136 143 4778154.18 359815.618 0.827 0.071 177.482 0.177 145 4778161.63 359815.048 1.65 0.153 382.558 0.382 144 4778161.63 359815.048 1.65 0.153	134	4778157.212	359790.314	0.533	0.03	74.283	0.074
136 4778163.344 359792.636 1.551 0.14 349.703 0.35 137 4778165.364 359788.073 0.778 0.051 128.618 0.122 138 4778165.364 359794.581 2.454 0.272 680.022 0.66 139 4778165.478 359794.581 2.454 0.272 680.022 0.66 139 4778158.363 359804.104 1.117 0.087 217.25 0.217 141 4778160.743 359803.624 1.212 0.098 244.543 0.245 142 4778150.133 359813.474 0.732 0.047 117.635 0.116 143 4778154.18 359815.245 0.81 0.054 136.244 0.136 144 4778154.18 359815.618 0.827 0.056 140.459 0.14 145 4778161.63 359815.048 1.65 0.153 382.558 0.383 144 4778159.353 359815.048 1.65 0.153 3	135	4778154.391	359790.433	0.627	0.038	93.932	0.094
137 4778165.364 359788.073 0.778 0.051 128.618 0.129 138 4778165.478 359794.581 2.454 0.272 680.022 0.68 139 4778158.042 359805.913 2.033 0.207 517.722 0.516 140 4778158.363 359804.104 1.117 0.087 217.25 0.217 141 4778150.133 359803.624 1.212 0.098 244.543 0.245 142 4778150.133 359815.245 0.81 0.054 136.244 0.136 143 4778154.18 359815.618 0.827 0.056 140.459 0.14 145 4778152.408 359815.613 0.972 0.071 177.482 0.177 146 4778152.408 359815.613 0.972 0.071 177.482 0.177 146 4778159.353 359815.048 1.65 0.153 382.558 0.382 147 4778161.63 359815.605 0.382 0.018	136	4778163.344	359792.636	1.551	0.14	349.703	0.35
138 4778165.478 359794.581 2.454 0.272 680.022 0.68 139 4778158.042 359805.913 2.033 0.207 517.722 0.518 140 4778158.363 359804.104 1.117 0.087 217.25 0.217 141 4778160.743 359803.624 1.212 0.088 244.543 0.244 142 4778150.133 359813.474 0.732 0.047 117.635 0.118 143 4778154.872 359815.245 0.81 0.056 140.459 0.14 145 4778152.408 359815.613 0.972 0.071 177.482 0.177 146 4778161.63 359815.048 1.65 0.153 382.558 0.383 147 4778161.63 359815.048 1.65 0.153 382.558 0.383 147 4778161.63 359815.050 0.382 0.018 45.801 0.046 147 4778161.63 359825.605 0.382 0.018	137	4778165.364	359788.073	0.778	0.051	128.618	0.129
139 4778158.042 359805.913 2.033 0.207 517.722 0.518 140 4778158.363 359804.104 1.117 0.087 217.25 0.217 141 4778160.743 359803.624 1.212 0.098 244.543 0.245 142 4778150.133 359813.474 0.732 0.047 117.635 0.116 143 4778154.18 359815.445 0.81 0.056 140.459 0.14 144 4778154.18 359815.618 0.827 0.056 140.459 0.14 145 4778152.408 359815.613 0.972 0.071 177.482 0.177 146 4778161.63 359815.048 1.65 0.153 382.558 0.363 147 4778159.353 359815.050 0.382 0.018 45.801 0.044 148 4778164.909 359825.605 0.382 0.018 45.801 0.044 149 4778162.253 359844.151 1.173 0.093 <td< td=""><td>138</td><td>4778165.478</td><td>359794.581</td><td>2.454</td><td>0.272</td><td>680.022</td><td>0.68</td></td<>	138	4778165.478	359794.581	2.454	0.272	680.022	0.68
140 4778158.363 359804.104 1.117 0.087 217.25 0.217 141 4778160.743 359803.624 1.212 0.098 244.543 0.245 142 4778150.133 359813.474 0.732 0.047 117.635 0.118 143 4778150.133 359815.245 0.81 0.054 136.244 0.136 144 4778154.18 359815.618 0.827 0.056 140.459 0.14 145 4778152.408 359815.613 0.972 0.071 177.482 0.177 146 4778161.63 359815.048 1.65 0.153 382.558 0.383 147 4778159.353 359815.048 1.65 0.153 382.558 0.383 148 4778161.63 359825.605 0.382 0.018 45.801 0.046 149 4778161.594 35983.1595 0.436 0.022 55.47 0.055 150 4778162.253 359844.151 1.173 0.093	139	4778158.042	359805.913	2.033	0.207	517,722	0.518
141 4778160.743 359803.624 1.212 0.098 244.543 0.245 142 4778150.133 359813.474 0.732 0.047 117.635 0.118 143 4778150.133 359815.245 0.81 0.054 136.244 0.136 144 4778154.18 359815.618 0.827 0.056 140.459 0.14 145 4778152.408 359815.613 0.972 0.071 177.482 0.177 146 4778161.63 359815.613 0.972 0.071 177.482 0.177 146 4778161.63 359815.048 1.65 0.153 382.558 0.382 147 4778161.63 359815.067 2.914 0.349 872.427 0.872 148 4778161.909 359825.605 0.382 0.018 45.801 0.046 149 4778161.594 359831.595 0.436 0.022 55.47 0.055 150 4778162.253 359844.151 1.173 0.093 <td< td=""><td>140</td><td>4778158.363</td><td>359804.104</td><td>1.117</td><td>0.087</td><td>217.25</td><td>0.217</td></td<>	140	4778158.363	359804.104	1.117	0.087	217.25	0.217
142 4778150.133 359813.474 0.732 0.047 117.635 0.118 143 4778148.772 359815.245 0.81 0.054 136.244 0.136 144 4778154.18 359815.618 0.827 0.056 140.459 0.14 145 4778152.408 359815.613 0.972 0.071 177.482 0.177 146 4778161.63 359815.048 1.65 0.153 382.558 0.382 147 4778151.53 359815.048 1.65 0.153 382.558 0.382 147 4778159.353 359813.697 2.914 0.349 872.427 0.872 148 4778161.594 359831.595 0.436 0.022 55.47 0.055 150 4778162.253 359844.151 1.173 0.093 233.104 0.233	141	4778160.743	359803.624	1.212	0.098	244.543	0.245
143 4778148.772 359815.245 0.81 0.054 136.244 0.136 144 4778154.18 359815.618 0.827 0.056 140.459 0.14 145 4778152.408 359815.613 0.972 0.071 177.482 0.177 146 4778161.63 359815.048 1.65 0.153 382.558 0.382 147 4778159.353 359813.697 2.914 0.349 872.427 0.872 148 4778161.594 359825.605 0.382 0.018 45.801 0.046 149 4778161.594 359831.595 0.436 0.022 55.47 0.055 150 4778162.253 359844.151 1.173 0.093 233.104 0.233	142	4778150.133	359813.474	0.732	0.047	117.635	0.118
144 4778154.18 359815.618 0.827 0.056 140.459 0.14 145 4778152.408 359815.613 0.972 0.071 177.482 0.177 146 4778161.63 359815.048 1.65 0.153 382.558 0.383 147 4778159.353 359813.697 2.914 0.349 872.427 0.872 148 4778161.909 359825.605 0.382 0.018 45.801 0.046 149 4778161.594 359831.595 0.436 0.022 55.47 0.055 150 4778162.253 359844.151 1.173 0.093 233.104 0.233	143	4778148.772	359815.245	0.81	0.054	136.244	0.136
145 4778152.408 359815.613 0.972 0.071 177.482 0.177 146 4778161.63 359815.048 1.65 0.153 382.558 0.383 147 4778159.353 359813.697 2.914 0.349 872.427 0.872 148 4778161.594 359825.605 0.382 0.018 45.801 0.046 149 4778162.253 359841.595 0.436 0.022 55.47 0.055 150 4778162.253 359844.151 1.173 0.093 233.104 0.233	144	4778154.18	359815.618	0.827	0.056	140.459	0.14
146 4778161.63 359815.048 1.65 0.153 382.558 0.383 147 4778159.353 359813.697 2.914 0.349 872.427 0.872 148 4778164.909 359825.605 0.382 0.018 45.801 0.046 149 4778161.594 359831.595 0.436 0.022 55.47 0.055 150 4778162.253 359844.151 1.173 0.093 233.104 0.233	145	4778152.408	359815.613	0.972	0.071	177.482	0.177
147 4778159.353 359813.697 2.914 0.349 872.427 0.872 148 4778164.909 359825.605 0.382 0.018 45.801 0.046 149 4778161.594 359831.595 0.436 0.022 55.47 0.055 150 4778162.253 359844.151 1.173 0.093 233.104 0.233	146	4778161.63	359815.048	1.65	0.153	382.558	0.383
148 4778164.909 359825.605 0.382 0.018 45.801 0.046 149 4778161.594 359831.595 0.436 0.022 55.47 0.055 150 4778162.253 359844.151 1.173 0.093 233.104 0.233	147	4778159.353	359813.697	2.914	0.349	872.427	0.872
149 4778161.594 359831.595 0.436 0.022 55.47 0.055 150 4778162.253 359844.151 1.173 0.093 233.104 0.233	148	4778164.909	359825.605	0.382	0.018	45.801	0.046
150 4778162.253 359844.151 1.173 0.093 233.104 0.233	149	4778161.594	359831.595	0.436	0.022	55.47	0.055
	150	4778162.253	359844.151	1.173	0.093	233.104	0.233
1 51 4778165.265 359851 0.517 0.028 71.011 0.071	151	4778165.265	359851	0.517	0.028	71.011	0.071

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
151	4778165 265	350851	0.517	0.028	71.011	0.071
152	4770105.205	250912.04	2.042	0.020	1252.16	1.252
152	4770140.132	250004 102	1.027	0.041	105.090	0.105
153	4770152.402	250910 504	1.037	0.076	214 692	0.195
154	4770151.220	250705 222	1.442	0.120	228,000	0.313
150	4770154.150	250707.751	0.970	0.091	152 220	0.220
100	4770454.39	359767.751	0.079	0.061	103.339	0.155
157	4770101.707	250906 445	0.072	0.042	145 272	0.104
150	4770165 000	250702.244	0.047	0.036	140.072	0.145
109	4770100.000	309762.244	0.702	0.044	110.007	0.111
160	4770400.309	309601.675	0.669	0.041	103.196	0.103
161	4778192.751	359816.775	0.974	0.071	1/8.16/	0.178
162	4778188.254	359823.195	0.925	0.066	165.205	0.165
163	4778190.148	359811.127	0.325	0.015	36.318	0.036
164	4778178.531	359810.436	0.661	0.041	101.572	0.102
165	4778183.937	359798.031	1.074	0.082	205.049	0.205
166	4778185.112	359799.211	0.518	0.028	/1.195	0.071
167	4778182.006	359797.628	1.121	0.087	218.297	0.218
168	4778178.515	359797.157	0.445	0.023	57.117	0.057
169	4778169.655	359770.239	24.029	7.435	18588.573	18.589
170	4778168.941	359763.042	0.484	0.026	64.619	0.065
171	4778161.82	359758.44	0.872	0.061	151.578	0.152
172	4778170.251	359750.484	0.529	0.029	73.44	0.073
173	4778180.084	359744.41	0.726	0.046	116.23	0.116
174	4778195.364	359706.776	1.196	0.096	239.754	0.24
175	4778127.887	359748.871	0.709	0.045	112.452	0.112
176	4778126.19	359747.127	0.628	0.038	94.19	0.094
177	4778135.379	359800.791	1.056	0.08	200.144	0.2
178	4778144.369	359803.811	6.538	1.126	2815.461	2.815
179	4778149.223	359831.917	1.037	0.078	194.987	0.195
180	4778172.189	359832.359	1.876	0.184	460.746	0.461
181	4778200.382	359871.175	2.516	0.282	705.221	0.705
182	4778208.081	359886.085	1.395	0.12	299.783	0.3
183	4778224.545	359885.999	5.578	0.895	2236.519	2.237
184	4778222.265	359902.336	2.122	0.22	550.658	0.551
185	4778222.072	359904.198	0.42	0.021	52.502	0.053
186	4778229.151	359908.992	1.454	0.127	318.189	0.318
187	4778232.701	359885.459	0.611	0.036	90.459	0.09
188	4778233.21	359890.445	1.017	0.076	189.701	0.19
189	4778232.258	359889.585	0.71	0.045	112.508	0.113
190	4778230.847	359888.625	0.303	0.013	32.771	0.033
191	4778220.533	359895.955	6.307	1.069	2672.583	2.673
192	4778226.905	359874.98	1.292	0.107	268.177	0.268
193	4778228.344	359870.892	2.815	0.332	829.823	0.83
194	4778233.294	359872.919	1.714	0.162	404.241	0.404
195	4778235.556	359871.714	1.82	0.176	440.781	0.441
196	4778232.293	359879.426	0.793	0.053	132.145	0.132
197	4778231.563	359873.975	1.445	0.126	315.343	0.315
198	4778224.502	359855.102	0.554	0.031	78.609	0.079
199	4778238.873	359848.969	1.119	0.087	217.789	0.218
200	4778228.912	359881.272	0.279	0.012	29.013	0.029

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
201	4778228.811	359883.431	0.393	0.019	47.756	0.048
202	4778217.432	359927.671	0.907	0.064	160.488	0.16
203	4778222.263	359921.767	1.585	0.144	360.692	0.361
204	4778220.46	359922.291	0.808	0.054	135.69	0.136
205	4778206.404	359919.048	1.127	0.088	220.139	0.22
206	4778204.884	359928.051	1.292	0.107	268.155	0.268
207	4778206.064	359927.445	0.396	0.019	48.21	0.048
208	4778223.125	359936.262	0.685	0.043	106.798	0.107
209	4778223.776	359937.251	0.8	0.054	133.789	0.134
210	4778225.328	359932.363	0.996	0.074	184.05	0.184
211	4778227.65	359931.829	0.698	0.044	109.771	0.11
212	4778230.249	359928.598	1.083	0.083	207.661	0.208
213	4778228.676	359928.942	0.494	0.027	66.558	0.067
214	4778205.821	359944.366	1.815	0.176	439.122	0.439
215	4778212.397	359928.615	1.778	0.171	426.299	0.426
216	4778211.737	359930.106	0.814	0.055	137.295	0.137
217	4778215.573	359933.627	1.104	0.085	213.638	0.214
218	4778214.907	359927.675	1.679	0.157	392.274	0.392
219	4778218.81	359928.711	1.073	0.082	204.955	0.205
220	4778217.739	359920.472	0.629	0.038	94.471	0.094
221	4778232.248	359901.494	0.763	0.05	124.908	0.125
222	4778219.929	359904.259	1.244	0.102	254.044	0.254
223	4778202.975	359907.551	1.04	0.078	195.808	0.196
224	4778201.123	359902.915	1.302	0.109	271.38	0.271
225	4778205.542	359900.903	1.14	0.089	223.63	0.224
226	4778194.563	359909.934	1.462	0.128	320.897	0.321
227	4778192.882	359914.364	1.849	0.18	451.067	0.451
228	4778195.663	359915.533	1.655	0.154	383.993	0.384
229	4778211.724	359896.825	1.677	0.157	391.452	0.391
230	4778226.441	359901.504	0.466	0.024	61.088	0.061
231	4778225.48	359902.27	0.348	0.016	40.013	0.04
232	4778226.771	359907.83	0.511	0.028	69.854	0.07
233	4778224.223	359913.181	0.577	0.033	83.279	0.083
234	4778232.724	359909.12	0.936	0.067	168.045	0.168
235	4778234.224	309908.970	0.769	0.051	126.007	0.127
230	4770203.927	359905.421	1.451	0.127	317.200	0.017
237	4770231.027	359905.537	0.3	0.013	32.300	0.032
230	47702231.009	309099.03	0.503	0.027	00.340	0.000
239	4770240.000	309674.096	1.404	0.121	302.513	0.303
240	4770210.999	250966.334	2.30	0.20	762,606	0.65
241	4770221.204	350960.747	2.000	0.303	507.267	0.763
242	4772200.915	250949 641	2.003	1 110	2709 211	2 709
243	4778206 476	350852 477	3,446	0.445	1112 69	2.790
244	4778231 0.92	350832.477	1 210	0.440	2/6 /22	0.246
245	4778227.003	350828 080	0.826	0.099	1/0.422	0.240
240	4778236 154	350850 438	0.020	0.000	140.102	0.14
2/18	4778202.002	350877 /05	0.933	0.007	155.5	0.167
240	4778216 058	350801 073	0.007	0.002	164 983	0.155
250	4778215 587	359896.055	0.024	aan 0	165 925	0.165
200	4110210.001	00000.000	0.920	0.000	100.920	0.100

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
251	4778101 181	350040 315	0.70	0.053	131 562	0 132
252	4778152.074	360020 503	1 706	0.000	132 /2/	0.132
253	4778141 337	360034.815	1.750	0.173	452.424	0.452
254	4778140.695	360024.807	0.735	0.101	118 /08	0.433
255	4778120 /01	360024.037	0.733	0.047	144 176	0.110
256	4778122.491	360022.207	1 1/1	0.000	224.036	0.144
257	4778007 122	360084 762	5.441	0.03	2157 226	2 157
258	4778126 184	360057 288	7 851	1 469	3671 475	3.671
250	4778123.267	360070 535	1 285	0.106	266 103	0.266
200	4778000 534	360070.881	1.203	0.100	185.664	0.200
261	4778003.804	360095.076	1.002	0.074	102.50	0.100
262	4778103.25	360100.475	2 280	0.077	614 637	0.135
262	4778008 426	360101.545	4.816	0.240	1807 313	1 807
200	4778076.076	360114 684	4.010	0.123	332.887	0.333
265	4778080.52	360110.108	0.633	0.133	95 354	0.005
200	4778103 185	360005.465	4 185	0.000	1474 507	1.475
200	4778135 710	360050.403	4.103	0.05	154.825	0.155
268	4778146.4	360057.401	1 447	0.002	316.047	0.100
200	4778155.881	3500057.491	0.708	0.120	133 3/1	0.310
203	4778151.885	360010.834	8.03	1.517	3703 30	3 703
270	4778230 760	350862 720	1.832	0.178	445.035	0.445
271	4778238.052	350864.03	0.866	0.170	150 104	0.445
272	4778238.008	350861 106	0.000	0.00	112 675	0.13
273	4778230.148	350858 872	0.505	0.045	87 153	0.087
274	4778238 750	350856 755	0.535	0.000	83.016	0.007
275	4778240.017	350856 2/2	0.373	0.000	54 551	0.005
270	4778237.87	350855.053	0.401	0.022	04.001	0.000
278	4778221.036	350850.825	1 003	0.003	185 885	0.037
270	4778216 954	359856 907	0.742	0.074	119 921	0.100
280	4778216.304	359857.87	0.415	0.040	51 629	0.052
281	4778213.55	359846.97	3 135	0.388	969,866	0.002
282	4778197.092	359946 592	0.727	0.047	116 502	0 117
283	4778198 503	359945 412	0.503	0.027	68 273	0.068
284	4778202.093	359948 122	0.781	0.052	129 215	0.129
285	4778203.28	359947 614	0.665	0.041	102 291	0 102
286	4778199 223	359958 068	0 775	0.051	127 791	0 128
287	4778198 535	359897 35	1 992	0 201	502 464	0.502
288	4778194,744	359911.631	1.204	0.097	242.284	0.242
289	4778196 553	359906 882	0 438	0.022	55 827	0.056
290	4778196 999	359892 924	1 351	0 115	286 279	0.286
291	4778197.171	359894.34	0.399	0.02	48,755	0.049
292	4778197.329	359895,862	1,235	0.1	251,177	0.251
293	4778195,498	359892,327	1,183	0.094	236,109	0.236
294	4778196.531	359895,004	0.617	0.037	91.864	0.092
295	4778196.74	359890,789	0.972	0.071	177.61	0,178
296	4778209,136	359892.68	0,82	0.055	138,718	0,139
297	4778207.024	359891.158	0.567	0.032	81.235	0.081
298	4778206.953	359889.949	0.785	0.052	130.339	0.13
299	4778217.783	359886.561	0.779	0.051	128.682	0.129
300	4778195.842	359896.771	0.891	0.063	156.533	0.157

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
301	4778198.291	359908.28	0.595	0.035	87.235	0.087
302	4778197.368	359919.396	0.674	0.042	104.344	0.104
303	4778210.25	359942.756	2.297	0.247	617.726	0.618
304	4777956.221	360171.838	5.781	0.942	2355.318	2.355
305	4777959.492	360174.701	1.615	0.148	370.612	0.371
306	4777960.223	360168.956	1.78	0.171	427.022	0.427
307	4777936.341	360210.635	9.618	1.971	4927.704	4.928
308	4777929.199	360209.694	10.524	2.246	5614.979	5.615
309	4777925.933	360208.986	12.38	2.842	7105.517	7.106
310	4777918.227	360226.287	37.209	14.018	35044.001	35.044
311	4777928.001	360233.135	17.228	4.59	11474.264	11.474
312	4777931.677	360232.093	2.8	0.329	823.355	0.823
313	4777934.928	360277.365	50.096	21.575	53936.93	53.937
314	4777925.456	360285.996	15.803	4.049	10123.392	10.123
315	4777943.511	360265.247	4.996	0.762	1906.163	1.906
316	4777935.961	360255.992	1.232	0.1	250.215	0.25
317	4777934.673	360253.83	2.392	0.262	655.276	0.655
318	4777936.748	360256.944	0.628	0.038	94.224	0.094
319	4777927.696	360245.678	2.138	0.223	556.675	0.557
320	4777930.739	360238.764	2.324	0.251	628.391	0.628
321	4777946.745	360230.85	9.423	1.913	4783.727	4.784
322	4777959.98	360221.46	3.815	0.516	1289.449	1.289
323	4777953.557	360193.716	10.614	2.274	5684.307	5.684
324	4777991.431	360160.166	6.022	1	2498.936	2.499
325	4777999.18	360156.074	8.941	1.773	4432.915	4.433
326	4777933.292	360198.395	16.593	4.346	10865.989	10.866
327	4777936.623	360193.448	8.525	1.655	4137.133	4.137
328	4777946.146	360196.484	5.26	0.822	2053.889	2.054
329	4777948.135	360194.687	1.874	0.184	460.066	0.46
330	4777941.634	360219.868	5.175	0.802	2006.196	2.006
331	4777943.793	360218.601	0.969	0.071	176.622	0.177
332	4777962.718	360235.377	4.381	0.63	1575.532	1.576
333	4777976.108	360287.775	29.313	9.919	24797.2	24.797
334	4778047.698	360204.694	6.249	1.055	2637.145	2.637
335	4778041.534	360229.972	5.656	0.913	2281.748	2.282
336	4777947.944	360185.512	4.16	0.585	1461.881	1.462
337	4777952.445	360186.921	2.509	0.281	701.998	0.702
338	4777962.558	360187.575	2.975	0.36	898.823	0.899
339	4777969.152	360189.795	2.446	0.271	676.664	0.677
340	4777960.365	360194.96	0.983	0.072	180.353	0.18
341	4777935.081	360243.281	3.493	0.454	1134.331	1.134
342	4777937.991	360238.293	8.296	1.591	3976.563	3.977
343	4777949.493	360189.59	1.464	0.129	321.485	0.321
344	4777955.011	360184.945	1.15	0.091	226.527	0.227
345	4777956.844	360183.568	1.588	0.145	361.594	0.362
346	4777952.418	360180.221	1.27	0.105	261.535	0.262
347	4777936.208	360202.698	1.689	0.158	395.487	0.395
348	4777935.153	360204.146	1.558	0.141	351.941	0.352
349	4777933.032	360204.686	1.489	0.132	329.613	0.33
350	4777932.88	360209.692	2.233	0.237	593.14	0.593

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
351	4777934.304	360207.768	1.005	0.075	186.307	0.186
352	4777935.506	360207.101	0.683	0.043	106.361	0.106
353	4777933.988	360220.093	1.45	0.127	317.15	0.317
354	4777934.179	360223.059	0.77	0.051	126.639	0.127
355	4777926.755	360222.786	0.37	0.018	43.772	0.044
356	4777935.14	360217.875	2.67	0.307	768.332	0.768
357	4777934.824	360212.983	2.028	0.206	515.604	0.516
358	4777930.718	360213.962	0.746	0.048	120.865	0.121
359	4777931.669	360207.718	1.311	0.11	274.045	0.274
360	4777939.038	360196.455	1.344	0.114	284.158	0.284
361	4777938.937	360195.06	0.408	0.02	50.438	0.05
362	4777940.749	360194.193	0.714	0.045	113.473	0.113
363	4777940.206	360192.829	1.377	0.118	294.207	0.294
364	4777957.498	360174.161	1.179	0.094	234.844	0.235
365	4777954.182	360215.474	1.518	0.136	338.855	0.339
366	4777966.089	360232.515	1.013	0.075	188.39	0.188
367	4777957.675	360181.878	2.865	0.34	851.097	0.851
368	4777953.629	360190.168	0.596	0.035	87.458	0.087
369	4777951.916	360189.562	0.569	0.033	81.677	0.082
370	4777960.066	360187.079	0.928	0.066	165.916	0.166
371	4777955.384	360177.779	0.939	0.068	168.898	0.169
372	4777974.712	360178.192	4.861	0.733	1831.74	1.832
373	4777984.082	360179.945	2.119	0.22	549.69	0.55
374	4777983.477	360176.792	1.256	0.103	257.366	0.257
375	4777980.918	360164.742	1.629	0.15	375.435	0.375
376	4777972.565	360177.356	1.118	0.087	217.431	0.217
377	4777976.416	360170.353	1.431	0.124	311.137	0.311
378	4777968.654	360164.008	1.049	0.079	198.33	0.198
379	4777969.88	360153.103	2.189	0.23	576.185	0.576
380	4777975.929	360153.328	1.312	0.11	274.331	0.274
381	4777984.307	360148.401	0.868	0.06	150.732	0.151
382	4777982.52	360133.283	2.089	0.215	538.459	0.538
383	4777978.037	360141.786	1.202	0.097	241.558	0.242
384	4777980.39	360133.2	1.045	0.079	197.159	0.197
385	4///9/8.988	360134.701	0.865	0.06	149.902	0.15
386	4777990.033	360132.971	1.54	0.138	346.02	0.346
387	4///95/.92/	360168.42	0.885	0.062	154.99	0.155
388	4777903.487	360254.762	1.038	0.078	195.343	0.195
389	4777953.649	360239.75	1.839	0.1/9	447.527	0.448
390	4777949.054	360238.675	3.156	0.392	979.177	0.979
391	4777037.545	360233.481	2.260	0.242	605.456	0.605
392	4///9//.545	360213.803	1.367	0.116	291.195	0.291
393	4///9/5.464	360211.198	2.102	0.217	543.302	0.543
394	4778017.357	360236.046	4.681	0.694	1/34.211	1.734
395	4778051.054	360238.225	0.895	0.063	107.407	0.15/
396	4778054.005	360230.834	2.084	0.293	132.18	0.733
397	4778040 504	360232.392	1.112	0.086	210.685	0.216
398	4778000 800	300220.772	1.278	0.106	204.004	0.264
399	4777070.240	360100 434	2.282	0.240	011.002	0.012
J 400	4///9/9.248	300190.431	1.272	0.105	202.200	0.262

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
401	4777976.654	360200.704	0.698	0.044	109.754	0.11
402	4777975.353	360206.81	0.651	0.04	99.354	0.099
403	4777963.257	360221.619	1.28	0.106	264.576	0.265
404	4778178.521	359768.6	11.637	2.598	6496.173	6.496
405	4778200.047	359784.187	16.866	4.451	11126.396	11.126
406	4778199.51	359789.575	44.801	18.348	45870.958	45.871
407	4778212.701	359759.34	1.933	0.192	481.214	0.481
408	4778214.902	359761.487	3.28	0.414	1035.585	1.036
409	4778217.195	359758.56	0.502	0.027	68.071	0.068
410	4778210.973	359772.49	3.097	0.381	952.677	0.953
411	4778205.807	359754.164	1.546	0.139	347.986	0.348
412	4778204.287	359743.85	1.727	0.163	408.603	0.409
413	4778195.208	359757.639	7.548	1.387	3467.812	3.468
414	4778186.035	359764.481	1.76	0.168	419.897	0.42
415	4778148.463	359746.902	8.461	1.637	4091.839	4.092
416	4778151.492	359742.212	4.558	0.668	1668.952	1.669
417	4778147.987	359741.242	4.127	0.578	1444.797	1.445
418	4778153.881	359747.209	8.186	1.56	3900.595	3.901
419	4778127.442	359740.831	7.728	1.435	3588.067	3.588
420	4778180.297	359727.786	3.392	0.435	1087.315	1.087
421	4778185.844	359719.091	4.659	0.689	1722.823	1.723
422	4778206.161	359759.922	7.602	1.402	3503.9	3.504
423	4778015.843	360219.664	1.847	0.18	450.379	0.45
424	4778014.874	360225.766	1.477	0.13	325.673	0.326
425	4777986.16	360182.172	0.695	0.044	109.239	0.109
426	4777987.118	360182.261	0.586	0.034	85.314	0.085
427	4778015.862	360214.67	1.05	0.079	198.502	0.199
428	4778033.203	360241.438	1.215	0.098	245.374	0.245
429	4778033.904	360254.177	0.942	0.068	169.677	0.17
430	4778040.959	360237.224	1.844	0.18	449.234	0.449
431	4777991.707	360119.999	14.075	3.424	8559.348	8.559
432	4778003.528	360115.813	7.791	1.452	3630.774	3.631
433	4777974.759	360142.311	0.658	0.04	100.8	0.101
434	4778053.252	360147.946	6.477	1.111	2777.429	2.777
435	4778061.772	360129.597	1.188	0.095	237.505	0.238
436	4778055.792	360139.641	2.733	0.318	794.758	0.795
437	4778053.842	360143.87	1.233	0.1	250.603	0.251
438	4778061.618	360123.473	1.685	0.158	394.36	0.394
439	4778100.079	360086.39	1.006	0.075	186.525	0.187
440	4778075.386	360073.265	1.512	0.135	336.893	0.337
441	4778090.792	360058.226	2.142	0.223	558.332	0.558
442	4778087.079	360059.346	0.764	0.05	125.267	0.125
443	4778084.417	360062.362	0.84	0.057	143.684	0.144
444	4778089.91	360061.711	1.546	0.139	348.112	0.348
445	4778098.278	360037.334	1.128	0.088	220.327	0.22
446	4778095.578	360041.908	2.264	0.242	604.851	0.605
447	4778134.323	360033.87	0.886	0.062	155.257	0.155
448	4778131.328	360038.455	1.778	0.171	426.257	0.426
449	4778135.461	360039.482	1.126	0.088	219.78	0.22
450	4778134.435	360036.882	1.348	0.114	285.169	0.285

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
451	4778145.406	360056.307	1.118	0.087	217.349	0.217
452	4778145.055	360059.252	0.791	0.053	131.588	0.132
453	4778159.915	360015.301	1.404	0.121	302,566	0.303
454	4778168.27	360007.937	2.398	0.263	657,581	0.658
455	4778186.767	359975.84	1,118	0.087	217,451	0.217
456	4778188.709	359973.109	1,743	0.166	414.003	0.414
457	4778182.213	359972.397	0.681	0.042	105.889	0,106
458	4778180.656	359972.758	1.316	0.11	275.515	0.276
459	4778173,759	359970.682	2.319	0.251	626.279	0.626
460	4778168.992	359951.627	2.347	0.255	637.26	0.637
461	4778206.253	359954.614	1,155	0.091	227,909	0.228
462	4778196.832	359909.545	0.642	0.039	97.355	0.097
463	4778178.482	359903.371	1.138	0.089	223.046	0.223
464	4778178.97	359926.159	0.561	0.032	80.015	0.08
465	4778161.851	359966.464	1.766	0.169	422.093	0.422
466	4778164.05	359811.182	9.568	1.956	4890,403	4.89
467	4778183.069	359803,752	4,158	0.584	1460,453	1,46
468	4778171.988	359806.899	2,123	0.22	551.172	0.551
469	4778166.059	359799.01	1.351	0.114	286.178	0.286
470	4778173.657	359797.736	0.805	0.054	135.09	0.135
471	4778187.312	359778.666	1.317	0.11	275.845	0.276
472	4778176.48	359773.441	1.376	0.118	293,766	0.294
473	4778170.463	359791.967	3.478	0.451	1127.389	1.127
474	4778208.683	359768.81	3.148	0.39	975.813	0.976
475	4778211.606	359774.656	1.473	0.13	324,441	0.324
476	4778161.752	359772.103	1.537	0.138	344,946	0.345
477	4778127.581	359746.089	2.058	0.211	526,906	0.527
478	4778131,496	359730.287	0.878	0.061	153.11	0.153
479	4778130.769	359732.293	1.264	0.104	259.988	0.26
480	4778132.724	359731.294	0.711	0.045	112.722	0.113
481	4778125.549	359730.796	1.044	0.079	196.897	0.197
482	4778124.575	359727.702	0.943	0.068	169.813	0.17
483	4778130.932	359727.522	1.293	0.107	268.672	0.269
484	4778130.559	359736.447	6.431	1.1	2749.282	2.749
485	4778134.963	359729.534	5.645	0.91	2275.275	2.275
486	4778128.76	359762.576	0.726	0.047	116.373	0.116
487	4778132.487	359727.061	1.873	0.184	459.649	0.46
488	4778201.181	359711.362	0.811	0.055	136.622	0.137
489	4778200.968	359712.778	0.525	0.029	72.706	0.073
490	4778209.482	359708.842	1.582	0.144	359.62	0.36
491	4778202.828	359745.409	0.808	0.054	135.752	0.136
492	4778204.475	359770.332	0.473	0.025	62.532	0.063
493	4778189.03	359766.345	1.38	0.118	295.095	0.295
494	4778184.907	359738.293	0.476	0.025	62.972	0.063
495	4778164.096	359745.177	2.942	0.354	884.586	0.885
496	4778168.078	359797.168	1.812	0.175	438.05	0.438
497	4778165.624	359791.858	2.708	0.314	784.175	0.784
498	4778168.155	359805.076	1.493	0.132	330.909	0.331
499	4778171.075	359803.791	1.037	0.078	194.977	0.195
500	4778169.814	359803.84	0.477	0.025	63.297	0.063

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
501	4778188.182	359814.977	0.51	0.028	69.679	0.07
502	4778186.027	359827.489	2.041	0.208	520.356	0.52
503	4778193.33	359849.893	1.064	0.081	202.517	0.203
504	4778206.084	359849.342	1.854	0.181	452.936	0.453
505	4778207.397	359842.078	1.251	0.102	256.031	0.256
506	4778209.555	359845.086	0.979	0.072	179.341	0.179
507	4778204.635	359841.776	1.104	0.085	213.526	0.214
508	4778193.556	359831.311	1.91	0.189	472.751	0.473
509	4778185.784	359806.091	0.962	0.07	174.902	0.175
510	4778178.451	359816.364	3.682	0.49	1224.452	1.224
511	4778163.909	359831.116	3.71	0.495	1238.228	1.238
512	4778154.297	359821.381	1.758	0.168	419.311	0.419
513	4778155.961	359823.193	0.72	0.046	114.908	0.115
514	4778202.796	359742.183	2.228	0.236	590.941	0.591
515	4778215.287	359754.073	2.254	0.24	601.194	0.601
516	4778218.515	359763.544	2.226	0.236	590.402	0.59
517	4778220.811	359764.169	1.007	0.075	186.846	0.187
518	4778225.777	359764.859	2.852	0.338	845.372	0.845
519	4778191.052	359801.119	13.526	3.232	8078.85	8.079
520	4778166.96	359967.743	2.155	0.225	563.056	0.563
521	4778174.453	359997.557	3.418	0.44	1099.152	1.099
522	4777947.599	360250.79	8.952	1.776	4440.979	4.441
523	4777918.722	360286.498	3.549	0.464	1161.151	1.161
524	4777978.218	360239.342	3.554	0.465	1163.376	1.163
525	4777993.514	360226.301	33.312	11.94	29850.469	29.85
526	4777988.566	360203.048	17.51	4.699	11746.878	11.747
527	4777953.084	360254.863	19.454	5.474	13684.547	13.685
528	4777994.406	360281.297	19.499	5.492	13730.939	13.731
529	4777996.439	360296.923	20.289	5.818	14544.209	14.544
530	4777990.384	360300.6	1.515	0.135	337.893	0.338
531	4777992.966	360291.659	3.344	0.426	1065.207	1.065
532	4777984.919	360280.248	34.567	12.598	31494.258	31.494
533	4777978.116	360282.924	13.767	3.316	8288.938	8.289
534	4778045.337	360232.645	3.154	0.391	978.231	0.978
535	4778044.45	360239.695	2.367	0.258	645.135	0.645
536	4777950.146	360247.113	10.058	2.103	5257.866	5.258
537	4777960.046	360244.324	1.907	0.189	471.597	0.472
538	4777956.533	360242.741	4.32	0.618	1543.935	1.544
539	4777955.576	360249.926	1.21	0.098	243.988	0.244
540	4777946.436	360272.331	1.556	0.14	351.153	0.351
541	4777931.191	360284.667	0.726	0.047	116.353	0.116
542	4777967.219	360245.795	4.329	0.619	1548.477	1.548
543	4778019.721	360221.904	1.786	0.172	429.057	0.429
544	4778045.733	360277.336	4.03	0.558	1396.024	1.396
545	4778144.53	360024.945	5.674	0.917	2292.501	2.293
546	4778172.938	359963.86	2.249	0.24	598.989	0.599
547	4778179.729	359943.167	1.322	0.111	277.208	0.277
548	4778152.104	359820.407	1.672	0.156	389.927	0.39
549	4778149.338	359820.321	0.728	0.047	116.651	0.117
550	4778150.188	359827.498	1.671	0.156	389.327	0.389

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
551	4778104.583	360059.451	4.389	0.632	1579.743	1.58
552	4778101.315	360058.455	3.981	0.549	1371.287	1.371
553	4778094.857	360076.515	2.624	0.3	749.214	0.749
554	4778148.905	360050.754	1.431	0.124	310.946	0.311
555	4778092.536	360103.142	4.738	0.706	1765.094	1.765
556	4778085.88	360107.061	11.627	2.595	6487.49	6.487
557	4778055.548	360125.329	6.186	1.039	2598.225	2.598
558	4778058.686	360138.506	1.381	0.118	295.35	0.295
559	4778069.581	360143.321	3.205	0.401	1001.639	1.002
560	4778065.488	360140.861	1.514	0.135	337.69	0.338
561	4778058.998	360120.802	3.023	0.368	919.885	0.92
562	4778070.706	360120.103	3.738	0.501	1251.865	1.252
563	4778055.603	360120.298	7.328	1.329	3321.892	3.322
564	4778044.971	360199.975	12.606	2.918	7294.756	7.295
565	4778000.737	360237.15	1.579	0.143	358.688	0.359
566	4777958.769	360256.547	1.297	0.108	269.855	0.27
567	4777950.476	360273.643	0.918	0.065	163.374	0.163
568	4777941.923	360270.239	0.75	0.049	121.992	0.122
569	4777944.075	360280.477	1.514	0.135	337.666	0.338
570	4777958.771	360270.94	0.649	0.04	98.921	0.099
571	4777934.52	360268.21	1.117	0.087	217.312	0.217
572	4777931.131	360271.855	1.151	0.091	226.904	0.227
573	4777929.656	360292.761	0.727	0.047	116.544	0.117
574	4777928.048	360297.321	1.039	0.078	195.465	0.195
575	4777922.793	360294.358	0.46	0.024	60.082	0.06
576	4777918.633	360297.64	2.666	0.307	766.724	0.767
577	4777918.171	360288.903	1.003	0.074	185.879	0.186
578	4777931.261	360283.448	0.709	0.045	112.405	0.112
579	4777932.248	360291.067	0.939	0.068	168.772	0.169
580	4777944.582	360277.314	0.522	0.029	72.052	0.072
581	4777927.626	360299.704	1.392	0.12	298.977	0.299
582	4777983.485	360299.783	15.625	3.984	9958.764	9.959
583	4777986.909	360301.106	6.127	1.025	2562.445	2.562
584	4777981.979	360306.602	4.592	0.675	1686.61	1.687
585	4777974.081	360298.441	9.84	2.038	5093.809	5.094
586	4778015.576	360276.938	8.749	1.718	4295.153	4.295
587	4778033.899	360269.907	11.648	2.602	6504.861	6.505
588	4778038.312	360270.32	2.866	0.341	851.779	0.852
589	4778006.518	360218.188	2.866	0.341	851.55	0.852
590	4778020.39	360255.735	5.982	0.99	2475.325	2.475
591	4778041.133	360254.066	5.96	0.985	2461.822	2.462
592	4777963.132	360247.815	2.26	0.241	603.363	0.603
593	4777960.622	360250.761	1.341	0.113	283.033	0.283
594	4777959.005	360247.255	1.396	0.12	299.963	0.3
595	4777902.664	360266.322	10.534	2.249	5622.272	5.622
596	4777912.417	360228.386	4.541	0.664	1659.863	1.66
597	4777927.373	360216.687	25.485	8.097	20243.101	20.243
598	4777926.308	360240.358	14.406	3.541	8852.154	8.852
599	4777923.828	360251.5	4.274	0.608	1520.078	1.52
600	4777925.179	360257.916	1.617	0.149	371.3	0.371

FIC	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
60	1 4777981.4	360242.456	1.691	0.158	396.132	0.396
60	2 4777994.687	360239.645	0.861	0.06	148.855	0.149
60	3 4777987.998	360170.962	9.551	1.951	4878.013	4.878
60	4 4777984.45	360169.097	3.777	0.508	1270.849	1.271
60	5 4777992.996	360177.008	5.878	0.965	2412.759	2.413
60	6 4778000.857	360188.42	6.642	1.152	2881.048	2.881
60	7 4778017.834	360107.085	13.421	3.195	7988.542	7.989
60	8 4778027.362	360102.956	3.796	0.512	1279.843	1.28
60	9 4778023.636	360101.353	4.284	0.61	1525.421	1.525
61	0 4778075.821	360054.568	4.662	0.69	1724.145	1.724
61	1 4778077.992	360050.781	4.724	0.703	1757.683	1.758
61	2 4778027.737	360096.345	3.466	0.449	1121.606	1.122
61	3 4778016.356	360081.362	2.775	0.325	812.845	0.813
61	4 4778100.042	360003.716	18.441	5.066	12663.927	12.664
61	5 4778090.477	360014.276	7.173	1.288	3220.518	3.221
61	6 4778087.014	360015.143	4.587	0.674	1683.984	1.684
61	7 4778084.893	360018.516	6.76	1.182	2955.24	2.955
61	8 4778098.767	360008.621	12.295	2.814	7034.867	7.035
61	9 4778095.31	360005.565	6.005	0.996	2488.937	2.489
62	0 4778106.25	359996.836	8.749	1.718	4295.703	4.296
62	1 4778111.683	359978.418	4.978	0.758	1896.01	1.896
62	2 4778101.959	359994.685	10.16	2.134	5335.174	5.335
62	3 4778105.517	359991.555	7.965	1.499	3748.579	3.749
62	4 4778105.043	359984.745	6.361	1.082	2705.797	2.706
62	5 4778165.518	359976.147	2.651	0.304	760.428	0.76
62	6 4778172.206	359978.532	1.987	0.2	500.684	0.501
62	7 4778156.889	359931.744	2.679	0.309	//2.13/	0.772
62	8 4778149.506	359925.425	12.45	2.866	/164.284	7.164
62	9 4778157.973	359902.111	1.72	0.162	406.122	0.406
63	0 4778155.284	359893.339	1.39	0.119	298.188	0.298
63	1 4/78158.701	359840.393	3.959	0.544	1360.461	1.36
63	2 4778173.068	359812.902	3.067	0.376	939.509	0.94
63	3 4778160.393	359769.031	2.137	0.222	006.237	0.006
63	4 4778161.474	359819.591	2.31	0.249	622.884	0.623
63	0 4//01/0.200 c 4770175.10	309624.732	0.010	1.737	4342.27	4.342
63	7 4770170.10	250756 77	4.300	0.015	501 722	0.502
	0 4770171.304	250755.022	2.23	0.237	520.066	0.592
63	0 47781723	350758 721	1.04	0.200	474.1	0.32
64	9 4770172.3	3507/1 266	1.914	0.19	200 833	0.474
64	1 4778206.140	350742.008	1.300	0.110	290.000	0.291
64	2 4778173.038	350764 757	0.005	2.057	51/2 2/1	5 142
64	3 4778173.117	350788 703	1.526	0.137	3/1 /78	0.341
64	4 4778165 273	359766.845	1.020	0.107	318 753	0.310
64	5 4778163.888	359767 553	1.400	0.077	191 291	0 101
64	6 4778132 285	359750 022	1 116	0.087	217 039	0.217
64	7 4778131 396	359751 34	0.551	0.031	78.038	0.078
64	8 4778132 451	359754 813	0.629	0.038	94,408	0.094
64	9 4778130 862	359753 225	0.928	0.066	166.076	0.166
65	0 4778132.91	359757 155	1.071	0.082	204.457	0.204
		000101100		0.002	201.101	0.204

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
651	4778130.185	359741.665	1.129	0.088	220.604	0.221
652	4778125,239	359745.053	1.02	0.076	190 499	0.19
653	4778121.916	359743.253	0.995	0.073	183.655	0.184
654	4778188 857	359896 781	3.016	0.367	917 156	0.917
655	4778190.63	359889 901	2 702	0 313	781 791	0 782
656	4778189 54	359893 616	1 909	0 189	472 399	0 472
657	4778181 052	359930 823	1 516	0 135	338 346	0.338
658	4778164.69	359961.259	1.971	0.198	494,743	0.495
659	4778197.95	359964.06	2.079	0.214	534,512	0.535
660	4778224 552	359889 493	1 684	0 158	393 95	0 394
661	4778218.799	359873.156	1.267	0.104	260.825	0.261
662	4778207.649	359892.504	0.454	0.024	58.881	0.059
663	4777948.804	360275.263	3,109	0.383	958,115	0.958
664	4778002.583	360234.094	4,948	0.752	1879.907	1.88
665	4777919.13	360216.952	7.5	1.374	3435.788	3.436
666	4777944.54	360196.597	2.545	0.287	716.676	0.717
667	4777951.282	360194,262	1.761	0.168	420.16	0.42
668	4777942.212	360200.373	1.362	0.116	289.476	0.289
669	4777960.463	360215.115	1.459	0.128	320.063	0.32
670	4777967.658	360210 613	1.137	0.089	222,895	0.223
671	4777968 698	360211.921	1.385	0.119	296 557	0.297
672	4777986.5	360224.769	2.53	0.284	710.644	0.711
673	4777978 449	360231 222	2 164	0 227	566 695	0.567
674	4777972.837	360237,502	1.341	0.113	283.244	0.283
675	4777950.307	360264.85	0.625	0.037	93.62	0.094
676	4778003.879	360218.444	1.404	0.121	302.494	0.302
677	4778030,412	360253,142	1.523	0.136	340.471	0.34
678	4778036.414	360249.14	1.789	0.172	429.84	0.43
679	4778028.793	360240.275	1.241	0.101	253.118	0.253
680	4778021	360237.39	1.344	0.114	283.925	0.284
681	4778019.473	360238.337	0.633	0.038	95.325	0.095
682	4778008.125	360248.087	1.658	0.154	384.99	0.385
683	4778001.842	360220.787	1.226	0.099	248.576	0.249
684	4777990.524	360223.148	1.632	0.151	376.413	0.376
685	4777989.827	360221.08	0.911	0.065	161.643	0.162
686	4777982.901	360219.553	6.44	1.102	2754.736	2.755
687	4777979.21	360233.932	2.731	0.318	793.825	0.794
688	4777962.044	360239.214	1.578	0.143	358.374	0.358
689	4777946.874	360240.461	3.484	0.452	1130.503	1.131
690	4777931.911	360245.952	1.273	0.105	262.575	0.263
691	4777935.584	360265.34	0.846	0.058	145.083	0.145
692	4777929.404	360268.227	1.413	0.122	305.523	0.306
693	4777912.539	360274.274	0.37	0.018	43.803	0.044
694	4777914.905	360274.642	0.42	0.021	52.565	0.053
695	4777914.207	360272.298	0.335	0.015	37.871	0.038
696	4777920.823	360271.49	0.361	0.017	42.196	0.042
697	4777914.275	360282.053	1.104	0.085	213.645	0.214
698	4777921.913	360282.901	1.208	0.097	243.222	0.243
699	4777925.999	360281.616	1.507	0.134	335.223	0.335
700	4777926.826	360294.762	1.896	0.187	467.698	0.468

FID	Coordenada V	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tp)
701	4777021 904	260205 44	1 0 95	0.092	200 125	0.209
701	4777001.094	260201.44	1.000	0.003	200.123	0.200
702	4777000 772	260200.42	0.945	0.157	144.007	0.342
703	4777002.20	260204 220	1.550	0.036	240.024	0.145
704	4777004 000	260204.239	0.771	0.14	106 920	0.33
705	4/1/904.000	360290.234	0.771	0.051	120.029	0.127
700	4777047.400	360296.433	0.000	0.034	100.011	0.133
707	4777014 405	360269.633	0.69	0.043	106.011	0.100
700	4777055.050	300200.797	0.729	0.047	116.96	0.117
709	4777004.005	300207.40	0.611	0.036	90.49	0.09
710	4777002.002	360239.939	0.473	0.025	74,700	0.063
711	4777962.992	360259.083	0.536	0.03	74.799	0.075
712	4///966.//8	360265.452	0.764	0.05	125.204	0.125
713	4///908.66	360252.121	1.059	0.08	201.082	0.201
/14	4///939.5/8	360254.758	0.811	0.055	136.642	0.137
715	4777940.358	360247.912	0.791	0.053	131.573	0.132
/16	4777944.273	360235.701	3.581	0.47	1176.234	1.176
/1/	4777943.546	360226.792	1.287	0.107	266.748	0.267
/18	4///948.363	360226.571	1.857	0.182	453.856	0.454
/19	4///948.15	360220.323	0.951	0.069	1/2.077	0.1/2
720	4///949.264	360213.038	1.402	0.121	301.879	0.302
721	4777939.679	360218.4	1.887	0.186	464.507	0.465
722	4777949.427	360214.939	1.28	0.106	264.591	0.265
723	4777940.915	360211.004	1.025	0.077	191.675	0.192
724	4777947.497	360212.289	1.562	0.141	353.16	0.353
725	4777941.883	360202.833	2.505	0.28	700.547	0.701
726	4777950.51	360191.825	6.526	1.123	2807.881	2.808
727	4777952.534	360183.216	1.608	0.147	368.258	0.368
728	4777957.984	360190.402	1.447	0.126	316.059	0.316
729	4777956.571	360192.619	1.401	0.121	301.728	0.302
730	4777957.814	360196.851	0.832	0.057	141.803	0.142
731	4777937.581	360200.411	1.301	0.108	270.953	0.271
732	4777969.145	360151.445	1.923	0.191	477.359	0.477
733	4777971.883	360152.441	0.877	0.061	153.021	0.153
734	4777974.241	360151.745	1.037	0.078	194.895	0.195
735	4777978.467	360146.767	0.656	0.04	100.29	0.1
736	4777984.533	360132.511	0.723	0.046	115.49	0.115
737	4778015.051	360099.372	2.207	0.233	583.018	0.583
738	4778018.768	360103.193	1.931	0.192	480.277	0.48
739	4778020.683	360103.537	0.904	0.064	159.88	0.16
740	4778020.601	360120.512	2.481	0.276	690.982	0.691
741	4778018.17	360120.793	2.494	0.278	696.239	0.696
742	4778016.547	360136.132	1.928	0.192	479.126	0.479
743	4778030.645	360146.499	2.805	0.33	825.334	0.825
744	4778034.183	360139.435	5.872	0.964	2409.221	2.409
745	4778013.988	360179.489	4.343	0.622	1555.859	1.556
746	4778011.053	360179.294	2.645	0.303	757.896	0.758
747	4778011.014	360173.137	2.154	0.225	562.708	0.563
748	4777996.546	360170.99	5.693	0.922	2303.751	2.304
749	4778001.578	360159.444	1.748	0.166	415.756	0.416
750	4778016.898	360167.998	3.623	0.478	1196.118	1.196

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
701	4777921.894	360295.44	1.085	0.083	208.125	0.208
702	4777981.345	360304.832	1.529	0.137	342.494	0.342
703	4777980.773	360309.43	0.845	0.058	144.927	0.145
704	4777983.28	360294.239	1.552	0.14	349.924	0.35
705	4777984.868	360290.234	0.771	0.051	126.829	0.127
706	4777922.79	360296.433	0.806	0.054	135.272	0.135
707	4777917.106	360289.835	0.69	0.043	108.011	0.108
708	4777914.465	360288.797	0.729	0.047	116.98	0.117
709	4777955.656	360267.48	0.611	0.036	90.49	0.09
710	4777964.985	360259.959	0.473	0.025	62.56	0.063
711	4777962.992	360259.083	0.536	0.03	74.799	0.075
712	4777966.778	360265.452	0.764	0.05	125.204	0.125
713	4777958.66	360252.121	1.059	0.08	201.082	0.201
714	4777939.578	360254.758	0.811	0.055	136.642	0.137
715	4777940.358	360247.912	0.791	0.053	131.573	0.132
716	4777944.273	360235.701	3.581	0.47	1176.234	1.176
717	4777943.546	360226.792	1.287	0.107	266.748	0.267
718	4777948.363	360226.571	1.857	0.182	453.856	0.454
719	4777948.15	360220.323	0.951	0.069	172.077	0.172
720	4777949.264	360213.038	1.402	0.121	301.879	0.302
721	4777939.679	360218.4	1.887	0.186	464.507	0.465
722	4777949.427	360214.939	1.28	0.106	264.591	0.265
723	4777940.915	360211.004	1.025	0.077	191.675	0.192
724	4777947.497	360212.289	1.562	0.141	353.16	0.353
725	4777941.883	360202.833	2.505	0.28	700.547	0.701
726	4777950.51	360191.825	6.526	1.123	2807.881	2.808
727	4777952.534	360183.216	1.608	0.147	368.258	0.368
728	4777957.984	360190.402	1.447	0.126	316.059	0.316
729	4777956.571	360192.619	1.401	0.121	301.728	0.302
730	4777957.814	360196.851	0.832	0.057	141.803	0.142
731	4777937.581	360200.411	1.301	0.108	270.953	0.271
732	4777969.145	360151.445	1.923	0.191	477.359	0.477
733	4777971.883	360152.441	0.877	0.061	153.021	0.153
734	4777974.241	360151.745	1.037	0.078	194.895	0.195
735	4777978.467	360146.767	0.656	0.04	100.29	0.1
736	4777984.533	360132.511	0.723	0.046	115.49	0.115
737	4778015.051	360099.372	2.207	0.233	583.018	0.583
738	4778018.768	360103.193	1.931	0.192	480.277	0.48
739	4778020.683	360103.537	0.904	0.064	159.88	0.16
740	4778020.601	360120.512	2.481	0.276	690.982	0.691
741	4778018.17	360120.793	2.494	0.278	696.239	0.696
742	4778016.547	360136.132	1.928	0.192	479.126	0.479
743	4778030.645	360146.499	2.805	0.33	825.334	0.825
744	4778034.183	360139.435	5.872	0.964	2409.221	2.409
745	4778013.988	360179.489	4.343	0.622	1555.859	1.556
746	4778011.053	360179.294	2.645	0.303	757.896	0.758
747	4778011.014	360173.137	2.154	0.225	562.708	0.563
748	4777996.546	360170.99	5.693	0.922	2303.751	2.304
749	4778001.578	360159.444	1.748	0.166	415.756	0.416
750	4778016.898	360167.998	3.623	0.478	1196.118	1.196

FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
751	4778019.991	360171.801	3.337	0.425	1061.754	1.062
752	4778037.732	360184.739	5.427	0.86	2149.422	2.149
753	4778004.545	360196.094	4.149	0.583	1456.319	1.456
754	4777968.943	360183.54	4.361	0.626	1565.258	1.565
755	4777972.212	360185.427	3.191	0.398	995.272	0.995
756	4777973.109	360174.448	2.204	0.233	581.7	0.582
757	4778004.155	360169.839	1.575	0.143	357.387	0.357
758	4778001.416	360192.404	1.212	0.098	244.444	0.244
759	4778011.18	360163.294	1.562	0.141	353.342	0.353
760	4778007.834	360161.032	0.562	0.032	80.298	0.08
761	4778000.902	360161.449	0.764	0.05	125.195	0.125
762	4777996.974	360164.981	2.567	0.29	725.754	0.726
763	4777997.992	360163.759	1.041	0.078	196.181	0.196
764	4777999.379	360163.715	0.91	0.065	161.289	0.161
765	4777998.215	360167.46	3.727	0.498	1246.142	1.246
766	4778001.264	360170.75	0.874	0.061	152.075	0.152
767	4777995.338	360174.31	2.274	0.244	608.929	0.609
768	4777998.185	360178.44	0.963	0.07	175.154	0.175
769	4777985.133	360179.264	1.184	0.095	236.441	0.236
770	4777989.132	360176.979	0.719	0.046	114.653	0.115
771	4777977.928	360180.928	0.817	0.055	138.019	0.138
772	4777975.091	360175.403	0.825	0.056	139.959	0.14
773	4777982.449	360188.401	0.71	0.045	112.516	0.113
774	4777981.164	360183.48	0.542	0.03	76.077	0.076
775	4777998.791	360176.633	0.733	0.047	117.973	0.118
776	4778000.624	360176.924	0.669	0.041	103.339	0.103
777	4778000.706	360178.939	0.712	0.045	113.008	0.113
778	4778007.932	360179.062	2.049	0.209	523.643	0.524
779	4778002.997	360155.019	1.346	0.114	284.632	0.285
780	4778074.901	360140.096	2.313	0.25	623.867	0.624
781	4778076.899	360142.741	2.965	0.358	894.464	0.894
782	4778014.314	360153.906	1.849	0.18	450.994	0.451
783	4778015.403	360148.954	1.169	0.093	232.019	0.232
784	4778074.025	360070.552	1.375	0.117	293.478	0.293
785	4778080.225	360117.071	2.188	0.23	575.756	0.576
/86	4778082.627	360117.268	1.803	0.1/4	434.979	0.435
/8/	4778079.874	360104.455	5.266	0.823	2057.366	2.057
/88	4778074.472	360126.443	1.349	0.114	285.596	0.286
789	4778067.651	360133.947	1.461	0.128	320.635	0.321
790	4778061.621	360134.118	1.919	0.19	475.976	0.476
791	4778071.958	360125.94	2.255	0.241	601.474	0.601
792	4770404.070	359987.265	1.355	0.115	287.408	0.287
793	4770404.0	309983.305	1.867	0.183	407.007	0.458
794	4770100 545	309980.983	1.924	0.191	4/1.046	0.478
790	4770150 000	309992.772	2.000	0.307	100.109	0.767
790	4778174 202	359960.942	4.001	0.69	760 740	0.764
709	4778175.046	350055 224	2.002	0.304	204 449	0.701
700	4778202.446	350044 745	1.41	0.122	226 255	0.304
800	4778214 406	3500/0 723	1.149	0.091	301 575	0.220
1 000	4770214.400	000040.120	1.077	0.107	551.575	0.092

'n		1					
	FID	Coordenada Y	Coordenada X	AREA (m2)	volumen (m3)	PESO (KG)	PESO (Tn)
	801	4778169.992	359844.446	1.601	0.146	366.084	0.366
	802	4778177.427	359872.697	2.25	0.24	599.568	0.6
	803	4778177.966	359882.625	2.799	0.329	822.757	0.823
	804	4778175.027	359777.808	8.049	1.522	3806.21	3.806
	805	4778174.798	359771.357	9.036	1.8	4501.148	4.501
	806	4778193.677	359796.846	2.054	0.21	525.381	0.525
	807	4778180.105	359790.702	0.961	0.07	174.533	0.175
	808	4778181.95	359789.137	1.952	0.195	488.054	0.488
	809	4778183.457	359789.776	1.215	0.098	245.321	0.245
	810	4778186.262	359800.364	0.708	0.045	112.208	0.112
	811	4778169.41	359785.948	1.124	0.088	219.041	0.219
]	812	4778163.227	359781.673	1.326	0.111	278.395	0.278
]	813	4778164.582	359784.137	0.773	0.051	127.285	0.127
]	814	4778159.456	359790.203	0.93	0.067	166.552	0.167
]	815	4778165.068	359778.933	0.971	0.071	177.187	0.177
]	816	4778184.116	359786.412	0.454	0.024	58.878	0.059
]	817	4778185.875	359792.048	0.828	0.056	140.774	0.141
]	818	4778184.769	359794.523	0.592	0.035	86.555	0.087
]	819	4778183.731	359800.225	0.873	0.061	151.956	0.152
]	820	4778180.718	359804.389	1.124	0.088	219.192	0.219
]	821	4778191.04	359815.624	0.872	0.061	151.7	0.152
]	822	4778176.889	359832.597	0.982	0.072	180.08	0.18
]	823	4778186.069	359843.855	1.61	0.148	368.924	0.369
]	824	4778192.779	359844.461	0.525	0.029	72.66	0.073
]	825	4778196.087	359840.701	0.701	0.044	110.621	0.111
]	826	4778186.519	359865.05	0.877	0.061	152.914	0.153
]	827	4778178.356	359869.544	0.798	0.053	133.259	0.133
]	828	4778178.754	359868.217	0.443	0.023	56.887	0.057
]	829	4778179.971	359868.402	0.691	0.043	108.302	0.108
]	830	4778175.787	359870.713	0.833	0.057	141.818	0.142
]	831	4778176.151	359886.71	0.721	0.046	115.229	0.115
]	832	4778177.992	359918.7	0.605	0.036	89.179	0.089
]	833	4778175.259	359926.436	1.225	0.099	248.259	0.248
]	834	4778178.046	359925.201	0.737	0.048	118.854	0.119
]	835	4778175.448	359928.677	1.091	0.084	209.977	0.21
1	836	4778176.15	359937.816	0.726	0.047	116.381	0.116
1	837	4778173.743	359943.899	0.683	0.043	106.361	0.106
1	838	4778175.3	359945.126	0.653	0.04	99.691	0.1
1	839	4778175.309	359943.35	0.449	0.023	57.924	0.058

Figura 9.1. Simulaciones de las 33 trayectorias de la cabecera del deslizamiento de Sebrango.

TRAYECTORIA 1

Horizontal Location of Rock End-points

TRAYECTORIA 2

Horizontal Location of Rock End-points

Página 82 de 205

Horizontal Location of Rock End-points

TRAYECTORIA 4

Horizontal Location of Rock End-points

Página 83 de 205

Horizontal Location of Rock End-points

TRAYECTORIA 6

Horizontal Location of Rock End-points

Página 84 de 205

Horizontal Location of Rock End-points

TRAYECTORIA 8

Horizontal Location of Rock End-points

Página 85 de 205

Horizontal Location of Rock End-points

Horizontal Location of Rock End-points

Página 86 de 205

Horizontal Location of Rock End-points

Horizontal Location of Rock End-points

Página 87 de 205

Horizontal Location of Rock End-points

Horizontal Location of Rock End-points

Página 88 de 205

Horizontal Location of Rock End-points

TRAYECTORIA 16

Horizontal Location of Rock End-points

Página 89 de 205

Horizontal Location of Rock End-points

Horizontal Location of Rock End-points

Página 90 de 205

Horizontal Location of Rock End-points

Horizontal Location of Rock End-points

Página 91 de 205

Horizontal Location of Rock End-points

TRAYECTORIA 22

Horizontal Location of Rock End-points

Página 92 de 205

Horizontal Location of Rock End-points

TRAYECTORIA 24

Horizontal Location of Rock End-points

Página 93 de 205

Horizontal Location of Rock End-points

TRAYECTORIA 26

Horizontal Location of Rock End-points

Página 94 de 205

Horizontal Location of Rock End-points

TRAYECTORIA 28

Horizontal Location of Rock End-points

Página 95 de 205

Horizontal Location of Rock End-points

TRAYECTORIA 30

Horizontal Location of Rock End-points

Página 96 de 205

Horizontal Location of Rock End-points

TRAYECTORIA 32

Horizontal Location of Rock End-points

Página 97 de 205

Horizontal Location of Rock End-points

Figura 9.2. Simulaciones de los 29 corredores del deslizamiento de Sebrango

CORREDOR 1

Bloques de 2,5 kg

Página 99 de 205

Propuesta de metodología para la obtención de modelos de riesgo específico de

desprendimientos de roca para espacios naturales

5.000 kg

Total Kinetic Energy Envelope

Propuesta de metodología para la obtención de modelos de riesgo específico de

desprendimientos de roca para espacios naturales

Bloques de 54.000 kg

CORREDOR 2

Propuesta de metodología para la obtención de modelos de riesgo específico de

desprendimientos de roca para espacios naturales

Bloques de 5.000 kg

Página 104 de 205

Bloques de 54.000 kg

CORREDOR 3

Bloques de 2,5 kg

Alejandro Lara Hidalgo

Bloques de 5.000 kg

Página 107 de 205

Bloques de 54.000 kg

CORREDOR 4

Propuesta de metodología para la obtención de modelos de riesgo específico de

desprendimientos de roca para espacios naturales

Bloques de 5.000 kg

Página 110 de 205

Bloques de 54.000 kg

CORREDOR 5

Bloques de 125 kg

Bloques de 5.000 kg

Página 113 de 205

Bloques de 54.000 kg

CORREDOR 6

Propuesta de metodología para la obtención de modelos de riesgo específico de

desprendimientos de roca para espacios naturales

Bloques de 5.000 kg

Página 116 de 205

Bloques de 54.000 kg

CORREDOR 7

Bloques de 2,5 kg

Bloques de 125 kg

Bloques de 5.000 kg

Página 119 de 205

Bloques de 54.000 kg

CORREDOR 8

Bloques de 125 kg

Bloques de 5.000 kg

Bloques de 54.000 kg

CORREDOR 9

Bloques de 2,5 kg

Bloques de 125 kg

Bloques de 5.000 kg

Bloques de 54.000 kg

CORREDOR 10

Bloques de 2,5 kg

Bloques de 125 kg

Total Kinetic Energy Envelope

Bloques de 5.000 kg

Página 131 de 205

Bloques de 54.000 kg

CORREDOR 11

Bloques de 2,5 kg

			Total Kinetic Ene	ergy Envelope			
12000 17000 17000 1000 1000 1000 1000 10	Mahr	N	M	M			
0	100	290	300 Lo	400. Idelian (m)	500	600	700

Bloques de 125 kg

Horizontal Location of Rock End-points

Bloques de 5.000 kg

Bloques de 54.000 kg

CORREDOR 12

Bloques de 2,5 kg
Propuesta de metodología para la obtención de modelos de riesgo específico de

desprendimientos de roca para espacios naturales

Bloques de 5.000 kg

Página 138 de 205

Bloques de 54.000 kg

CORREDOR 13

Bloques de 5.000 kg

Página 141 de 205

Bloques de 54.000 kg

CORREDOR 14

Bloques de 2.5 kg

Propuesta de metodología para la obtención de modelos de riesgo específico de

desprendimientos de roca para espacios naturales

Bloques de 125 kg

Bloques de 5.000 kg

Bloques de 54.000 kg

CORREDOR 15

Bloques de 25 kg

Bloques de 5.000 kg

Bloques de 54.000 kg

CORREDOR 16

Bloques de 5.000 kg

Página 152 de 205

Bloques de 54.000 kg

CORREDOR 17

Bloques de 2.5 kg

Bloques de 125 kg

Bloques de 5.000 kg

Página 155 de 205

Bloques de 54.000 kg

CORREDOR 18

Bloques de 125 kg

Bloques de 5.000 kg

Bloques de 54.000 kg

CORREDOR 19

Bloques de 5.000 kg

Página 162 de 205

Bloques de 54.000 kg

CORREDOR 20

Bloques de 2.5 kg

Alejandro Lara Hidalgo

Bloques de 125 kg

Bloques de 5.000 kg

Página 165 de 205

Bloques de 54.000 kg

CORREDOR 21

Bloques de 2.5 kg

Propuesta de metodología para la obtención de modelos de riesgo específico de

desprendimientos de roca para espacios naturales

Bloques de 5.000 kg

Página 168 de 205

Bloques de 54.000 kg

CORREDOR 22

Bloques de 125 kg

Bloques de 5.000 kg

Página 171 de 205

Bloques de 54.000 kg

CORREDOR 23

Total Kinetic Energy Envelope IM INH, Horizontal Location of Rock End-points Bloques de 125 kg Total Kinetic Energy Envelope when the particulation of the Horizontal Location of Rock End-points du au rin

Bloques de 5.000 kg

Página 174 de 205

Bloques de 54.000 kg

CORREDOR 24

Bloques de 2.5 kg

Bloques de 125 kg

Bloques de 5.000 kg

Página 177 de 205

Bloques de 54.000 kg

CORREDOR 25

Bloques de 2.5 kg

Propuesta de metodología para la obtención de modelos de riesgo específico de

desprendimientos de roca para espacios naturales

			Total Kinet	ic Energy Envelope			
120000 120000 120000 12000 12000 12000 12000 12000 12000	111/11/	1.1.1	M/M	N	Willing	,	
0	100	290	305	400 Locator (n)	500	602	796
			Horizontal Lo	cation of Rock End-point	is		
Ammen of fices a	11 J 11 1 100	200	1 . 1	11. 11. 426 Lucation (rej	sóc (Î	11	TES

Bloques de 125 kg

Bloques de 5.000 kg

Bloques de 54.000 kg

CORREDOR 26

Bloques de 2.5 kg

Total Kinetic Energy Envelope Inday Illas Horizontal Location of Rock End-points Bloques de 125 kg Total Kinetic Energy Envelope Horizontal Location of Rock End-points 111

Bloques de 5.000 kg

Página 184 de 205

Bloques de 54.000 kg

CORREDOR 27

Bloques de 2.5 kg

Total Kinetic Energy Envelope

Bloques de 125 kg

Bloques de 5.000 kg

Página 187 de 205

Ilustración 9.1. Bloques de 54.000 kg

CORREDOR 28

Bloques de 2.5 kg

Propuesta de metodología para la obtención de modelos de riesgo específico de

desprendimientos de roca para espacios naturales

Bloques de 125 kg

Bloques de 5.000 kg

Bloques de 54.000 kg

CORREDOR 29

Bloques de 2.5 kg

Propuesta de metodología para la obtención de modelos de riesgo específico de

desprendimientos de roca para espacios naturales

Bloques de 5.000 kg

Página 194 de 205

Ilustración 9.2. Bloques de 54.000 kg

B. AMPLIACIÓN DE LOS CRITERIOS DE SIMULACIÓN DE CAÍDAS DE ROCAS EN ROCFALL

En este anexo se van a mostrar, para comenzar, los algoritmos que el programa utiliza para la simulación de caídas de rocas. A continuación, se hará un análisis más exhaustivo a los parámetros a introducir en el software, complementando así lo dicho en la memoria.

El algoritmo usado en este programa se denomina el algoritmo parabólico de proyectil, puesto que la roca que se desprende describe una parábola a través del aire debido a la fuerza de la gravedad (Figura 9.3). Al inicio, este algoritmo asume que el proyectil tiene una cierta velocidad para moverse a través del aire desde su ubicación inicial a una nueva donde la roca golpeará otro objeto. El objetivo principal del algoritmo proyectil es encontrar el punto de intersección entre la parábola que recorre el bloque en cada movimiento y el segmento de la superficie del terreno donde golpea (ya sea un segmento de la ladera o una barrera u otra estructura instalada allí). Una vez encontrado el punto de intersección, el impacto se calcula a través de los coeficientes de restitución. Si después del impacto, la roca sigue moviéndose lo suficientemente rápido (es decir, por encima de una V_{min}), el proceso comienza de nuevo con la búsqueda del siguiente punto de impacto (punto de intersección). Por lo tanto, la velocidad mínima define el punto de transición entre el estado proyectil y otros estados (que rueda, desliza o se detiene), mediante su energía. Los cambios en la velocidad mínima no producen modificaciones sustantivas del tiempo que el programa de simulación emplea en desarrollar la misma (Stevens, 1998).

Figura 9.3. Parábola descrita por un bloque en RocFall (Tomado de Stevens, 1998)

El uso de las ecuaciones en forma paramétrica tanto parabólica como lineal, es útil cuando existen secciones que sobresalen de la ladera a lo largo de la misma cambiando, bruscamente la pendiente. Además, su uso resulta ventajoso ya que la trayectoria parabólica de la roca puede intersectar múltiples segmentos de pendiente en un mismo corredor, y el orden de impacto puede determinarse.

Las ecuaciones utilizadas para los cálculos de proyectil se enumeran a continuación. La ecuación paramétrica para una línea es:

$$xl = X_1 + (X_2 - X_1) * u$$
[10]

$$yl = Y_1 + (Y_2 - Y_1) * u$$
 $u \in [0,1]$ [11]

Donde:

 X_1 , Y_1 es el primer punto de la línea

X₂, Y₂ es el segundo punto de la línea

La ecuación paramétrica para una parábola es:

$$xp = V_{X_0}t + X_0$$
 [12]

$$xp = \frac{1}{2}gt^2 + V_{Y_0}t + Y_0 \qquad t \in [0,\infty]$$
[13]

Donde:

g es la aceleración debida a la gravedad (con signo negativo)

 X_0 , Y_0 es la posición inicial de la roca

 V_{X_0} , V_{Y_0} es la velocidad inicial de la roca

La ecuación paramétrica para la velocidad de la partícula es:

$$V_{XB} = V_{X_0} \tag{14}$$

$$V_{YB} = V_{Y_0} + gt \tag{15}$$

Donde:

 V_{XB} , V_{YB} es la velocidad de la roca en cualquier punto a lo largo de la trayectoria, antes del impacto.

Igualando los puntos de las ecuaciones de parábola y de línea (es decir, xp = xl y yp = yl) y la reordenando en la forma $\propto x^2 + bx + c = 0$ da:

$$\left[\frac{1}{2}g\right]t^2 + \left[V_{Y_0} - qV_{X_0}\right]t + \left[Y_0 - Y_1 + q(X_1 - X_0)\right] = 0$$
[16]

Donde:

$$q = \frac{(Y_2 - Y_1)}{(X_2 - X_1)}$$
 es la pendiente del segmento lineal [17]

Durante cada cálculo, el algoritmo, posibilita que la parábola formada por la trayectoria de la roca se valide con cada segmento de la pendiente con el que intersecta el bloque. Todos los segmentos de pendiente que tienen una intersección válida con la parábola se insertan en una lista. La lista se ordena por el valor del parámetro t para determinar la intersección correcta. Una vez definida la intersección correcta, la velocidad se calcula justo antes del impacto mediante las ecuaciones 14 y 15. Y a continuación, se calculan las componentes normal y tangencial de la velocidad del bloque mediante las siguientes expresiones siguientes:

$$V_{NA} = (V_{YB}) * \cos(\theta) - (V_{XB}) * \sin(\theta)$$
[18]

$$V_{TB} = (V_{YB}) * \sin(\theta) + (V_{XB}) * \cos(\theta)$$
[19]

Donde:

 V_{NB} , V_{TB} son las componentes de la velocidad de la roca (el subíndice B equivale a antes en Inglés: *Before*), antes del impacto en las direcciones normal y tangencial, respectivamente.

En el momento del impacto también se puede calcular los coeficientes de restitución usando las siguientes ecuaciones:

$$V_{NA} = R_N * V_{NB}$$
^[20]

$$V_{TA} = R_T * V_{TB}$$
^[21]

Donde:

 V_{NB} , V_{TB} son las componentes de la velocidad de la roca (el subíndice A equivale a después en Inglés: *After*), tras el impacto, en las direcciones normal y tangencial, respectivamente.

RN, RT, son los coeficientes de restitución normal y tangencial, respectivamente.

Tras el impacto, las velocidades se pueden transformar en sus componentes vertical y horizontal de la siguiente forma:

$$V_{XA} = (V_{NA}) * \sin(\theta) + (V_{TA}) * \cos(\theta)$$
[22]

$$V_{YA} = (V_{TA}) * \sin(\theta) - (V_{NA}) * \cos(\theta)$$
[23]

Donde:

 V_{XA} , V_{YA} son las componentes de la velocidad de la roca tras el impacto en las direcciones vertical y horizontal, respectivamente.

Una vez que se determina la intersección correcta y se calculan las velocidades, y la energía cinética de la roca, registrándose todos estos parámetros en la base de datos. Ahora se realiza un nuevo análisis a partir de la comparación de la velocidad de salida con la velocidad min. Si es mayor, el proceso comienza de nuevo con la búsqueda del siguiente punto de intersección. Si la velocidad es inferior, la roca ya no se puede considerar un proyectil, y se envía a otros algoritmos al algoritmo que calculan los movimientos al rodar o deslizar.

El algoritmo de deslizamiento se utiliza para calcular el movimiento de las rocas después de salir del algoritmo de proyectil. Las rocas pueden deslizarse en cualquier tramo de la pendiente. Este algoritmo considera el tramo de pendiente por el que se desliza la roca como un segmento de línea recta única, que tiene como propiedades el ángulo de pendiente (φ) y el ángulo de fricción (θ). Este ángulo de ficción puede ser especificado por un valor constante o mediante el muestreado de una distribución aleatoria.

La roca puede comenzar a deslizar en cualquier lugar a lo largo del perfil y puede tener una velocidad inicial dirigiéndose cuesta arriba o cuesta abajo. En estas ecuaciones, Sólo se considera la componente tangencial de la velocidad.

Una vez que se inicia el deslizamiento, el algoritmo utilizado depende de si la velocidad inicial se efectúa cuesta arriba o cuesta abajo. A continuación, se explica el algoritmo utilizado para cuando el bloque desliza cuesta abajo.

Cuando la velocidad inicial de la roca es cuesta abajo (o cero), el comportamiento de la roca depende de las magnitudes relativas del ángulo de fricción (θ) y el ángulo de la pendiente (ϕ).

 $\theta = \phi$. Si el ángulo de la pendiente es igual al ángulo de fricción, la fuerza motriz (gravedad) es igual a la fuerza de resistencia (ficción) y la roca se deslizará hasta salirse del tramo considerado, con una velocidad igual a la velocidad inicial (es decir, V_{EXIT} = V₀). Por otro lado, para cuando V₀ = 0, la roca no se mueve, y termina la simulación.

 $\theta > \phi$ Si el ángulo de la pendiente es mayor que el ángulo de fricción, la fuerza de accionamiento es mayor que la fuerza de resistencia y la roca se deslizará fuera del punto final del tramo descendente con un aumento de la velocidad. La velocidad con la que la roca sale del tramo de pendiente se calcula mediante:

$$V_{EXIT} = \sqrt{V_0^2 - 2 * s * g * k}$$
[24]

Donde:

 V_{EXIT} es la velocidad de la roca al final del tramo

 V_0 es la velocidad inicial de la roca, tangencial al segmento

s es la distancia desde el punto inicial hasta el final del segmento

g es la aceleración debida a la gravedad (-9.81 m/s²)

k es
$$\pm \sin(\partial) - \cos(\partial) * \tan(\emptyset)$$

Donde:

 ∂ es la pendiente del segmento

Ø es el ángulo de fricción

 \pm es + si la velocidad inicial de la roca es cuesta abajo o cero; y – si es cuesta arriba

 $\theta > \phi$ Si el ángulo de la pendiente es menor que el ángulo de fricción, la fuerza de resistencia es mayor que la fuerza de conducción y la velocidad de la roca disminuirá. La roca

puede llegar a pararse en el segmento en función de la longitud del tramo y la velocidad inicial de la roca.

Suponiendo que el segmento tiene longitud infinita, se calcula una distancia de frenado. La distancia se obtiene ajustando la velocidad de salida (V_{EXIT}) a cero en la ecuación 24 y reordenando:

$$s = \frac{V_0^2}{2*g*k}$$
[25]

De esta forma, se calcula la distancia desde la ubicación inicial de la roca al final del tramo de pendiente. Si la distancia de frenado es mayor que la distancia hasta el extremo del segmento, la roca desliza hasta el final del mismo. En este caso, la velocidad de salida se calcula utilizando la ecuación 24. Sin embargo, si la distancia de frenado es menor que la distancia hasta el extremo del segmento, la roca se detendrá en el segmento y la simulación se detiene. El lugar donde se detiene la roca es una distancia s desde el punto inicial del segmento.

Al deslizar hacia arriba, tanto la fuerza de ficción como la fuerza de la gravedad actúan para disminuir la velocidad del bloque. La distancia de parada se calcula utilizando la ecuación 25, para proceder a continuación al cálculo de la distancia de frenado desde la ubicación inicial de la roca. De esta forma se realiza el mismo procedimiento anteriormente mencionado para el deslizamiento descendente.

Si la roca se desliza hacia arriba y se para al finalizar el recorrido, se inserta después en el algoritmo de deslizamiento pendiente abajo para comprobar si el segmento es lo suficientemente empinado para permitir el nuevo deslizamiento (es decir, $\theta > \phi$). Si esto ocurre, la roca se deslizará. Si el segmento no tiene la pendiente suficiente, la ubicación donde la roca dejó de moverse (después de deslizarse cuesta arriba) se toma como la ubicación final y se detiene la simulación.

Tras la breve descripción de los algoritmos utilizados por el programa, se procede a continuación a analizar los parámetros necesarios a introducir en el software para la correcta definición del tipo de suelo que se encontrará el bloque por cada tramo del perfil o corredor.

Para comenzar, los coeficientes de restitución (R_n, R_t) deben definirse para cada material de la superficie de la ladera sobre la que se quiere realizar el estudio, de tal modo que coincidan las energías y saltos observados en campo con los simulados en el modelo construido. Para ello se divide la ladera en distintas unidades homogéneas, que presumiblemente presenten el mismo comportamiento de rebote y rodadura-deslizamiento. La magnitud del rebote viene definida por los coeficientes de restitución energética, los cuales indican la cantidad de energía conservada tras el impacto o lo que es lo mismo, la energía no disipada (Fig. B2). La velocidad

tras el impacto es proporcional a la velocidad que tenía el bloque inicialmente, siendo el coeficiente de proporcionalidad, el denominado coeficiente de restitución energética. Expresando este concepto en forma de ecuaciones, tenemos que:

$$v_2 = R * v_1 \tag{26}$$

Donde:

- v_2 es la velocidad tras el impacto
- v_1 es la velocidad inicial
- R es la velocidad inicial

A su vez, el coeficiente de restitución energética, tiene una componente normal y tangencial (perpendicular y paralelo a la superficie de contacto respectivamente), tal y como se muestra en la Figura 9.4

Figura 9.4. Coeficientes de restitución energética (Rn =Coeficiente de restitución energética normal; Rt = Coeficiente de restitución energética tangencial) y Velocidad (Vn = Componente Normal de la velocidad; Vt = componente Tangencial de la velocidad) Tomado de Pfeiffer (1995)

El coeficiente de restitución normal (Rn) explica la relación entre las velocidades normales a la ladera antes y después del impacto. Viene determinado por la rigidez de la superficie de la ladera, cuanto más deformable sea el material, menor será su coeficiente de restitución normal. El coeficiente de restitución tangencial (Rt) explica la relación entre las velocidades paralelas a la ladera antes y después del impacto. La vegetación y, en menor grado, los materiales de la ladera influyen en el coeficiente tangencial. Estos coeficientes toman valores comprendidos entre 0 y 1, siendo el valor igual a 1 en el caso ideal en que no se produzca pérdida energética tras producirse el choque, mientras que 0 en el caso en que se disipe toda la energía tras el choque. desprendimientos de roca para espacios naturales

Un ejemplo de coeficientes de restitución en rocas y otros recubrimientos de laderas se presenta en la Tabla 9.2.

Tabla 9.2. Coeficientes de Restitución Energética Normal (Rn) y Tangencial (Rt) en función del tipo de material(Tomado de (Santamaría, 1996)

Parámetros de restitución energética		Descripción del material del talud	
Rn Rt			
0.37 - 0.50	0.87 – 0.95	Roca dura	
0.33 - 0.37	0.83 – 0.87	Roca firme cubierta de grandes bloques	
0.30 – 0.33	0.68 – 0.75	Escombrera formada por elementos uniformemente distribuidos	
0.25 - 0.30	0.50 - 0.60	Suelos cubiertos de vegetación	

Hay que tener presente que los valores de este parámetro deben estar calibrados en función del volumen del bloque a modelar y del tipo de material que lo compone a él y a la superficie de impacto, pues posibilitan que el choque se produzca de manera elástica (con recuperación de su energía) o de manera plástica, con deformación irrecuperable (absorción de parte de la energía debido a fractura y dislocación del material). La siguiente tabla muestra valores de dichos coeficientes propuestos en la literatura.

rabla 9.3. Valores de coeficientes de restitución propuestos en la literatura (Tomado de Pen	g,
2000)	

Reference & methods	R	Ra	Rt	Slope properties
Habit (1977), based on	0.75-0.80			Based on experience in Italy
experience	0.50-0.60			Based on experience in Norway.
Descoeudres et	0.40			Vineyard slopes
Zimmermann (1987)	0.85			Rock slopes
Brioli(from Pasquero, 1987)	0.75-0.80			Rock on rock
	0.20-0.35			Rock on soil/scree
Piteau and Clayton(1987)		0.9-0.8	0.75-0.65	Solid rock
		0.8-0.5	0.65-0.45	Detrital material with large rock
				boulders
		0.5-0.4	0.45-0.35	Compact detrital material with
		04.02	0202	Grass sourced slopes
Heek (1097)		0.4-0.2	0.3-0.2	Clear bard badroak
Hoek (1987)		0.55	0.99	Asphalt readures
		0.40	0.90	Asphalt roadway
		0.55	0.85	surface large boulders
		0.32	0.82	Talus cover
		0.30	0.80	Soft soil some vegetation
Azzoni et al (1991)		0.45-0.85	0.45-0.75	Rock/thin debris 30-80°
Field tests on different		0.30	0.66	Fine debris, 40°
slopes		0.62	0.66	Debris and earth, 25°
		1.22	0.80	Coarse debris, 40°
Azzoni and Freitas (1995),	0.51-0.92			Rock slope
field tests	0.32-0.65			Debris slope
Robotham et al (1995), in		0.315	0.712	Limestone face
situ tests		0.303	0.613	Partially vegetated limestone
				scree
		0.315	0.712	Uncovered limestone blast pile
				Vegetated covered limestone
		0.251	0.489	pile
				Chalk face
		0.276	0.835	Vegetated chalk scree
		0.271	0.596	
Rayudu(1997)		0.33-0.77		Steel ball on different rock slabs
Laboratary tests				
Chau, et al(1998)	0.487	0.197	0.910	Rock slope
Laboratary tests	0.393	0.290	0.567	Soil slope
	0.453	0.263	0.737	Shotcreted slope

Otro parámetro a tener en cuenta es el ángulo de fricción interna. Este valor debe escogerse teniendo en cuenta la forma de los bloques caídos y el tipo movimiento esperado (rueda, desliza, o salta). El valor escogido representará la mínima inclinación del talud para que una roca, que llegue allí, empiece a descender. El programa permite tres opciones a elegir para el de ángulo de fricción. La primera es introducir un valor. La segunda es considerarlo como valor 0, (se aplica a un movimiento de rodar); es el caso más desfavorable en términos de movimiento, dado que implica obtener mayores distancias finales al no existir resistencia por parte del terreno, al movimiento del bloque desprendido. La última opción es calcularlo a partir del coeficiente de restitución tangencial, RT. Para ello utiliza la expresión:

Phi = arctan [(1 – *Rt*) / *Rt*]

Esta opción permite reducir el número de parámetros requeridos en la simulación, aliviando el problema de determinar el ángulo de fricción en la realidad. No obstante, se debe tener presente que la determinación de RT es muy compleja (RocScience, 2003).

El ángulo de fricción se llama a veces ángulo de fricción drenado. Valores típicos de este ángulo de fricción drenado se dan en la Tabla 9.4. Para recubrimientos formados por arcillas normalmente consolidadas, el ángulo de fricción generalmente varía entre 20º y 30º. Para arcillas preconsolidadas, la magnitud del ángulo decrece.

Tipo de suelo	Ø ° (grados)	
Arena: granos redondeados		
Suelta	27 - 30	
Media	30 - 35	
Densa	35 - 38	
Arena: granos angulares		
Suelta	30 - 35	
Media	35 - 40	
Densa	40 - 45	
Grava con algo de arena	34 - 48	
Arcillas consolidadas	20 - 30	
Limos	26 - 35	

Tabla 9.4. Ángulo de fricción interna según tipo de suelo (Tomado de Das, 2001)

El valor de la rugosidad de la superficie se expresa estadísticamente a partir de la pendiente de los segmentos de roca. La rugosidad, tal y como se define en Rocfall, es la desviación estándar (en grados) del ángulo de un segmento de ladera. Por ejemplo, si el usuario introduce una rugosidad de 3 grados, esto definirá una distribución normal con una variación estándar de 3 grados en función a la media del ángulo del segmento de ladera. Es decir, cada vez que un fragmento de roca impacte en un segmento de suelo con una rugosidad diferente a 0, el ángulo de ladera usado en ese momento en Rocfall será el resultado de un muestreo de la distribución normal para el segmento de ladera.

Los valores típicos usados son normalmente pequeños y la desviación estándar para estos valores oscila normalmente entre 0, 2, 3 y 5 grados. La rugosidad no depende solamente del tipo y tamaño del material presente en el talud, sino también conjuntamente, del tamaño del elemento a caer. Una roca de gran tamaño difícilmente cambiará su trayectoria por el tamaño de los elementos del talud, pero un bloque pequeño podría ser fácilmente desviado si encuentra en su recorrido un elemento con dimensiones similares.

AUTOR DEL TFM

Fdo. Alejandro Lara Hidalgo

Página 205 de 205