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Abstract

In this paper, we consider the nonparametric estimation of a varying coefficient fixed effect panel

data model. The estimator is based in a within (un-smoothed) transformation of the regression

model and then a local linear regression is applied to estimate the unknown varying coefficient

functions. It turns out that the standard use of this technique rends a non-negligible asymptotic bias.

In order to avoid it, a high dimensional kernel weight is introduced in the estimation procedure. As a

consequence, the asymptotic bias is removed but the variance is enlarged, and therefore the estimator

shows a very slow rate of convergence. In order to achieve the optimal rate, we propose a one-step

backfitting algorithm. The resulting two-step estimator is shown to be asymptotically normal and

its rate of convergence is optimal within its class of smoothness functions. It is also oracle efficient.

Further, this estimator is compared both theoretically and by Monte-Carlo simulation against other

estimators that are based in a within (smoothed) transformation of the regression model. More

precisely the profile least-squares estimator proposed in this context in Sun et al. (2009). It turns

out that the smoothness in the transformation enlarges the bias and it makes the estimator more

difficult to analyze from the statistical point of view. However, the first step estimator, as expected,

shows a bad performance when compared against both the two step backfitting algorithm and the

profile least-squares estimator. [1]
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1 Introduction

This paper is concerned with the nonparametric estimation and inference of panel data varying co-

efficient models with fixed effects. In fact, in the random effect setting, direct estimation through

the use of standard nonparametric techniques is straightforward and there is only need to care about

efficiency issues (see for example Ruckstuhl et al. (2000) or Henderson and Ullah (2005)). However,

in the fixed effect framework, direct estimation of the functions of interest rends asymptotically bi-

ased estimators. This is due to the correlation that exists between the heterogeneity term and the

explanatory variables. Traditionally, standard techniques in fixed effect panel data models consist in

removing the heterogeneity term by transforming the statistical model of departure. Following Su and

Ullah (2011) there exist, at least, two different alternative transformations. On one side, the so-called

profile least-squares method and, on the other side, the differencing method. Taking first differences,

subtracting the equation from time t from that for time 1 or alternatively subtracting the within-group

average are all them examples that can be considered differencing techniques. In standard parametric

fixed effect panel data models (see Wooldridge (2003)) the choice among differencing techniques is

related to efficiency issues. For example, if the idiosyncratic errors follow the structure of a random

walk, first differences are recommended, however in much general situations such as an i.i.d or a strictly

stationary context the within (fixed effects) estimator is recommended.

In this paper we present an estimation procedure that uses a (un-smoothed) mean deviation transfor-

mation of the varying coefficient fixed effect panel data model. Since the transformed model appears

as an additive function with the same functional form at different times, the proposals to estimate

this type of models are closely related to estimation techniques originally designed for additive models

(see Henderson et al. (2008), Mammen et al. (2009) or Su and Lu (2013)). As an alternative, we

propose to apply a local approximation on the T additive functions that result from the mean devi-

ation transformation where we denote by T the number of time observations per individual. In this

context, the local linear regression estimator exhibits a non-negligible bias in the estimation of the

additive components. This is because these techniques approximate the unknown function around a

fixed value without considering the sum of the distances between this fixed term and the other values

of the sample. This phenomena was already pointed out in Mundra (2005) and Lee and Mukherjee

(2008) but unfortunately they did not provide a solution to this problem. In this context, our proposal

is to consider a local approximation around the whole vector of time observations for each individual.

Unfortunately, although the introduction of the T -variate kernel solves the bias problem, it enlarges

the variance. For large T , this can create very slow rates of convergence of our estimator. As a solu-

tion, we propose to use a one-step backfitting algorithm. The idea, as already pointed out in Fan and

Zhang (1999), is that additional smoothing can not reduce the bias but it can diminish the variance.

Therefore, the additional smoothing that is introduced by the backfitting enables us to achieve optimal

nonparametric rates of convergence for the estimators of the unknown functions of interest. The same

type of results can be found in Rodriguez-Poo and Soberon (2014) for the first differences setting.

The reason to choose the within transformation among others is twofold. First, considering efficiency

issues, the resulting estimator will be more efficient than those resulting from other transformations
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when assuming standard assumptions such as i.i.d. or stationary idiosyncratic errors. Second, note

that this transformation consists in removing the fixed effect term by deducting a (un-smoothed)

cross-time average from each individual unit. On the contrary, in profile least-squares techniques the

heterogeneity term is removed by deducting a smoothed cross-time average. Therefore, since they are

rather similar, it can be also of great interest to compare the statistical properties of both estimators, i.e

the one obtained in this paper using the within transformation and the profile least-squares estimator

proposed in Sun et al. (2009). Hence, the main interest of the paper is that, to our knowledge, in the

framework of fixed effects varying coefficient panel data models this is the first paper where estimators

that result from deducting un-smoothed and smoothed cross-time averages from each individual units

are compared both from theoretical and simulation results. Furthermore, a nonparametric fixed effect

estimator of the varying coefficient model is proposed, its asymptotic properties are obtained and it is

also shown that it also exhibits the oracle efficiency property.

The rest of the paper is organized as follows. In Section 2 we set up the model and the estimation

procedure. We also provide some comparisons with respect to profile least-squares estimators in very

simple situations. In Section 3 we study the main statistical properties of both direct local linear

estimator and one-step backfitting estimator for the multivariate case. We also compare both local

linear and backfitting estimators against the one proposed in Sun et al. (2009). Finally, in Section 4

we compare empirically the performance in small sample sizes of the same estimators through a Monte

Carlo simulation. The proofs of the main results are collected in the Appendix.

2 Statistical model and Estimation procedure

We consider the following panel data varying coefficient regression model with fixed effects

Yit = X>itm (Zit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T, (2.1)

where Xit and Zit are vectors of covariates of dimension d × 1 and q × 1, respectively, m(Z) =

(m1(Z), · · · ,md(Z)) is a d× 1 vector of unknown functions to estimate, vit is the random error term

and µi reflects the unknown cross-sectional heterogeneity. Also, we allow for µi to be correlated with

Zit and/or Xit with an unknown correlation structure.

To illustrate the estimation procedure proposed in this paper and to compare it against the profile

least-squares estimator proposed in Sun et al. (2009) we first focus on the univariate regression model

and later we extend the results to the multivariate case.

Consider the linear panel data model, where the dimensions of X and Z are respectively d = 1 and

q = 1,

Yit = Xitm (Zit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T. (2.2)

Let Y i· = T−1
∑T

s=1 Yis and vi· = T−1
∑T

s=1 vis. The within transformation implies subtracting from

3



time t of (2.2) the within-group mean, i.e.,

Yit − Y i· = Xitm (Zit)−
1

T

T∑
s=1

Xism (Zis) + vit − vi·, i = 1, · · · , N ; t = 1, · · · , T. (2.3)

Instead of taking averages over time for each individual, consider the following corresponding local

(smoothed) averages,

Ỹi· (z) =
∑T

s=1$is (z)Yis, X̃i· (z) =
∑T

s=1$is (z)Xis

ṽi· (z) =
∑T

s=1$is (z) vis,

where

$is (z) =
Kg (Zis − z)∑T
r=1Kg (Zir − z)

s = 1, · · · , T, (2.4)

g is a bandwidth and K is a kernel function such as∫
K(u)du = 1 and Kg(u) =

1

g
K (u/g) .

Since
∑T

s=1$is (z)µi = µi, for all i, then, applying the same transformation as for the within estimator

we obtain,

Yit − Ỹi· (Zit) =
(
Xit − X̃i· (Zit)

)
m (Zit) + vit − ṽi· (Zit) , i = 1, · · · , N ; t = 1, · · · , T. (2.5)

Estimation of the quantities of interest can be implemented in (2.5) by considering, for any z ∈ A,

where A is a compact subset in a non-empty interior of IR, the following Taylor expansion(
Xit − X̃i· (Zit)

)
m (Zit) ≈(

Xit − X̃i· (z)
)
m(z) +

(
Xit − X̃i· (z)

)
(Zit − z)m′(z) +

1

2

(
Xit − X̃i· (z)

)
(Zit − z)2m′′(z)

+ · · ·+ 1

p!

(
Xit − X̃i· (z)

)
(Zit − z)pm(p)(z)

≡
p∑

λ=0

αλ

(
Xit − X̃i· (z)

)
(Zit − z)λ .

This suggests that we estimate m(z), m′(z), · · · ,m(p)(z) by regressing Yit − Ỹi· (z) on the terms(
Xit − X̃i· (z)

)
(Zit − z)λ, for λ = 1, · · · , p, with kernel weights. Then, the quantities of interest

can be estimated using a locally weighted linear regression,

N∑
i=1

T∑
t=1

(
Yit − Ỹi· (z)− α0

(
Xit − X̃i· (z)

)
− α1

(
Xit − X̃i· (z)

)
(Zit − z)

)2
Kg (Zit − z) ; (2.6)

see Fan and Gijbels (1995), Ruppert and Wand (1994) or Zhan-Qian (1996).

Let α̂0 and α̂1 be the minimizers of (2.6). The above exposition suggests as estimators for m(z) and

m′(z), m̂h(z) = α̂0 and m̂′h(z) = α̂1, respectively. Furthermore, let us denote by α = (α0 α1)
> and
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Ż>it =
(
Xit − X̃i· (z) ,

(
Xit − X̃i· (z)

)
(Zit − z)

)
. Then, the criterion function (2.6) can be rewritten

as

N∑
i=1

T∑
t=1

(
Yit − Ỹi· (z)− Ż>itα

)2
Kg (Zit − z) , (2.7)

and α̂0 and α̂1 have the following expression(
α̂0

α̂1

)
=

(∑
it

Kg (Zit − z) ŻitŻ>it

)−1∑
it

Kg (Zit − z) Żit
(
Yit − Ỹi· (z)

)
. (2.8)

This estimator is the profile least-squares estimator proposed in Sun et al. (2009). In fact, it turns out

that the corresponding local constant regression estimator (consider α1 = 0 in (2.6)) is

m̂g(z) =

∑
itKg (Zit − z)

(
Xit − X̃i·(z)

)(
Yit − Ỹi·(z)

)
∑

itKg (Zit − z)
(
Xit − X̃i· (z)

)2 , (2.9)

which corresponds to the estimator proposed in Lee and Mukherjee (2008).

Following the previous developments, our idea consists in estimating the quantities of interest starting

from (2.3) by considering, for any z ∈ A, where A is a compact subset in a non-empty interior of IR,

the following Taylor expansion

Xitm (Zit)−
1

T

T∑
s=1

Xism (Zis) ≈

(
Xit −

1

T

T∑
s=1

Xis

)
m(z) +

[
Xit (Zit − z)−

1

T

T∑
s=1

Xis (Zis − z)

]
m′(z)

+
1

2

[
Xit (Zit − z)2 −

1

T

T∑
s=1

Xis (Zis − z)2
]
m′′(z) + · · ·+ 1

p!

[
Xit (Zit − z)p −

1

T

T∑
s=1

Xis (Zis − z)p
]
m(p)(z)

≡
p∑

λ=0

βλ

[
Xit (Zit − z)λ −

1

T

T∑
s=1

Xis (Zis − z)λ
]
. (2.10)

This suggests that we estimate m(z), m′(z), · · · ,m(p)(z) by regressing Ÿit = Yit − Y i· on the terms

Xit (Zit − z)λ − 1
T

∑T
s=1Xis (Zis − z)λ, for λ = 1, · · · , p, with kernel weights. Then, the quantities of

interest can be estimated using a locally weighted linear regression,

N∑
i=1

T∑
t=1

(
Ÿit − β0

(
Xit −

1

T

T∑
s=1

Xis

)
− β1

[
Xit (Zit − z)−

1

T

∑
is

Xis (Zis − z)

])2

Kh (Zi1 − z, · · · , ZiT − z) ; (2.11)

where, h is the bandwidth and

Kh (Zi1 − z, · · · , ZiT − z) =

T∏
`=1

Kh (Zi` − z) .

Let β̂0 and β̂1 be the minimizers of (2.11). The above exposition suggests as estimators for m(z) and

m′(z), m̂h(z) = β̂0 and m̂′h(z) = β̂1, respectively. Furthermore, let us denote by Ẍit = Xit −Xi·, β =

(β0 β1)
> and Z̃>it =

(
Ẍit, Xit (Zit − z)− T−1

∑T
s=1Xis (Zis − z)

)
. Then, the criterion function

(2.11) can be rewritten as

N∑
i=1

T∑
t=1

(
Ÿit − Z̃>it β

)2
Kh (Zi1 − z, · · · , ZiT − z) , (2.12)
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and β̂0 and β̂1 have the following expression(
β̂0

β̂1

)
=

(∑
it

Kh (Zi1 − z, · · · , ZiT − z) Z̃itZ̃>it

)−1∑
it

Kh (Zi1 − z, · · · , ZiT − z) Z̃itŸit. (2.13)

For the sake of comparison, it is also easy to show the form of the local constant estimator as

m̂h(z) =

∑
itKh (Zi1 − z, · · · , ZiT − z) ẌitŸit∑
itKh (Zi1 − z, · · · , ZiT − z) Ẍ2

it

. (2.14)

The local constant estimators of m(z) obtained alternatively in (2.9) and (2.14) exhibit two main

differences, first, the dimension of the kernel weights. In the profile least-squares case, the dimension

of the kernel is univariate whereas in the fixed effects context the dimension is T . This might affect

the variance of the fixed effects estimator. Second, the smoothed weights introduced in the profile

least-squares estimator do not appear in the fixed effect estimator. This might affect the bias of the

former estimator.

Note that in (2.11) or (2.12) it would have been usual to introduce a kernel function around Zit.

By doing so, the distance between z and any of the terms Zi1, · · · , Zi(t−1), Zi(t+1), · · · , ZiT can not

be controlled by a fixed bandwidth and thus the transformed remainder terms can not be negligible.

The consequence of all that is a non-negligible asymptotic bias. Here, we propose to introduce a

multivariate kernel function around the vector of values Zi1, · · · , ZiT . This modified version of a local

linear regression, as it will be shown later, solves the problem of the bias but it considerably enlarges

the variance. More precisely, under rather standard conditions in the next section we show that,

asymptotically, the bias term is of order O
(
h2
)

but the variance is of order O
(
1/NhT

)
. As the reader

may notice, this bound for the variance is rather large. In order to reduce the variance term but keeping

the bias of the same order we propose to add to both terms in (2.3) the average term 1
T

∑
sXism (Zis)

and denote

Ÿ ∗it = Ÿit +
1

T

T∑
s=1

Xism (Zis) . (2.15)

Therefore, combining (2.3) and (2.15) we obtain

Ÿ ∗it = Xitm (Zit) + v̈it, i = 1, · · · , N ; t = 1, · · · , T, (2.16)

where v̈it = vit − 1
T

∑
s vis. Note that equation (2.16) already shows a low dimensional problem

where m (·) could be estimated by a standard nonparametric regression method. Unfortunately,

the functions m (Zi1) , · · · ,m (ZiT ) are not observed and the standard locally weighted least-squares

procedures would generate unfeasible estimators. To overcome this situation, we propose to re-

place in (2.15) the m (Zis) by their corresponding estimators, m̂h (Zis), in (2.13). Then, let Ÿ b
it =

Ÿit + T−1
∑T

s=1Xism̂h (Zis) be the regression problem becomes

Ÿ b
it = Xitm (Zit) + v̈bit, i = 1, · · · , N ; t = 1, · · · , T, (2.17)

where the composed error term is of the form

v̈bit =
1

T

T∑
s=1

Xis (m̂h (Zis)−m (Zis)) + v̈it.
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The quantities of interest can be obtained by minimizing the following criterion function

N∑
i=1

T∑
t=1

(
Ÿ b
it − γ0Xit − γ1Xit (Zit − z)

)2
K
h̃

(Zit − z) , (2.18)

where h̃ is the bandwidth of this stage. We denote by γ̃0 and γ̃1 the minimizers of (2.18). As previously,

we propose as estimators for m(·) and m′(·), m̃
h̃
(z) = γ̃0 and m̃′

h̃
(z) = γ̃1, respectively,(

γ̃0

γ̃1

)
=

(∑
it

K
h̃

(Zit − z) Z̃bitZ̃b>it

)−1∑
it

K
h̃

(Zit − z) Z̃bitŸ b
it, (2.19)

where Z̃b>it = (Xit, Xit (Zit − z)) is a 2× 1-dimensional vector.

Finally, for the sake of comparison the local constant version of the backfitting estimator will be

m̃
h̃
(z) =

∑
itKh̃

(Zit − z)XitŸ
b
it∑

itKh̃
(Zi1 − z)X2

it

. (2.20)

Taking into account that Ÿ b
it = Ÿit + T−1

∑T
s=1Xism̂h (Zis) (2.20) can be written as

m̃
h̃
(z) =

∑
itKh̃

(Zit − z)XitŸit∑
itKh̃

(Zit − z)X2
it

+
T−1

∑
itsKh̃

(Zit − z)XitXism̂h (Zis)∑
itKh̃

(Zit − z)X2
it

. (2.21)

3 Asymptotic properties

In this section we extend the above results for the case (d > 1, q > 1). Furthermore, we give the

asymptotic expressions for the bias and the variance and we calculate the asymptotic distribution of

the local linear regression estimator. Finally, we compare theoretically the results obtained in Sun

et al. (2009) for the profile least-squares estimator against our estimators.

3.1 Local linear estimator

Let us consider (2.12) in its multivariate version,

N∑
i=1

T∑
t=1

(
Ÿit − Z̃>it β

)2 T∏
`=1

KH (Zi` − z) , (3.1)

where in this case β =
(
β>0 β>1

)>
is a d (1 + q) × 1 vector and we denote by Z̃>it a 1 × d (1 + q)

dimensional vector of the form

Z̃>it =

(
Ẍ>it , X>it ⊗ (Zit − z)> − T−1

T∑
s=1

X>is ⊗ (Zis − z)>
)
.

Let H be a q × q symmetric positive definite bandwidth matrix, K is the product of q-variate kernels

such that for each u it holds∫
K(u)du = 1 and KH(u) =

1

|H|1/2
K
(
H−1/2u

)
.
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Let us denote by β̂ the minimizer of (3.1) and assuming Z̃>WZ̃ is nonsingular, the solution can be

written as (
β̂0

β̂1

)
=
(
Z̃>WZ̃

)−1
Z̃>WŸ , (3.2)

where Ÿ = (Ÿ11, · · · , ŸNT ) is a NT × 1 vector while

W = blockdiag

(
KH(Zi1 − z)

T∏
`=2

KH(Zi` − z), · · · ,KH(ZiT − z)
T−1∏
`=1

KH(Zi` − z)

)

and

Z̃ =


Ẍ>11 X>11 ⊗ (Z11 − z)> − T−1

∑T
s=1X

>
1s ⊗ (Z1s − z)>

...
...

Ẍ>NT X>NT ⊗ (ZNT − z)> − T−1
∑T

s=1X
>
Ns ⊗ (ZNs − z)>


are NT ×NT and NT × d (1 + q) dimensional matrix, respectively.

Then, (3.1) and (3.2) suggest as estimators for m(z) and Dm(z) = ∂m(z)/∂z, m̂ (z;H) = β̂0 and

vec(D̂m (z;H)) = β̂1, respectively. In particular, the local weighted linear least-squares estimator of

m(z) is defined as

m̂ (z;H) = β̂0 = eT1

(
Z̃>WZ̃

)−1
Z̃>WŸ , (3.3)

where e1 = (Id
...0dq×d) is a d (1 + q)×d selection matrix, Id is a d×d identity matrix and 0dq×d a dq×d

matrix of zeros.

Once the estimator in its closed form is defined, let us consider the assumptions required to obtain its

asymptotic properties. Consider the data generating process defined in (2.2). Furthermore, we assume

Assumption 3.1 Let (Yit, Xit, Zit)i=1,··· ,N ;t=1,··· ,T be a set of independent and identically distributed

IR1+d+q-random variables in the subscript i for each fixed t and strictly stationary over t for fixed i.

Assumption 3.2 The random errors vit are independent and identically distributed, with zero mean

and homoscedastic variance, σ2v < ∞. They are also independent of Xit and Zit for all i and t. In

addition, E |vit|2+δ, for some δ > 0.

Assumption 3.3 The unobserved cross-sectional effect, µi, can be arbitrarily correlated with both Xit

and/or Zit with an unknown correlation structure.

Assumption 3.1 is standard in panel data analysis. We could consider other settings of time-dependence

such as strong mixing conditions, as in Cai and Li (2008), or nonstationary time series, as in Cai

et al. (2009). However, since in this paper we investigate the asymptotic properties of the estimators

as N tends to infinity and T is fixed it is enough to assume stationarity. Assumption 3.2 is also
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standard for the conventional within transformation; see Wooldridge (2003) or Hsiao (2003) for the fully

parametric case. It also rules out the presence of lagged endogenous variables. Independence between

the idiosyncratic error term and the covariates Xit and/or Zit is assumed without loss of generality

although it can be relaxed assuming some dependence in higher order moments. In particular, if

heteroskedasticity of unknown form is allowed in our setting, we could transform this estimator to take

into account more complex structures of the random error term contained in the variance-covariance

matrix, see Martins-Filho and Yao (2009) or You et al. (2010) for more details.

Assumptions 3.1 and 3.2 in some situations, as in Cai and Li (2008), are relaxed by considering that

(Xit, Zit, vit) are for fixed, i, strictly stationary processes. Unfortunately, this set of assumptions is not

sufficient to bound the asymptotic variance of the estimator and some further mixing conditions are

required to achieve convergence. In this case, T must also tend to infinity. Other cases such as cross

sectional dependence also requires both N and T tending to infinity. Finally, Assumption 3.3 imposes

the so-called fixed effects.

Let Z = (Z11, · · · , ZNT ) and X = (X11, · · · , XNT ) be the observed covariate samples, we also need to

impose the following additional assumptions about moments and densities,

Assumption 3.4 Let fZ1t (·) be the probability density function of Z1t, for t = 1, · · · , T . All density

functions are continuously differentiable in all their arguments and they are bounded from above and

below in any point of their support.

Assumption 3.5 The function E
[
ẌitẌ

>
it |Zi1 = z1, · · · , ZiT = zT

]
is positive definite for any interior

point of (z1, z2, · · · , zT ) in the support of fZi1,··· ,ZiT (z1, z2, · · · , zT ).

Assumption 3.6 Let ‖A‖ =
√
tr (A>A), then E

[
‖XitX

>
it ‖2|Zi1 = z1, · · · , ZiT = zT

]
is bounded and

uniformly continuous in its support. Furthermore, the matrix functions E
[
XitX

>
is |Zi1 = z1, · · · , ZiT = zT

]
,

for t = s and t 6= s, and E
[
ẌitX

>
is |Zi1 = z1, · · · , ZiT = zT

]
, for t = s and t 6= s, are bounded and

uniformly continuous in their support.

Assumption 3.7 Let z an interior point in the support of fZ1t. All second-order derivatives of

m1(·),m2(·), · · · ,md(·) are bounded and uniformly continuous.

Assumption 3.8 The q-variate Kernel functions K are compactly supported, bounded kernel such that∫
uu>K(u)du = µ2(K)I and

∫
K2(u)du = R(K), where µ2(K) 6= 0 and R(K) 6= 0 are scalars and I is

the q×q identity matrix. In addition, all odd-order moments of K vanish, that is
∫
uı11 · · ·u

ıq
q K(u)du =

0, for all nonnegative integers ı1, · · · , ıq such that their sum is odd.

Assumption 3.9 The bandwidth matrix H is symmetric and strictly positive definite. Furthermore,

each entry of the matrix tends to zero as N →∞ in such a way that N |H| → ∞.
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Assumption 3.10 For some δ > 0, the following functions E
[
|Xitvit|2+δ |Zi1 = z1, · · · , ZiT = zT

]
and E

[
|Ẍitvit|2+δ|Zi1 = z1, · · · , ZiT = zT

]
are bounded and uniformly continuous in any point of their

support.

This second set of assumptions is more directly related to nonparametric statistics literature. They

are basically smoothness and boundedness conditions. Assumption 3.4 imposes smoothness conditions

in the probability density function of Z1t, for t = 1, · · · , T . Furthermore, Assumptions 3.5-3.6 are

smoothness conditions on moment functionals. Assumptions 3.7-3.9 are standard in the literature of

local linear regression where, in particular, Assumption 3.9 contains a standard bandwidth condition

for smoothing techniques. Finally, Assumption 3.10 is required to show that the Lyapunov conditions

holds for the Central Limit Theorem.

Under these assumptions we obtain the following asymptotic expressions for the conditional bias and

conditional variance-covariance matrix of the local weighted linear least-squares estimator,

Theorem 3.1 Assume conditions 3.1-3.3 and 3.4-3.9 hold, then as N →∞ and T is fixed we obtain

E[m̂ (z;H) |X,Z]−m(z) =
1

2
B−1
ẌtẌt

(z, · · · , z)

(
µ2(Kuτ )BẌtXt (z, · · · , z)− 1

T

T∑
s=1

µ2 (Kus)BẌtXs (z, · · · , z)

)
× diagd(tr(Hmr(z)H))ıd + op (tr(H))

and

V ar(m̂ (z;H) |X,Z) =
σ2v
∏T
`=1R (Ku`)

N |H|T/2
B−1
ẌtẌt

(z, · · · , z) (1 + op(1)) ,

where τ is any index between 1 and T ,

BẌtXt (z, · · · , z) = E
[
ẌitX

>
it |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) ,

BẌtXs (z, · · · , z) = E
[
ẌitX

>
is |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) ,

BẌtẌt (z, · · · , z) = E
[
ẌitẌ

>
it |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) ,

diagd(tr(Hmr(z)H)) stands for a diagonal matrix of elements tr(Hmr(z)H), for r = 1, · · · , d, where

Hmr(z) is the Hessian matrix of the rth component of m(·). Finally, we denote by ıd is a d × 1 unit

vector.

The proof of this result is done in the Appendix.

This theorem shows that m̂ (z;H) is, conditionally on the sample, a consistent estimator of m(z).

Furthermore, as it was already remarked in the previous section, although the bias shows the standard

order of magnitude for this type of problems, the variance shows an asymptotic expression that is

larger than the expected in this type of problems. In order to achieve an optimal rate of convergence,

the variance term must be of order 1/N |H|1/2 whereas our result shows a bound of order 1/N |H|T/2.
Just to clarify the asymptotic behavior of the estimator we show its properties for the univariate case,

d = q = 1 and H = h2I,
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Corollary 3.1 Assume conditions 3.1-3.9 hold, then if h → 0 in such a way that Nh2 → ∞ as N

tends to infinity and T is fixed we get

E[m̂h (z) |X,Z]−m(z) =
1

2
c (z, z)m′′(z)h2 + op

(
h2
)
,

where

c (z, z) =
µ2 (Kuτ )E

[
ẌitXit|Zi1 = z, · · · , ZiT = z

]
− T−1

∑T
s=1 µ2 (Kus)E

[
ẌitXis|Zi1 = z, · · · , ZiT = z

]
E
[
Ẍ2
it|Zi1 = z, · · · , ZiT = z

] .

Furthermore, if µ2 (Ku1) = · · · = µ2 (KuT ) = µ2 (Kuτ ) = µ2 (K) then the bias term has the following

expression

E[m̂h (z) |X,Z]−m(z) =
1

2
µ2(K)m′′(z)h2 + op

(
h2
)
,

whereas if R (Ku1) = · · · = R (KuT ) = R (K) the variance-covariance matrix is

V ar(m̂h (z) |X) =
σ2vR (K)T

Nh2fZi1,··· ,ZiT (z, · · · , z)E
[
Ẍ2
it|Zi1 = z, · · · , ZiT = z

] (1 + op(1)) .

As a tool to construct asymptotic confidence bands we give also a result that provides the asymptotic

distribution of the estimator.

Theorem 3.2 Assume conditions 3.1-3.3 and 3.4-3.10 hold, then as N →∞ and T is fixed we obtain√
N |H|T/2 (m̂ (z;H)−m (z))

d−−−→ N (b(z), υ(z)) ,

where

b(z) =
1

2
µ2(Ku)diagd

(
tr

(
Hmr(z)H

√
N |H|T/2

))
ıd,

v(z) = σ2vR (K)T B−1
ẌtẌt

(z, · · · , z).

The proof of this result is shown in the Appendix.

We can compare the results obtained here with those in Rodriguez-Poo and Soberon (2014) for the first

differences case. As expected, the bias term presents for both estimators the same linear dependence

in the trace of the bandwidth matrix H. However, the variance term differs from one to the other

estimator. In the first differences case, see Theorem 3.1 in Rodriguez-Poo and Soberon (2014), up to

a constant, the variance term exhibits a dependence from the bandwidth matrix H of order 1/N |H|
whereas in our case it is of order 1/N |H|T/2. That is, the ratio between the first differences and

the deviances from the mean estimators is of order |H|(T−2)/2. For T = 2, the estimators show the

same rate of convergence. This is clearly expected. For T > 2, the first differences estimator under

the conditions established above shows a faster rate of convergence for the variance terms as far as

the diagonal elements of the bandwidth matrix H tend to zero. This was also expected because the

dimensionality of the kernel used in the local linear regression procedure is different in both cases. Of

course, efficiency issues are not considered here and they will clearly depend on the stochastic structure

of the idiosyncratic errors.

11



3.2 The backfitting estimator

As we stated previously the function of interest can be consistently estimated by using a local linear

regression approach with a high dimensional kernel weight, but at the price of achieving a slow rate of

convergence. However, as it is noted in Section 2, we can solve this problem turning to an alternative

procedure that enables us to cancel asymptotically all additive terms expected in the model the function

of interest.

Let us consider the multivariate version of (2.17) and define

Ÿ b
it = X>itm (Zit) + v̈bit, i = 1, · · · , N ; t = 1, · · · , T, (3.4)

where

v̈bit =
1

T

T∑
s=1

X>is (m̂ (Zis;H)−m (Zis)) + v̈it.

The quantities of interest in (3.4) can be estimated by minimizing the following locally weighted linear

regression

N∑
i=1

T∑
t=1

(
Ÿit − Z̃b>it γ

)2
K
H̃

(Zit − z) , (3.5)

where H̃ is a q × q symmetric positive definite bandwidth matrix, γ =
(
γ>0 γ>1

)>
is a d (1 + q) × 1

vector and Z̃b>it =
(
X>it X>it ⊗ (Zit − z)>

)
is a 1× (1 + q) vector.

Furthermore, let the vector γ̃ =
(
γ̃>0 γ̃>1

)>
be the minimizer of (3.5). As estimators of m(z) and

Dm(z) = ∂m(z)/∂z, we suggest m̃(z, H̃) = γ̃0 and vec(D̃m(z; H̃)) = γ̃1, respectively, i.e.,

m̃(z; H̃) = γ̃0 = e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bŸ b, (3.6)

where Ÿ b = (Ÿ b
11, · · · , Ÿ b

NT ) is a NT-vector and W b and Z̃b are NT×NT and NT×d (1 + q) dimensional

matrix, respectively, of the form

W b = diag
(
K
H̃

(Z11 − z) , · · · ,KH̃
(ZNT − z)

)
and

Z̃b =


X>11 X>11 ⊗ (Z11 − z)>

...
...

X>NT X>NT ⊗ (ZNT − z)>

 .
We now study the asymptotic behavior of the so called backfitting estimator. At this stage we need the

results shown in Theorem 3.1 to hold uniformly in z. In order to do so, we can rely on the well-known

results in Masry (1996). In fact, some of the conditions already enounced in Section 3.1 are sufficient

to show the uniform rates for m̂(z;H). However, we need some additional assumptions that relate the

bandwidths of both m̂ (z;H) and m̃(z; H̃).
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Assumption 3.11 The bandwidth matrix H̃ is symmetric and strictly positive definite. Furthermore,

each entry of the matrix tends to zero as N tends to infinity in such a way that N |H̃| → ∞.

Assumption 3.12 The bandwidth matrices H and H̃ must fulfill that N |H| |H̃|/log(N) → ∞, and

tr (H) /tr(H̃)→ 0 as N tends to infinity.

These assumptions are needed in order to ensure that both bias and variance terms of the backfitting

estimator achieve optimal rates of convergence and they are oracle efficient.

Then, under these assumptions we get the following asymptotic expressions for the conditional bias

and conditional variance-covariance matrix of m̃(z; H̃).

Theorem 3.3 Assume conditions 3.1-3.3, 3.4-3.8 and 3.11-3.12 hold, then as N →∞ and T is fixed

we obtain

E[m̃(z; H̃)|X,Z]−m(z) =
1

2
µ2 (Ku) diagd(tr(Hmr(z)H̃))ıd + op(tr(H̃))

and

V ar(m̃(z; H̃)|X,Z) =
σ2vR(K)

NT |H̃|1/2
B−1XtXt(z)BẌtẌt(z)B

−1
XtXt

(z) (1 + op(1)) ,

where diagd(tr(Hmr(z)H̃)) stands for a diagonal matrix of elements tr(Hmr(z)H̃), for r = 1, · · · , d
and ıd is a d× 1 unit vector.

The proof of this result is done in the Appendix.

On one hand, we realize that the bias term is influenced by the amount of smoothing, H, as well

as the curvature of m(z) at z in a particular direction measured through each entry of Hm(z). In

this way, we can guess that this estimator exhibits a higher conditional bias when there is a higher

curvature and more smoothing. On the other hand, from the standpoint of the conditional variance

we can see that it is a bit different from the corresponding for the standard case. In particular, it

will be increased when the smoothing is lower and sparse data near z but now also depends on the

time-demeaned covariates BẌtẌt(z). Regardless, it is proved that the estimation procedure developed

in this paper provides a nonparametric estimator in which the variance-covariance matrix of all its

components is asymptotically the same as if we would known the rest of components of the mean

deviation transformed expression, the so-called oracle efficiency property.

3.3 Comparison of the Estimators

As we have already remarked in Section 2, the main difference among the estimators (for their local

constant version) consists in the types of averages that are used in order to remove fixed effects. In

one case, the one step backfitting algorithm considers un-smoothed averages whereas in the profile

least-squares case smoothed weighted averages are preferred. There exists also a difference between
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the dimension of the kernel weights. All these differences should have an impact in both bias and

variances of the estimators and therefore it would be of interest to analyze them, both theoretically

and empirically. This subsection will be devoted to analyze the estimators theoretically whereas in

Section 4 we will do it empirically through Monte Carlo simulations.

The reader might have noticed that the conditions required to obtain the asymptotic properties of the

first step fixed effects estimator and the backfitting estimator (see Theorems 3.1 and 3.2) are rather

different from the conditions assumed in Sun et al. (2009) to obtain the properties of their estimator.

For the sake of comparison, in this section we introduce additional assumptions that will be used to

obtain asymptotic terms that can be comparable among the three estimators. In all calculus we will

assume that N tends to infinity keeping T fixed. Furthermore, we will remove the strict stationarity

assumption established in the previous sections and we will not be willing to impose that
∑

i µi = 0.

Finally it is important to note that, in the profile least-squares estimator, for fixed T , it is not possible

to obtain explicitly the asymptotic bias and variance of the estimator since $it is random.

In order to compare the main statistical properties of these estimators, we extend the above results

assuming

Assumption 3.13 Let (Yit, Xit, Zit)i=1,··· ,N ;t=1,··· ,T be a set of independent and identically distributed

random variables in the subscript i. Furthermore, let ft(·) the p.d.f. of Zit and ft(·, · · · , ·) be the p.d.f.

of (Zi1, · · · , ZiT ), for each z ∈ IRq, f(z) =
∑T

t=1 ft(z) > 0 and f(z, · · · , z) =
∑T

t=1 ft(z, · · · , z) > 0.

Assumption 3.14 Let ft(z) be the p.d.f. of Zit and ft,s(z1, z2) be the joint p.d.f. of (Zit, Zjs) for t 6= s

and any i, j. We can assume that ft(z)E(XitX
>
it |Zit = z) and ft,s(z)E(XitX

>
js|Zit = z1, Zis = z2) are

uniformly bounded in the domain of Z and are all twice continuously differentiable at z ∈ IRq for all

t 6= s and i and j.

Assumption 3.15 Let g a bandwidth, the bandwidth matrix G is symmetric and strictly positive

definite. Furthermore, each entry of the matrix tends to zero as N →∞ in such a way that N |G| → ∞.

Note that Assumption 3.13 is a standard data generating condition in this context but stationarity

is not allowed. Assumption 3.14 is a smoothness condition and Assumption 3.15 is the standard

bandwidth condition. For the sake of comparison, we give the results for the univariate case (d = q = 1),

where now H = h2I and H̃ = h̃2I, and obtain the following results.

Corollary 3.2 Assume conditions 3.2− 3.9 and 3.13 holds, as N →∞ and T is fixed, then we obtain

E[m̂h (z) |X,Z]−m(z) =
1

2

ΛL(z)

ΨL(z)
+ op(h

2)

V ar(m̂h (z) |X,Z) =
σ2v
NhT

ΓL(z)

ΨL(z)2
+ op

(
1

NhT

)
,
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where, for any ξit between Zit and z, r(ξit, z) = (Zit − z)2 ∂
2m(ξit)
∂z2

and

ΨL(z) =
1

ThT

T∑
t=1

E[Ẍ2
itλi],

ΓL(z) =
1

ThT

T∑
t=1

E[Ẍ2
itλ

2
i ],

ΛL(z) =
1

ThT

T∑
t=1

E

[
Ẍit

(
Xitr(ξit, z)−

1

T

T∑
s=1

Xisr(ξis, z)

)
λi

]
= Op(h

2),

where λi = K
(
Zi1−z
h

)
× · · · ×K

(
ZiT−z
h

)
.

In the Appendix, it is shown that under the same conditions established in the corollary, as N tends

to infinity we obtain,

ΨL(z) = T−1
T∑
t=1

BẌtẌt(z, · · · , z) + op(h
2),

ΛL(z) =
h2

T
µ2(K)

T∑
t=1

BẌtẌt(z, · · · , z)m
′′(z) + op(h

2),

ΓL(z) =
σ2v
T

T∑
t=1

BẌtẌt(z, · · · , z) + op(h
2).

Corollary 3.3 Assume conditions 3.2− 3.8, 3.11− 3.12 and 3.13 holds, as N →∞ and T is fixed we

obtain

E
[
m̃
h̃
(z)|X,Z

]
−m(z) =

1

2

Λb(z)

Ψb(z)
+ op(h̃

2)

V ar
(
m̃
h̃
(z)|X,Z

)
=

σ2v

Nh̃

Γb(z)

Ψb(z)2
+ op

(
1

Nh̃

)
,

where, let λ̃it = K
(
Zit−z
h̃

)
,

Ψb(z) =
1

T h̃

T∑
t=1

E[Ẍ2
itλ̃it],

Γb(z) =
1

T h̃

T∑
t=1

E[X2
itλ̃

2
it],

Λb(z) =
1

T h̃

T∑
t=1

E[X2
itr(ξit, z)λ̃it] = Op(h̃

2).

In the Appendix, it is shown that under the same conditions established in the corollary, as N tends
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to infinity we obtain,

Ψb(z) = T−1
T∑
t=1

BXtXt(z) + op(h̃
2),

Λb(z) =
h̃2

T
µ2(K)

T∑
t=1

BXtXt(z)m′′(z) + op(h̃
2),

Γb(z) =
σ2v
T

T∑
t=1

BẌtẌt(z) + op(h̃
2).

The proof of these corollaries is done in the Appendix.

Under this setting, Theorem 3.1 of Sun et al. (2009) can be rewritten for an univariate problem as

follows.

Corollary 3.4 Assume conditions 3.2−3.3, 3.7−3.8 and 3.13−3.15 holds, as N →∞ and T is fixed

we obtain

E[m̂g(z)|X,Z]−m(z) =
1

2

Λp(z)

Ψp(z)
+Op

(
gln(lnN)√

N

)
+ op(g

2)

V ar(m̂g(z)|X,Z) =
σ2v
Ng

Γp(z)

Ψp(z)2
+ op

(
1

Ng

)
,

where λit = K
(
Zit−z
h

)
and

Ψp(z) =
1

Tg

T∑
t=1

E[(1−$it)X
2
itλit],

Γp(z) =
1

Tg

T∑
t=1

E[(1−$it)
2X2

itλ
2
it],

Λp(z) =
1

Tg

T∑
t=1

E[(1−$it)X
2
itr(ξit, z)λit] = Op(g

2).

Note that in Sun et al. (2009) it is shown

Ψp(z) = T−1
T∑
t=1

BXtXt(z) + op(g
2),

Λp(z) =
g2

T
µ2(K)

T∑
t=1

BXtXt(z)m′′(z) + op(g
2),

Γp(z) =
σ2v
T

T∑
t=1

BẌtẌt(z) + op(g
2).

Under the set of alternative assumptions considered in this section we obtain the results shown in

corollaries 3.2 to 3.4. Clearly, they coincide with the results shown in Section 3.1. Corollary 3.2 points

16



out the variance is of order 1/NhT whereas the bias shows a term that is of order O(h2). Furthermore,

the backfitting estimator that is studied in Corollary 3.3 presents the correction in the variance of

order 1/Nh̃. Furthermore, Assumption 3.12, h = o(h̃), is crucial to guaranty that the additional bias

term vanishes asymptotically. Finally, Corollary 3.4 shows both bias and variance of the profile least-

squares estimator in the univariate case. As it can be observed from the expressions the bias shows

an additional term of order O
(
g ln (ln (N)) /

√
N
)

. This term does not appear in the bias expression

of the other estimator. However, the variance shows the standard rate and no further procedure is

needed to achieve the optimal rate as it is necessary in our case.

Corollary 3.5 As N → ∞ and h → 0 and g → 0 we obtain the following bias and variance rates

given a finite integer T > 0,

Bias[m̂g(z)|X,Z]

Bias[m̂h(z)|X,Z]
=

Λp(z)ΨL(z)

Ψp(z)ΛL(z)
+Op

(
gln(lnN)√

N

)
+ op(g

2),

V ar(m̂g(z)|X,Z)

V ar(m̂h(z)|X,Z)
=

h>

g

Γp(z)ΨL(z)2

Ψp(z)2ΓL(z)
+ op(1).

Corollary 3.6 As N → ∞ and h̃ → 0 and g → 0 we obtain the following bias and variance rate for

m̂(z;h) given a finite integer T > 0,

Bias[m̂g(z)|X,Z]

Bias[m̃
h̃
(z)|X,Z]

=
Λp(z)Ψb(z)

Ψp(z)Λb(z)
+Op

(
gln(lnN)√

N

)
+ op(g

2)

V ar(m̃g(z)|X,Z)

V ar(m̃
h̃
(z)|X,Z)

=
h̃

g

Ψb(z)
2Γp(z)

Ψp(z)2Γb(z)
+ op (1) .

Corollaries 3.5 and 3.6 show relative bias and variances of the profile least-squares estimator against

the local linear fixed effect estimator and the one step backfitting estimator, respectively. The ratio

Λp(z)ΨL(z)/Ψp(z)ΛL(z) in Corollary 3.5 is easily shown to be greater than 1. Therefore, under the

conditions established in the Corollary, the bias of the profile least-squares estimator is larger than

the fixed effect estimator. This difference is increased if we consider the term O
(
g ln (ln (N)) /

√
N
)

.

However, as N tends to infinity the difference between the bias of both estimators diminishes. The

relative variance exhibits a term Γp(z)ΨL(z)2/Ψp(z)
2ΓL(z) that is constant but the relative size of the

variances of both estimators is determined by the ration of bandwidths. i.e. hT /g. For example, if

the bandwidths converge to zero at the same rate the variance term of the profile estimator is going

to be smaller than the variance term of the local linear regression of the within estimator. Corollary

3.6 shows theoretically the correction introduced by the backfitting algorithm in the variance of the

estimators.

4 Monte Carlo simulations

In this section, Monte Carlo simulations are carried out in order to verify the theoretical results of the

estimators proposed in this paper under the statistical setting analyzed in the previous sections. Later,
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we make an empirical comparison about the performance in small samples of the different estimators

considered in this paper.

As it is well known, the Mean Squared Error (MSE) is a suitable measure of the estimation accuracy

of the proposed estimators. Thus, let us denote ϕ as the ϕth replication and Q as the number of

replications, for r = 1, · · · , d

MSE (m̂r (z;H)) =
1

Q

Q∑
ϕ=1

E
[
((m̂ϕr (z;H)−mϕr(z)))

2
]

which can be approximated by the Averaged Mean Squared Error (ASME) such as

AMSE (m̂r (z;H)) =
1

Q

Q∑
ϕ=1

1

NT

N∑
i=1

T∑
t=1

((m̂ϕr (z;H)−mϕr(z)))
2 .

Observations are generated from the following varying coefficient panel data model of unknown form

Yit = X>ditm (Zqit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T ; d, q = 1, 2,

where Xdit and Zqit are random variables generated such that Xdit = 0.5Xdi(t−1) + ξit and Zqit =

wqit +wqi(t−1), where wqit is generated as an independent and identically distributed uniform random

variable in [0, π/2] and ξit is generated as an independent and identically distributed gaussian, zero

mean, variance one, random variable (NID(0, 1)). Furthermore, vit is an NID(0, 1) random variable

and m(·) is a pre-specified function to be estimated.

With the aim of verifying the theoretical results in the Section 3 we consider four different data

generating process (DGP)

(1) Yit = X1itm1(Z1it) + µ1i + vit,

(2) Yit = X1itm1(Z1it, Z2it) + µ2i + vit,

(3) Yit = X1itm1(Z1it) +X2itm2(Z2it) + µ1i + vit,

(4) Yit = X1itm1(Z1it, Z2it) +X2itm2(Z1it, Z2it) + µ2i + vit,

where the chosen functionals form are m1 (Z1it) = sin (Z1itΠ), m1 (Z1it, Z2it) = sin ((Z1it + Z2it) Π),

m2 (Z2it) = exp
(
−Z2

2it

)
and m2(Z1it, Z2it) = exp(−(Z1it + Z2it)

2).

In addition, we experiment with two specifications for the individual heterogeneity

a. µ1i depends on Z1it, where the dependence is imposed by generating µ1i = c0Z1i. + ui for

i = 2, · · · , N and Z1i. = T−1
∑T

t=1 Z1it

b. µ2i depends on Z1it, Z2it through µ2i = c0Zi. + ui for i = 2, · · · , N and Zi. = 1
2

(
Z1i. + Z2i.

)
,

where in both cases ui is an NID (0, 1) random variable and c0 = 0.5 controls the correlation between

the fixed effects and some of the regressors of the model.
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In the experiment we use 1000 Monte Carlo replications. The number of time observations T is set

up to ten, while the number of cross-sections N is either 50, 100 or 150. The Gaussian kernel has

been used and the bandwidth is chosen as Ĥ = ĥI = σ̂z(NT )−1/3, where σ̂z is the sample standard

deviation of {Zqit}N,Ti=1,t=1, and ĝ =
̂̃
h = σ̂z(NT )−1/5.

The results from the simulation are presented in Tables 1 to 4. For the sake of comparison we present

the empirical AMSE of the three estimators that we compare in this paper: the local linear least-squares

estimator (LLLS), the one-step backfitting estimator (OSB), and the profile least-squares estimator

(PLS) proposed in Sun et al. (2009).

Table 1 shows the results for DGP(1). This is the simplest case without curse of dimensionality.

As expected from our theoretical findings the local linear estimator presents its best result. The

profile least-squares estimator, as N grows, seems to perform better than our backfitting estimator.

This might be because the second term of the bias, that is related to the fixed effects, diminishes its

negative impact on the bias.

Table 2 starts reflecting the problem of the curse of dimensionality. Of course, since the variance

of the local linear estimator is of order 1/NThTq, it is expected that the behavior of this estimator

with respect to the others, in terms of AMSE, will be worse. This is indeed what we observe in the

results. Furthermore, as N grows, the backfitting estimator performs slightly better than the profile

least-squares estimator.

Table 3 can be compared against Table 1. In fact, the function m1(·), which is the same under other

DGP’s, presents similar results in terms of AMSE. That is, the estimator that presents the better

performance is the local linear. On the contrary, the function m2(·) is better estimated using either

the one-step backfitting or the profile least-squares estimators. This can be related with the oracle

efficiency property of these estimators.

Table 4 can be compared against Table 2. In fact, we obtain similar conclusions as in the comparison

between DGP’s 1 and 3. That is, the function m1(·) is estimated as the same level of accuracy as if

m2(·) were known. Both the profile least-squares and the one-step backfitting estimators perform much

better than the local linear estimator. This is the curse of dimensionality. We can say the same for

m2(·) but in this case the profile least-squares estimator performs slightly better then the backfitting

estimator.
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Appendix

Proof of Theorem 3.1

We first focus on the analysis of the conditional bias of the local weighted linear least-squares estimator,

m̂ (z;H), and later on the behavior of its conditional variance-covariance matrix. We follow the

standard proofs scheme as in Rodriguez-Poo and Soberon (2014).

Let X = (X11, · · · , XNT ) and Z = (Z11, · · · , ZNT ) be the observed covariate vectors. By Assumption

3.2 we know that E (vit|X,Z) = 0, so the conditional expectation on (3.3) provides

E[m̂ (z;H) |X,Z] = e>1

(
Z̃>WZ̃

)−1
Z̃>WM, (4.1)

where

M =
[
X>11m (Z11)− T−1

∑T
s=1X

>
1sm (Z1s) , · · · , X>NTm (ZNT )− T−1

∑T
s=1X

>
Nsm (ZNs)

]T
.

Approximating M using the multivariate Taylor’s theorem we obtain

M = Z̃

[
m(z)

vec(Dm(z))

]
+

1

2
Qm(z) +R(z), (4.2)

where

Qm(z) = Sm(z)− Sm(z), (4.3)

Sm(z) =
[
S>m11

(z), · · · , S>mNT (z)
]>
,

Sm(z) =
[
S
>
m11

(z), · · · , S>mNT (z)
]>
.

The corresponding entries of these vectors are

Smit(z) =
[
(Xit ⊗ (Zit − z))>Hm(z) (Zit − z)

]
,

Smit(z) =

[
1

T

T∑
s=1

(Xis ⊗ (Zis − z))>Hm(z) (Zis − z)

]
,

where we denote by

Hm(z) =


Hm1(z)

Hm2(z)
...

Hmd(z)


a dq × d matrix such that Hmd(z) is the Hessian matrix of the dth component of m(·).

On the other hand, the remainder term of the Taylor approximation can be written as

R(z) = Rm(z)−Rm(z), (4.4)
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Rm(z) =
[
R>m11

(z), · · · , R>mNT (z)
]>
,

Rm(z) =
[
R
>
m11

(z), · · · , R>mNT (z)
]>
,

where the corresponding entry of each vector are

Rmit(z) =
[
(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)

]
,

Rmit(z) =

[
1

T

T∑
s=1

(Xis ⊗ (Zis − z))>R (Zis; z) (Zis − z)

]
.

We denote by

R(Zit; z) =


R1(Zit; z)

R2(Zit; z)
...

Rd(Zit; z)

 ,R(Zis; z) =


R1(Zis; z)

R2(Zis; z)
...

Rd(Zis; z)

 ,

and

Rd (Zit; z) =

∫ 1

0

[
∂2md

∂z∂z>
(z + ω (Zit − z))−

∂2md

∂z∂z>
(z)

]
(1− ω) dω, (4.5)

Rd (Zis; z) =

∫ 1

0

[
∂2md

∂z∂z>
(z + ω (Zis − z))−

∂2md

∂z∂z>
(z)

]
(1− ω) dω, (4.6)

where ω is a weight function.

If we replace (4.2) in (4.1) we obtain the conditional bias expression consisting in the following two

additive terms

E[m̂ (z;H) |X,Z]−m(z) =
1

2
e>1

(
Z̃>WZ̃

)−1
Z̃>WQm(z) + e>1

(
Z̃>WZ̃

)−1
Z̃>WR(z), (4.7)

where we can appreciate that the vec(Dm(z)) term of (4.2) vanishes by the effect of e1.

As this bias expression has two additive terms, to obtain the conditional bias of this estimator we must

analyze both terms of (4.7) separately. Focus first on the analysis of e>1

(
Z̃>WZ̃

)−1
Z̃>WQm(z),

we show that is the leading term of the expression of bias and which actually sets the order of this

estimator. Later, we study the behavior of e>1

(
Z̃>WZ̃

)−1
Z̃>WR(z) and explain why this term is

asymptotically negligible.

For the sake of simplicity let us denote

λi = K

(
Zi1 − z
H1/2

)
× · · · ×K

(
ZiT − z
H1/2

)
.

The inverse term of (4.7) can be rewritten as the following symmetric block matrix

(NT )−1Z̃>WZ̃ =

(
A11
NT A12

NT

A21
NT A22

NT

)
(4.8)
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where,

A11
NT = (NT |H|T/2)−1

∑
it

ẌitẌ
>
itλi

A12
NT = (NT |H|T/2)−1

∑
it

Ẍit

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)>
λi,

A21
NT = (NT |H|T/2)−1

∑
it

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)
Ẍ>itλi,

A22
NT = (NT |H|T/2)−1

∑
it

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)>
λi.

Analyzing each of these terms, we first show that as N tends to infinity

A11
NT = BẌtẌt (z, · · · , z) + op(1), (4.9)

where

BẌtẌt (z, · · · , z) = E
[
ẌitẌ

>
it |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) .

With the aim of showing this result, under the stationarity assumption and the law of iterated expec-

tations we get

E
(
A11
NT

)
=

∫
E
[
ẌitẌ

>
it |Zi1 = z +H1/2u1, · · · , ZiT = z +H1/2uT

]
× fZi1,··· ,ZiT

(
Zi1 = z +H1/2u1, · · · , ZiT = z +H1/2uT

) T∏
`=1

K (u`) du`

and by the Taylor expansion of the unknown functions and Assumption 3.1 and Assumption 3.4 the

expression (4.9) holds. However, note that to conclude this proof is necessary to turn to a law of large

numbers. Therefore, we have to show that V ar
(
A11
NT

)
→ 0, as N tends to infinity. Under Assumption

3.1,

V ar
(
A11
NT

)
=

1

NT
V ar

(
1

|H|T/2
ẌitẌ

>
it λi

)
+

1

NT 2

T∑
t=3

(T − t)Cov
(

1

|H|T/2
Ẍi2Ẍ

>
i2λi,

1

|H|T/2
ẌitẌ

>
it λi

)
.

Then, under Assumptions 3.4 and 3.6 we can show that the first element is

V ar

(
1

|H|T/2
ẌitẌ

>
it λi

)
≤ C

NT |H|T/2

while the second one is

Cov

(
1

|H|T/2
Ẍi2Ẍ

>
i2λi,

1

|H|T/2
ẌitẌ

>
it λi

)
≤ C ′

N |H|T/2
.

Then, if both NT |H| and N |H| tends to infinity the variance term tends to zero and (4.9) follows.

Following a similar procedure we get

A12
NT = DBẌtXt(z, · · · , z) (Id ⊗ µ2(Kuτ )H)− 1

T

T∑
s=1

DBẌtXs (z, · · · , z) (Id ⊗ µ2(Kus)H) + op(H). (4.10)
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This is because using the same reasoning,

E
(
A12
NT

)
=

∫
E
(
ẌitX

>
it |Zi1 = z +H1/2u1, · · · , ZiT = z +H1/2uT

)
fZi1,··· ,ZiT (z, · · · , z)⊗

(
H1/2uτ

)> T∏
`=1

K (u`) du`

− 1

T

T∑
t=1

T∑
s=1

∫
E
(
ẌitX

>
is

∣∣∣Zi1 = z +H1/2u1, · · · , ZiT = z +H1/2uT

)
fZi1,··· ,ZiT (z, · · · , z)⊗

(
H1/2us

)> T∏
`=1

K (u`) du`

and as N tends to infinity, V ar
(
A12
NT

)
→ 0. Then, (4.6) is shown.

Note that DBẌtXt(Z1, · · · , ZT ), for s = 1, · · · , T , is defined in a similar way as in Rodriguez-Poo and

Soberon (2014). Thus, DBẌtXt(Z1, · · · , ZT ) is a d× dq gradient matrix of the form

DBẌtXt(Z1, · · · , ZT ) =


∂b
ẌtXt
11 (Z1,··· ,ZT )

∂Z>
1

· · · ∂b
ẌtXt
1d (Z1,··· ,ZT )

∂Z>
1

...
. . .

...

∂b
ẌtXt
d1 (Z1,··· ,ZT )

∂Z>
1

· · · ∂b
ẌtXt
dd′ (Z1,··· ,ZT )

∂Z>
1

 ,

and

bẌtXtdd′ (Z1, · · · , ZT ) = E
[
ẌditXd′it

∣∣∣Zi1 = Z1, · · · , ZiT = ZT

]
fZi1,··· ,ZiT (Z1, · · · , ZT ) .

Finally, we obtain that as N tends to infinity

A22
NT =

(
1− 1

T

)
BXtXt(z, · · · , z)⊗ µu(Kuτ )H + op (H) , (4.11)

where

BXtXt (z, · · · , z) = E
[
XitX

>
it

∣∣∣Zi1 = z, · · · , ZiT = z
]
fZi1,··· ,ZiT (z, · · · , z) .

Then, using the results of (4.9)-(4.11) in (4.8) we obtain

NT
(
Z̃>WZ̃

)−1
=

(
C11 C12
C21 C22

)
, (4.12)

where

C11 = B−1
ẌtẌt

(z, · · · , z) + op(1),

C12 = −B−1
ẌtẌt

(z, · · · , z)

(
DBẌtXt (z, · · · , z) (Id ⊗ µ2 (Kuτ )H)− 1

T

T∑
s=1

DBẌtXs (z, · · · , z) (Id ⊗ µ2 (Kus)H)

)

×
((

1− 1

T

)
BXtXt(z, · · · , z)⊗Hµ2(Kuτ )

)−1
+ op(1),

C21 = −
((

1− 1

T

)
BXtXt(z, · · · , z)⊗Hµ2(Kuτ )

)−1
×

(
DBẌtXt (z, · · · , z) (Id ⊗ µ2 (Kuτ )H)− 1

T

T∑
s=1

DBẌtXs (z, · · · , z) (Id ⊗ µ2 (Kus)H)

)>
×B−1

ẌtẌt
(z, · · · , z) + op(1),

C22 =

((
1− 1

T

)
BXtXt(z, · · · , z)⊗Hµ2(Kuτ )

)−1
+ op

(
H−1

)
.
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On the other hand, following the same technique we can show that

(NT )−1Z̃>WSm(z)

=


(
NT |H|T/2

)−1∑
it Ẍit (Xit ⊗ (Zit − z))>Hm(z) (Zit − z)λi

(
NT |H|T/2

)−1∑
it(Xit ⊗ (Zit − z)− T−1

∑T
s=1Xis ⊗ (Zis − z)) (Xit ⊗ (Zit − z))>Hm(z) (Zit − z)λi


are asymptotically equal to(

NT |H|T/2
)−1∑

it

Ẍit (Xit ⊗ (Zit − z))>Hm(z) (Zit − z)λi

= µ2 (Kuτ )BẌtXt (z, · · · , z)× diagd(tr(Hmr(z)H))ıd + op (tr(H)) , (4.13)

where

BẌtXt (z, · · · , z) = E
[
ẌitX

>
it |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) ,

diagd(tr(Hmr(z)H)) stands for a diagonal matrix of elements tr(Hmr(z)H), for r = 1, · · · , d, and ıd is

a d× 1 unit vector. In addition,

(
NT |H|T/2

)−1∑
it

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)
(Xit ⊗ (Zit − z))>Hm(z) (Zit − z)λi

=

∫
BXtXt (z, · · · , z)⊗ (H1/2uτ )(H1/2uτ )>Hm(z)(H1/2uτ )

T∏
`=1

K (u`) du`

− 1

T

T∑
s=1

∫
BXsXt (z, · · · , z)⊗ (H1/2us)(H

1/2uτ )>Hm(z)(H1/2uτ )
T∏
`=1

K (u`) du`

= Op(H
3/2). (4.14)

Furthermore, the terms of

(NT )−1Z̃>WSm(z)

=


(
NT 2|H|T/2

)−1∑
its Ẍit (Xis ⊗ (Zis − z))>Hm(z) (Zis − z)λi

(
NT 2|H|T/2

)−1∑
its(Xit ⊗ (Zit − z)− T−1

∑T
s=1Xis ⊗ (Zis − z)) (Xis ⊗ (Zis − z))>Hm(z) (Zis − z)λi


are of order (

NT 2|H|T/2
)−1∑

its

Ẍit (Xis ⊗ (Zis − z))>Hm(z) (Zis − z)λi

=
1

T

T∑
s=1

µ2 (Kus)BẌtXs (z, · · · , z)× diagd(tr(Hmr(z)H))ıd + op (tr(H)) , (4.15)
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where

BẌtXs (z, · · · , z) = E
[
ẌitX

>
is |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) ,

and under the stationarity assumption, when N →∞ and T remains to be fixed we get(
NT 2|H|T/2

)−1∑
its

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)
(Xis ⊗ (Zis − z))>Hm(z) (Zis − z)λi

=

∫
BXtXs (z, · · · , z)⊗ (H1/2uτ )(H1/2us)

>Hm(z)(H1/2us)

T∏
`=1

K(u`)du`

− 1

T

T∑
t=1

T∑
s=1

BXsXs (z, · · · , z)⊗ (H1/2us)(H
1/2us)

>Hm(z)(H1/2us)
T∏
`=1

K(u`)du`

= Op(H
3/2). (4.16)

Then, replacing (4.13)-(4.16) into (4.3), we can conclude

(NT )−1Z̃>WQm (4.17)

=


µ2(K)

(
BẌtXt (z, · · · , z)− 1

T

∑T
s=1 BẌtXs (z, · · · , z)

)
× diagd(tr(Hmr(z)H))ıd + op (tr(H))

Op
(
H3/2

)
 .

Focus now on the residual term of (4.7), we use the notation of the beginning of the appendix in order

to write

(NT )−1Z̃>WR(z) =

(
ε1(z)

ε2(z)

)
, (4.18)

where

ε1(z) =
(
NT |H|T/2

)−1∑
it

Ẍit

×

[
(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)−

1

T

T∑
s=1

(Xis ⊗ (Zis − z))>R (Zis; z) (Zis − z)

]
λi (4.19)

and

ε2(z) =
(
NT |H|T/2

)−1∑
it

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)

×

[
(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)− T−1

T∑
s=1

(Xis ⊗ (Zis − z))>R (Zis; z) (Zis − z)

]
λi. (4.20)

Note that ε1(z) can be decomposed into the following two terms

ε1(z) =
(
NT |H|T/2

)−1∑
it

Ẍit

[
(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)− T−1

T∑
s=1

(Xis ⊗ (Zis − z))>R (Zit; z) (Zis − z)

]
λi

+
(
NT 2|H|T/2

)−1∑
its

Ẍit (Xis ⊗ (Zis − z))> (R (Zit; z)−R (Zis; z)) (Zis − z)λi

= ε11(z) + ε12(z). (4.21)
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We want to show that as N →∞,

E(ε1(z)) = op (tr(H)) (4.22)

so, in order to do it, we have to analyze each term of ε1(z) separately. Starting from ε11(z) and by the

strict stationarity we have

E(ε11(z)) = BẌtXt(z +H1/2u1, · · · , z +H1/2uT )⊗ (H1/2uτ )>R(z +H1/2uτ ; z)(H1/2uτ )

T∏
`=1

K (u`) du`

− 1

T

T∑
t=1

T∑
s=1

BẌtXs(z +H1/2u1, · · · , z +H1/2uT )⊗ (H1/2us)
>R(z +H1/2uτ ; z)(H1/2us)

T∏
`=1

K (u`) du`.

By definition (4.5) and Assumption 3.7,∣∣∣Rd(z +H1/2uτ ; z)
∣∣∣ ≤ ∫ 1

0
ς(ω‖H1/2uτ‖) (1− ω) dω, ∀d,

where ς (η) is the modulus of continuity of ∂2mr
∂zi∂zj

(z). Hence, by boundedness of f and BẌtXt , and

Assumption 3.4, for all t we get

E |ε11(z)| ≤ C1

∫ ∫ 1

0
|(H1/2uτ )>||ς(ω‖H1/2uτ‖)||H1/2uτ |dω

∏
`

K(u`)du`

+
C2

T

∑
s

∫ ∫ 1

0
|(H1/2us)

>||ς(ω‖H1/2uτ‖)||H1/2us|dω
∏
`

K (u`) du`

and E(ε11(z)) = op (tr(H)) follows by dominated convergence.

Similarly, analyzing the second term of (4.21) and by strict stationarity we have

E(ε12(z)) =
1

T

T∑
s=1

∫ (
BẌtXs(z +H1/2u1, · · · , z +H1/2uT )⊗ (H1/2us)

>
)

×
(
R(z +H1/2uτ ; z)−R(z +H1/2us; z)

)
(H1/2us)

T∏
`=1

K (u`) du`,

where, as previously, we can show

|E(ε12(z))| ≤
C3

T

∑
s

∫ ∫ 1

0
|(H1/2us)

>||ς(ω‖H1/2uτ‖ − ω‖H1/2us‖)||H1/2us|
∏
`

K (u`) du`.

Then, proceeding as previously we have that by dominated convergence E(ε12(z)) = op (tr(H)).

Once this result (4.22) has been verified, our interest focuses on the second term of (4.21), ε2(z), with

the aim of showing that as N →∞,

E(ε2(z)) = Op(H
3/2). (4.23)
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In order to prove this result, we follow the same lines as the proof of (4.22) and ε2(z) can be decomposed

in two terms

ε2(z) = ε21(z) + ε22(z), (4.24)

where

ε21(z) =
(
NT |H|T/2

)−1∑
it

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)

×

[
(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)− T−1

T∑
s=1

(Xis ⊗ (Zis − z))>R (Zis; z) (Zis − z)

]
λi (4.25)

and

ε22(z) =
(
NT 2|H|T/2

)−1∑
its

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)
(Xis ⊗ (Zis − z))> (R (Zit; z)−R (Zis; z))

× (Zis − z)λi. (4.26)

Applying the same arguments as for the proof of (4.22), it is straightforward to show that

E(ε2(z)) = op(H
3/2). (4.27)

Then, replacing (4.22) and (4.23) in (4.18) we get

(NT )−1Z̃>WR(z) =

(
op (tr(H))

Op(H
3/2)

)
(4.28)

and substituting (4.12), (4.17) and (4.28) in (4.7), the asymptotic bias can be written as

E[m̂ (z;H) |X,Z]−m(z)

=
1

2
eT1

(
Z̃>WZ̃

)−1
Z̃>W (Sm(z)− Sm(z))

=
1

2
B−1
ẌtẌt

(z, · · · , z)

(
µ2(Kuτ )BẌtXt (z, · · · , z)− 1

T

T∑
s=1

µ2 (Kus)BẌtXs (z, · · · , z)

)
× diagd(tr(Hmr (z)H))ıd

+ op (tr(H)) .

For the asymptotic expression of the variance term let us define the NT vector v = (v1, · · · , vN )>,

where vi = (vi1, · · · , viT )>. Furthermore, let E
(
vv>|X,Z

)
= V be a NT × NT matrix that contains

the Vij ’s matrices. By Assumption 3.2 we obtain

Vij = E(viv
>
j |X,Z) = σ2vIT . (4.29)

Denote as QT = IT − ıT
(
ı>T ıT

)−1
ı>T a T × T symmetric and idempotent matrix with rank T − 1,

where IT is a T × T identity matrix and ıT a T × 1 unitary vector. Furthermore, let Q = IN ⊗QT an

NT ×NT matrix. It is clear that, Z̃ = QZ̃b and v̈ = Qv.

Then, substituting the previous equalities into

m̂ (z;H)− E[m̂ (z;H) |X,Z] = e>1

(
Z̃>WZ̃

)−1
Z̃>Wv̈, (4.30)
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we obtain

m̂ (z;H)− E[m̂ (z;H) |X,Z] = e>1

(
Z̃>WZ̃

)−1
Zb>Q>WQv. (4.31)

Since Q is an idempotent matrix, the variance term of m̂ (z;H) can be written as

V ar(m̂ (z;H) |X,Z) = e>1

(
Z̃>WZ̃

)−1
Z̃>WVWZ̃

(
Z̃>WZ̃

)−1
e1. (4.32)

As by Assumption 3.2 the vit’s are i.i.d. in the subscript i, the upper left entry of (NT )−1Z̃>WVWZ̃

is

σ2v
NT |H|T

N∑
i=1

T∑
t=1

ẌitẌ
>
it λ

2
i =

σ2v
∏T
`=1R (Ku`)

|H|T/2
BẌtẌt (z, · · · , z) (1 + op(1)) . (4.33)

The upper right block is

σ2v
NT |H|T

N∑
i=1

T∑
t=1

Ẍit

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)>
λ2i

=
σ2v
|H|T/2

∫ (
BẌtXt(z +H1/2u1, · · · , z +H1/2uT )⊗ (H1/2uτ )>

− 1

T

T∑
s=1

BẌtXs(z +H1/2u1, · · · , z +H1/2uT )⊗ (H1/2us)
>

)
T∏
`=1

K2 (u`) du` (1 + op(1))

= Op(|H|−T/2). (4.34)

Finally, the lower-right block is

σ2
v

NT |H|T
N∑
i=1

T∑
t=1

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)>(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)>
λ2i

=

(
1− 1

T

)
σ2
vµ2(K2

uτ )
∏T
` 6=τ R(Ku`)

|H|T/2
BXtXt(z, · · · , z)⊗H +Op(|H|−T/2H). (4.35)

Then, substituting (4.12), (4.33), (4.34) and (4.35) into (4.32) we get the following conditional covari-

ance matrix result,

V ar(m̂ (z;H) |X,Z) =
σ2v
∏T
`=1R (Ku`)

NT |H|T/2
B−1
ẌtẌt

(z, · · · , z) (1 + op(1)).

Proof of Theorem 3.2

With the aim of obtaining the asymptotic distribution of the local weighted linear least-squares esti-

mator m̂ (z;H) we follow a similar proof scheme as in Rodriguez-Poo and Soberon (2014). For this,

let us denote

m̂ (z;H)−m(z) = (m̂ (z;H)− E[m̂ (z;H) |X,Z]) + (E[m̂ (z;H) |X,Z]−m(z)) ≡ I1 + I2,
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so in order to obtain the asymptotic distribution of this estimator we must to show that as N →∞ it

holds √
NT |H|T/2I1 → N

(
0, σ2v

T∏
`=1

R (Ku`)B
−1
ẌtẌt

(z, · · · , z)

)
(4.36)

and

E[m̂ (z;H) |X,Z]−m(z) =
1

2
µ2 (Kuτ ) diagd (tr(Hmr(z)H)) ıd +Op(H

3/2) + op(tr(H)). (4.37)

By Assumption 3.1 we state the variables are i.i.d. in the subscript i but not in T , so the Lindeberg

condition can not be verified directly. Thus, in order to show (4.36) it suffices to check the Lyapunov

condition. We have shown that

m̂ (z;H)− E[m̂ (z;H) |X,Z] = e>1

(
Z̃>WZ̃

)−1
Z̃>Wv. (4.38)

The behavior of the inverse term has been analyzed previously, with the aim of proving the result

(4.38) we must to focus on the asymptotic normality of

1√
NT

Z̃>Wv. (4.39)

As (4.39) is a multivariate vector, with the sake of simplicity we can define a unit vector d ∈ IRd(1+q)

in such a way that

1√
NT

dT Z̃>Wv =
1√
NT

∑
i

∑
t

φit, (4.40)

where

φit = |H|T/4d>Z̃itWitvit, i = 1, · · · , N ; t = 1, · · · , T.

Following Assumption 3.8, we have that R (K) =
∫
K2 (u) du =

(
2Π1/2

)−1
and R (Ku1) = · · · =

R (KuT ), so
∏T
`=1R (Ku`) = R (K)T holds. Combining these conditions with the results of Theorem

3.1 we can write

V ar (φit) =

σ2
vd
>

 R (K)
T BẌtẌt (z, · · · , z) 0

0
(
1− 1

T

)
σ2
vµ2(K2

uτ )
∏T
` 6=τ R(Ku`)BXtXt(z, · · · , z)⊗H

 d (1 + op(1)) , (4.41)

whereas

T∑
t=1

|Cov (φi1, φit)| = op(1). (4.42)

In order to check the Lyapunov condition let us denote φ∗n,i = T−1/2
∑T

t=1 φit as independent random

variables for T fixed and n = NT . Then, by the Minknowski inequality and the matrix structure of

Z̃it we get

E
∣∣φ∗n,i∣∣2+δ ≤ CT (2+δ)

2 E |φit|2+δ = CT
(2+δ)

2 E |φ1it + φ2it|2+δ .

32



Analyzing each term separately we obtain

E |φ1it|2+δ ≤ E
∣∣∣|H|−T/4d>Ẍitvitλi

∣∣∣2+δ = |H|−T (2+δ)/4
E
[
E
(
|d>Ẍitvit|2+δ|X,Z

)
λ2+δi

]
=

1

|H|Tδ/4

∫
E
(
|d>Ẍitvit|2+δ|Zi1 = z +H1/2u1, · · · , ZiT = z +H1/2uT

)
×fZi1,··· ,ZiT (z +H1/2u1, · · · , z +H1/2uT )

T∏
`=1

K2+δ (u`) du`

= |H|−Tδ/4E
(
|d>Ẍvit|2+δ|Zi1 = z, · · · , ZiT = z

)
fZi1,··· ,ZiT (z, · · · , z)

T∏
`=1

∫
K2+δ (u`) du`

+ op(|H|−Tδ/4).

E|λ2it|2+δ ≤ E

∣∣∣∣∣|H|−T/4 d>
(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)
vitλi

∣∣∣∣∣
2+δ

≤ |H|−T (2+δ)/4E
[
E
(
|d>Ẍitvit|Zi1, · · · , ZiT

)
⊗ |Zit − z|2+δ λ2+δi

]
+ |H|−T (2+δ)/4 1

T

T∑
s=1

E
[
E
(
|d>Xisvit|Zi1, · · · , ZiT

)
⊗ |Zis − z|2+δλ2+δi

]
= |H|−Tδ/4E

(
|d>Ẍitvit|2+δ|Zi1 = z, · · · , ZiT = z

)
fZi1,··· ,ZiT (z, · · · , z)⊗

∫
|H1/2u|2+δ

T∏
`=1

K2+δ (u`) du`

+ |H|−Tδ/4 1

T

T∑
s=1

E
(
|d>Ẍisvit|2+δ|Zi1 = z, · · · , ZiT = z

)
fZi1,··· ,ZiT (z, · · · , z)

⊗
∫
|H1/2us|2+δ

T∏
`=1

K2+δ (u`) du` + op(|H|1−(T−2)δ/4).

In this way, we can write

(NT )−
2+δ
2

N∑
i=1

E
∣∣φ∗n,i∣∣2+δ ≤ C(N |H|T/2)−δ/2, (4.43)

and given that when N |H| → ∞ this term tends to zero it is proved that the Lyapunov condition

holds. Then, using (4.12), (4.33), (4.34), (4.35) and the Crammer-Wold device the proof of the result

(4.36) is done.

On the other hand, focus on the proof of (4.37) we know that by the law of iterated expectations

E[m̂ (z;H)] =

∫
E[m̂ (z;H) |X,Z]dF (X,Z) .

Then, we can turn to the bias expression of the estimator collected in the Theorem 3.1 and the proof

is closed.

Proof of Theorem 3.3

The proof of this theorem follows the pattern set by the Theorem 3.1. The estimator to analyze is

m̃(z; H̃) = e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bŸ b, (4.44)
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we can write

E[m̃(z; H̃)|X,Z] = e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W b

[
M (1) + E

(
M (2)|X,Z

)]
, (4.45)

where

M (1) =

[(
X>11m (Z11)

)>
, · · · ,

(
X>NTm (ZNT )

)>]>
,

M (2) =

(T−1 T∑
s=1

X>1s (m̂(Z1s;H)−m(Z1s))

)>
, · · · ,

(
T−1

T∑
s=1

X>Ns (m̂(ZNs;H)−m(ZNs))

)>> ⊗ ı>T .
Taylor Theorem implies that we can approximate M (1) as

M (1) = Z̃b

[
m (z)

vec(Dm (z))

]
+

1

2
Qbm(z) +Rb(z). (4.46)

Following a similar nomenclature as in Theorem 3.1,

Qbm(z) =
[
Sb>m11

, · · · , Sb>mNT
]>
,

Rb(z) =
[
Rbm11

(z), · · · , RbmNT (z)
]>
,

where Rb(z) is the remainder term of this approximation. Then, the corresponding entries of these

vectors are

Sbmit =
[
(Xit ⊗ (Zit − z))>Hm(z) (Zit − z)

]
Rbit(z) =

[
(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)

]
,

where R (Zit; z) has already been defined in (4.5).

If we replace (4.46) in (4.45) the bias expression is then

E[m̃(z; H̃)|X,Z]−m(z) =
1

2
e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bQbm(z)

+e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bE

(
M (2)|X,Z

)
+ op(tr(H̃)), (4.47)

given that following to Ruppert and Wand (1994) and the Assumption 3.1,

e>1

(
Z̃b>W bZ̃

)−1
Z̃b>W bRb(z) = Op(tr(H̃)).

As you can see in (4.47), this bias expression is formed by two additive terms. The first one refers

to the approximation error of the estimates, whereas the second one reflects the potential estimation

error dragged from the first stage. Within this context, our aim is to show that this second term

converges in probability to zero, so it is the first element which provides the asymptotic distribution

of the backfitting estimator. For the sake of simplicity let us denote

λ̃it = K
(
H̃−1/2 (Zit − z)

)
.
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Focus first in the behavior of the inverse term of (4.47) we analyze

(NT )−1 Z̃b>W bZ̃b =
(
NT |H̃|1/2

)−1∑
itXitX

>
it λ̃it

(
NT |H̃|1/2

)−1∑
itXit (Xit ⊗ (Zit − z))> λ̃it

(
NT |H̃|1/2

)−1∑
it (Xit ⊗ (Zit − z))X>it λ̃it

(
NT |H̃|1/2

)−1∑
it (Xit ⊗ (Zit − z)) (Xit ⊗ (Zit − z))> λ̃it


and as it is proved in Rodriguez-Poo and Soberon (2014), using standard properties of kernel density

estimators, conditions 3.1 to 3.3 and 3.4 to 3.10, as N →∞ we get

NT
(
Z̃b>W bZ̃b

)−1
= (4.48)


B−1XtXt (z) + op(1) −B−1XtXt(z) [DBXtXt(z)]

(
B−1XtXt(z)⊗ Iq

)
+ op(1)

−
(
B−1XtXt(z)⊗ Iq

)>
[DBXtXt (z)]

> B−1XtXt(z) + op(1)
(
BXtXt(z)⊗ µ2(K)H̃

)−1
+ op(H̃

−1)

 ,

where BXtXt(z) and DBXtXt(z) have been already defined in the proof of Theorem 3.1 conditioning

only to Zit = z.

Furthermore,

(NT )−1Z̃b>W bQbm(z) = (4.49)
(
NT |H̃|1/2

)−1∑
itXit (Xit ⊗ (Zit − z))>Hm(z) (Zit − z) λ̃it

(
NT |H̃|1/2

)−1∑
it (Xit ⊗ (Zit − z)) (Xit ⊗ (Zit − z))>Hm(z) (Zit − z) λ̃it


are of order

µ2 (Ku)BXtXt (z)× diagd(tr(Hmr(z)H̃))ıd + op(tr(H̃))

and Op(H̃
3/2), respectively. Substituting these latter results and (4.48) in the first term of (4.47) we

obtain

1

2
e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bQbm(z)

=
1

2
µ2 (K)B−1XtXt (z)BXtXt (z)× diagd

(
tr(Hmr(z)H̃)

)
ıd + op(tr(H̃)). (4.50)

Focus now on the behavior of the second term of (4.47),(
NT |H̃|1/2

)−1
Z̃b>W bE

(
M (2)|X,Z

)
= (4.51)

(
NT 2|H̃|1/2

)−1∑
itsXitX

>
is (E [m̂ (Zis;H)|X,Z]−m (Zis)) λ̃it

(
NT 2|H̃|1/2

)−1∑
its (Xit ⊗ (Zit − z))X>is (E [m̂ (Zis;H)|X,Z]−m (Zis)) λ̃it
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and analyzing both terms separately we can show that as N tends to infinity(
NT 2|H̃|1/2

)−1∑
its

XitX
>
is (E [m̂ (Zis;H)|X,Z]−m (Zis)) λ̃it = op(tr(H̃))

and(
NT 2|H̃|1/2

)−1∑
its

(Xit ⊗ (Zit − z))X>is (E (m̂ (Zis;H)|X,Z)−m (Zis)) λ̃it = op(tr(H)tr(H̃)).

Under assumptions 3.1 to 3.3, 3.10 and 3.12, this latter expression is op (tr(H)) and the rate is

uniform in z; see Masry (1996) for more details.

Replacing these results in the second term of (4.47),

e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bM (2) = op(tr(H̃)). (4.52)

Finally, substituting (4.50) and (4.52) in (4.47) the proof of the conditional bias is done. Also, it

is proved that the asymptotic bias of m̃(z; H̃) is the same order as m̂(z;H), given that tr(H) → 0,

tr(H̃)→ 0 in such a way that N |H| → ∞ and N |H̃| → ∞.

From the standpoint of the variance, let us denote v̂ = (v̂1, · · · , v̂N )> as a NT -dimensional vector such

that

v̂i =

(
T−1

T∑
s=1

(
X>is (m̂ (Zis;H)− E [m̂ (Zis;H)|X,Z])

)>
, · · · , T−1

T∑
s=1

(
X>is (m̂ (Zis;H)− E [m̂ (Zis;H)|X,Z])

)>)>
.

As we know, the conditional variance-covariance matrix of the estimator has the following form

V ar(m̃(z; H̃)|X,Z) = E

[(
m̃(z; H̃|X,Z)− E[m̃(z; H̃)|X,Z]

)(
m̃(z; H̃)− E[m̃(z; H̃)|X,Z]

)>∣∣∣∣X,Z]
where

m̃(z; H̃)− E[m̃(z; H̃)|X,Z] = eT1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bv̈ + eT1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bv̂.

Remember that v̈i = QT vi and it is straightforward to show that QT Z̃
b
i = Z̃i. Thus, the previous

equation can be rewritten as

m̃(z; H̃)− E[m̃(z; H̃)|X,Z] = eT1

(
Z̃b>W bZ̃b

)−1
Z̃>W bv + eT1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bv̂.

Taking into account that let E
(
vv>|X,Z

)
= V be a NT × NT matrix whose ij-th have the form of

(4.29), the variance term of m̃(z; H̃) has the form

V ar(m̃(z; H̃)|X,Z) = e>1

(
Z̃b>W bZ̃b

)−1
Z̃>W bVW bZ̃

(
Z̃b>W bZ̃b

)−1
e1

+ e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bE

(
v̂v̂>|X,Z

)
W bZ̃b

(
Z̃b>W bZ̃b

)−1
e1

+ 2e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bE

(
v̂v>|X,Z

)
W bZ̃

(
Z̃b>W bZ̃b

)−1
e1

= I1 + I2 + I3. (4.53)
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Then, with the aim of obtaining the asymptotic order of the variance of m̃(z; H̃) we have to analyze

each of these terms separately. Following the same procedure as in (4.32) to analyze the behavior

of Z̃>W bVW bZ̃. Under assumptions 3.1 to 3.7 and 3.11 to 3.12, using the result (4.48) and the

Crammer-Wold device it is straightforward to show that as N →∞

I1 =
σ2vR (K)

NT |H̃|1/2
B−1XtXt(z)BẌtẌt (z)B−1XtXt(z)(1 + op(1)), (4.54)

while

I2 = op

(
lnNT

NT |H|T/2 |H̃|1/2

)
. (4.55)

In order to prove this latter result we have to analyze the behavior of the following expression

(NT )−1Z̃b>W bE
(
v̂v̂>|X,Z

)
W bZ̃b. (4.56)

Thus, denote by r̂(Zis;H) = m̂(Zis;H)− E [m̂(Zis;H)|X,Z], then the upper left entry is

(NT 3|H̃|)−1
∑
i

∑
tt′

∑
ss′

XitX
>
isE

(
r̂(Zis;H)r̂(Zis′ ;H)>|X,Z

)
Xis′X

>
it′ λ̃itλ̃it′ (4.57)

and by the Cauchy-Schwarz inequality for variance-covariance matrices (4.57) is bounded by

(NT 3|H̃|)−1
∑
i

∑
tt′

∑
ss′

XitX
>
isvec

1/2
(
diag

(
E
(
r̂(Zis;H)r̂(Zis′ ;H)>|X,Z

)))
× vec1/2

(
diag

(
E
(
r̂(Zis;H)r̂(Zis;H)>|X,Z

)))
λ̃itλ̃it′

= Op

(
lnNT

NT |H|T/2|H̃|1/2

)
, (4.58)

given that under the conditions of Theorem 3.1 and following to Masry (1996),

vec
(
diag

(
E
(
r̂ (z;H) r̂ (z;H)> |X,Z

)))
= Op

(
lnNT

NT |H|T/2

)
,

uniformly in z.

Following the same lines, the upper right entry of (4.56) is

(NT 2|H̃|)−1
∑
i

∑
tt′

∑
ss′

XitX
>
isE

(
r̂ (Zis;H) r̂ (Zis′ ;H)

> |X,Z
)

(Xit′ ⊗ (Zit′ − z))> λ̃itλ̃it′ = op

(
lnNT

NT |H|T/2|H̃|1/2

)
(4.59)

and the lower right entry of (4.56) is

(NT 2|H̃|)−1
∑
i

∑
tt′

∑
ss′

(Xit ⊗ (Zit − z))X>isE
(
r̂ (Zis;H) r̂ (Zis′ ;H)> |X,Z

)
(Xit′ ⊗ (Zit′ − z))> λ̃itλ̃it′

= op

(
lnNT

NT |H|T/2|H̃|1/2

)
. (4.60)
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Then, combining the results (4.58)-(4.60) with (4.48) and by the Crammer-Wold device the proof of

(4.55) is done. Finally, focus on I3 the Cauchy-Schwarz inequality is enough to show that

I3 = op

(√
lnNT

NT |H|T/2|H̃|1/2

)
(4.61)

and the proof is done.

Proof of Corollary 3.2

The proof of this corollary relies on the proof of Theorem 3.1.

Taking the expression (3.3) for the univariate case, the conditional bias and variance of m̂h(z) for the

case when d = q = 1 and H = h2I are given as follows

E[m̂h(z)|X,Z]−m(z) =
1

2
e>1

(
Z̃>WZ̃

)−1
Z̃>W

(
Π(z)−Π(z)

)
, (4.62)

V ar(m̂h(z)|X,Z) = e>1

(
Z̃>WZ̃

)−1
Z̃>WVWZ̃

(
Z̃>WZ̃

)−1
e1, (4.63)

where, for any ξit between Zit and z and ξis between Zis and z, the corresponding entries of the vectors

Π(z) and Π(z) are

Πit(z) = Xitr(ξit; z) and Πit(z) = T−1
T∑
s=1

Xisr(ξis; z),

where r(ξit; z) = (Zit − z)2 ∂
2m(ξit)
∂z2

and r(ξis; z) is defined in a similar way.

Starting from the conditional bias standpoint, as N tends to infinity the elements of the matrix (4.8)

are

A11
NT = (ThT )−1

T∑
t=1

E
[
Ẍ2
itλi

]
=

1

T

T∑
t=1

BẌtẌt(z, · · · , z) + op(1), (4.64)

A12
NT = (ThT )−1

T∑
t=1

E

[
Ẍit

(
Xit(Zit − z)− T−1

T∑
s=1

Xis(Zis − z)

)
λi

]

=
h2

T

T∑
t=1

(
DBẌtXt(z, · · · , z)µ2(Kuτ )− 1

T

T∑
s=1

DBẌtXs(z, · · · , z)µ2(Kus)

)
+ op(h

2) (4.65)

A22
NT = (ThT )−1

T∑
t=1

E

(Xit(Zit − z)− T−1
T∑
s=1

Xis(Zis − z)

)2

λi


=

(
1− 1

T

)
1

T

T∑
t=1

BXtXt(z, · · · , z)µ2(Kuτ ). (4.66)

so the inverse term of (4.62) can be written as

(NT )
(
Z̃>WZ̃

)−1
=

(
C11NT C12NT
C21NT C22NT

)
, (4.67)
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where now

C11NT =

(
(ThT )−1

T∑
t=1

E
[
Ẍ2
itλi

])−1
+ op

(
hT
)
,

C12NT = −

(
T−1

T∑
t=1

E
[
Ẍ2
itλi

])−1
T−1

T∑
t=1

E

[
Ẍit

(
Xit(Zit − z)− T−1

T∑
s=1

Xis(Zis − z)

)
λi

]

×

(ThT )−1
T∑
t=1

E

(Xit(Zit − z)− T−1
T∑
s=1

Xis(Zis − z)

)2

λi

−1 + op
(
hT
)
,

C22NT =

(ThT )−1
T∑
t=1

E

(Xit(Zit − z)− T−1
T∑
s=1

Xis(Zis − z)

)2

λi

−1 + op
(
hT
)
.

Focus now on the numerator of (4.62), as N →∞ it can be written such as

(NT )−1Z̃>W
(
Π(z)−Π(z)

)
(4.68)

=


(ThT )−1

∑T
t=1E

[
Ẍit

(
Xitrh(ξit; z)− T−1

∑T
s=1Xisrh(ξis; z)

)
λi

]
(ThT )−1

∑T
t=1E

[(
Xit(Zit − z)− T−1

∑T
s=1Xis(Zis − z)

)(
Xitrh(ξit; z)− T−1

∑T
s=1Xisrh(ξis; z)

)
λi

]
 ,

where we can show

1

ThT

T∑
t=1

E
[
ẌitXitrh(ξit; z)λi

]
− 1

T 2hT

T∑
t=1

T∑
s=1

E
[
ẌitXisrh(ξis; z)λi

]
=
h2

T

T∑
t=1

(
BẌtXt(z, · · · , z)µ2(Kut)−

1

T

T∑
s=1

BẌtXs(z, · · · , z)µ2(Kus)

)
+ op(h

2) (4.69)

and

1

ThT

T∑
t=1

E

[(
Xit(Zit − z)− T−1

T∑
s=1

Xis(Zis − z)

)
Xitrh(ξit; z)λi

]

− 1

T 2hT

T∑
t=1

T∑
s=1

E

[(
Xit(Zit − z)− T−1

T∑
s=1

Xis(Zis − z)

)
Xisrh(ξis; z)λi

]

=
h3

T

T∑
t=1

(
BXtXt(z, · · · , z)u3t −

2

T

T∑
s=1

BXtXs(z, · · · , z)usu2t +
1

T 2

T∑
s=1

T∑
s′=1

BXsXs′ (z, · · · , z)us′u
2
s

)
T∏
`=1

Ku`du`

= Op(h
3). (4.70)

Therefore, substituting (4.67) and (4.68) in (4.62), the conditional bias is

E[m̂h(z)|X,Z]−m(z)

=

(
1

ThT

T∑
t=1

E[Ẍ2
itλi]

)−1
1

2ThT

T∑
t=1

E

[
Ẍit

(
Xitrh(ξit; z)−

1

T

T∑
s=1

Xisrh(ξis; z)

)
λi

]
+ op(h

2). (4.71)
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From the point of view of the variance we focus on the behavior of the middle term of (4.63). Following

the same procedure as in (4.32) but assuming strict stationarity is not allowed, under conditions 3.2,3.4

and 3.13 we can show that as N →∞,

V ar(m̂h(z)|X,Z) =
σ2v

NThT
1

ThT

T∑
t=1

E[Ẍ2
itλ

2
i ]

(
1

ThT

T∑
t=1

E[Ẍ2
itλi]

)−2
+ op

(
1

NThT

)
. (4.72)

Proof of Corollary 3.3

The proof of this corollary relies on the proof of Theorem 3.2.

If we start from (4.45) and take a standard Taylor expansion around m(·) we obtain

E
[
m̃
h̃
(z)|X,Z

]
−m(z)

=
1

2
e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bΠ(z) + e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bE

(
M (2)|X,Z

)
+ op(h̃

2) (4.73)

where

M (2) =

[(
T−1

T∑
s=1

X1s (m̂h(Z1s)−m(Z1s))

)
, · · · ,

(
T−1

T∑
s=1

XNs (m̂h(ZNs)−m(ZNs))

)]>
⊗ ı>T

and each entry of Π(z) is Xitr(ξit, z).

Following a similar proof scheme as previously, if we analyze each of these terms separately we obtain

that (4.73) can be written as

(NT )−1Z̃b>W bZ̃b =
(T h̃)−1

∑T
t=1E

[
X2
itλ̃it

]
(T h̃)−1

∑T
t=1E

[
X2
it(Zit − z)λ̃it

]
(T h̃)−1

∑T
t=1E

[
X2
it(Zit − z)λ̃it

]
(T h̃)−1

∑T
t=1E

[
X2
it(Zit − z)2λ̃it

]


so the inverse term is

(NT )
(
Z̃b>W bZ̃b

)−1
=

(
Cb11NT Cb12NT

Cb21NT Cb22NT

)
, (4.74)

where

Cb11NT =

(
(T h̃)−1

T∑
t=1

E
[
X2
itλ̃it

])−1
+ op(h̃),

Cb12NT =

(
(T h̃)−1

T∑
t=1

E
[
X2
itλ̃it

])−1
(T h̃)−1

T∑
t=1

E
[
X2
it(Zit − z)λ̃it

](
(T h̃)−1

T∑
t=1

E
[
X2
itλ̃it

])−1
+ op(h̃),

Cb22NT =

(
(T h̃)−1

T∑
t=1

E
[
X2
it(Zit − z)2λ̃it

])−1
+ op(h̃).
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Let us now analyze the numerator of (4.73), as N →∞ we get

(NT )−1Z̃b>W b
(

Π(z) + E
(
M (2)|X,Z

))
= (4.75)

(T h̃)−1
∑T
t=1E

[
X2
itr(ξit, z)λ̃it

]
+ (T 2h̃)−1

∑T
t=1

∑T
s=1E

[
XitXis (E(m̂h(Zis)−m(Zis))) λ̃it

]
(T h̃)−1

∑T
t=1E

[
X2
it(Zit − z)r(ξit, z)λ̃it

]
+ (T 2h̃)−1

∑T
t=1

∑T
s=1E

[
Xit(Zit − z)Xis (E(m̂h(Zis)−m(Zis))) λ̃it

]
 .

Using standard properties of the kernel density estimators and assuming strict stationarity is not

allowed, we can show

(T h̃)−1
T∑
t=1

E
[
X2
itr(ξit, z)λ̃it

]
=
h̃2

T

T∑
t=1

BXtXt(z)m′′(z)µ2(Kuτ ) + op(h̃),

(T h̃)−1
T∑
t=1

E
[
X2
it(Zit − z)r(ξit, z)λ̃it

]
= Op(h̃

3)

whereas following what it is established in (4.51) we can prove

(T 2h̃)−1
T∑
t=1

T∑
s=1

E
[
XitXis (E(m̂h(Zis)−m(Zis))) λ̃it

]
= op(h̃

2),

(T 2h̃)−1
T∑
t=1

T∑
s=1

E
[
Xit(Zit − z)Xis (E(m̂h(Zis)−m(Zis))) λ̃it

]
= op(h̃

2h2).

Therefore, replacing the results of (4.74) and (4.76) in (4.73) the conditional bias expression of the

one-step backfitting estimator is

E
[
m̃
h̃
(z)|X,Z

]
−m(z) =

1

2T h̃

T∑
t=1

E
[
X2
itr(ξit, z)λ̃it

]( 1

T h̃

T∑
t=1

E
[
X2
itλ̃it

])−1
+ op(h̃

2). (4.76)

Finally, as in the multivariate case the variance term of the one-step backfitting estimator has the form

V ar
(
m̃
h̃
(z)|X,Z

)
= e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bVW bZ̃b

(
Z̃b>W bZ̃b

)−1
e1

+ e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bE(v̂v̂>|X,Z)W bZ̃b

(
Z̃b>W bZ̃b

)−1
e1

+ e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bE(v̂v>|X,Z)W bZ̃

(
Z̃b>W bZ̃b

)−1
e1

= I1 + I2 + I3, (4.77)

where V is a NT ×NT matrix of E(vv>|X,Z) whose ij-th have the form of (4.29), v̈i = QT vi and

v̂i =

(
T−1

T∑
s=1

(Xis (m̂h(Zis)− E[m̂h(Zis)|X,Z])) , · · · , T−1
T∑
s=1

(Xis (m̂h(Zis)− E[m̂h(Zis)|X,Z])))

)>
.

Analyzing each of these terms separately, under conditions 3.2 to 3.9 and 3.11-3.13 and using the

Crammer-Wold device and the result in (4.74) we can show that as N →∞

I1 =
σ2v

NTh̃

(
1

T h̃

T∑
t=1

E
[
Ẍ2
itλ̃

2
it

])( 1

T h̃

T∑
t=1

E
[
X2
itλ̃it

])−2
, (4.78)
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I2 = op

(
lnNT

NThT h̃

)
(4.79)

whereas I3 = op

(√
lnNT

NThT h̃

)
. Note that for the result (4.79) we follow the proof proposed for (4.55)

and for I3 we follow (4.61). Then, the proof is done.
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