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Abstract— This paper derives an asymptotic generalized likeli-
hood ratio test (GLRT) and an asymptotic locally most powerful
invariant test (LMPIT) for two hypothesis testing problems: 1) Is
a vector-valued random process cyclostationary (CS) or is it wide-
sense stationary (WSS)? 2) Is a vector-valued random process
CS or is it nonstationary? Our approach uses the relationship
between a scalar-valued CS time series and a vector-valued
WSS time series for which the knowledge of the cycle period
is required. This relationship allows us to formulate the problem
as a test for the covariance structure of the observations. The
covariance matrix of the observations has a block-Toeplitz struc-
ture for CS and WSS processes. By considering the asymptotic
case where the covariance matrix becomes block-circulant we are
able to derive its maximum likelihood (ML) estimate and thus an
asymptotic GLRT. Moreover, using Wijsman’s theorem, we also
obtain an asymptotic LMPIT. These detectors may be expressed
in terms of the Loève spectrum, the cyclic spectrum, and the
power spectral density, establishing how to fuse the information
in these spectra for an asymptotic GLRT and LMPIT. This
goes beyond the state-of-the-art, where it is common practice
to build detectors of cyclostationarity from ad-hoc functions of
these spectra.

Index Terms— Cyclostationarity, generalized likelihood ratio
test (GLRT), locally most powerful invariant test (LMPIT),
Toeplitz matrix, Wijsman’s theorem.

I. INTRODUCTION

A zero-mean, discrete-time, complex-valued random pro-
cess u[n] is said to be (second-order) cyclostationary (CS) if
its covariance function is periodic with period P [1], [2]:

ruu[n,m] = E[u[n]u∗[n−m]] = ruu[n+ P,m]

The period P is a natural number greater than 1 because
P = 1 corresponds to a wide-sense stationary (WSS) process.
CS signals model phenomena generated by periodic effects
in communications [3] (where the periodicity is induced by
modulation, sampling, and multiplexing operations), meteorol-
ogy and climatology [4]–[6], oceanography [7]–[9], astronomy
[10], and economics [11]–[13]. This plethora of applications
has created significant interest in the analysis of CS signals as
evidenced by the published literature [14], [15].

The detection of cyclostationarity is particularly important,
for two main reasons. Firstly, if a signal is CS then this fact
can usually be exploited in applications to improve detection
performance. However, treating a signal as CS—when in
fact it is not—generally leads to very poor performance.
Secondly, the presence or absence of CS signals can be used
to trigger other actions. This is the case in cognitive radio
(CR), which is a new communications technology that has
the potential to boost spectrum usage [16]–[18]. The main
idea behind CR is the opportunistic access of some users (so-
called “cognitive” or “secondary” users) to a given frequency
band when the rightful owner of the band (the primary user)

is not transmitting. Spectrum sensing (the detection of vacant
channels) is therefore a key ingredient to CR [19]. One of
the most important properties that can be exploited to detect
primary users is the cyclostationarity of communications sig-
nals, but other properties, such as temporally and/or spatially
uncorrelated noise, can be also utilized. For these reasons,
detection of cyclostationarity has received much attention in
the past [11], [20]–[23] and is now receiving a lot of renewed
attention in the context of CR [24]–[31].

Detectors of cyclostationarity can roughly be classified into
the following three categories:

1) Techniques based on the Loève (or dual-frequency) spec-
trum. For a harmonizable process, the Loève spectrum
[32] is defined as the 2D-Fourier transform of the
correlation function ruu[n,m]. The support of the Loève
spectrum of a CS process is on lines parallel to the
stationary manifold [33], whereas for WSS processes the
support is only one line, the stationary manifold. Several
detectors [11], [20], [21] have been proposed that exploit
this by comparing the values of the Loève spectrum
along the lines that correspond to the CS components
to the values along the line that corresponds to the WSS
component. The critical question is what function to
use for this comparison. The early works [11], [20],
[21] use ad-hoc approaches, which are not grounded in
established statistical principles. We will see later that
our approach can indeed be interpreted as comparing the
strengths of the CS and WSS components in the Loève
spectrum, but in a statistically sound fashion.

2) Techniques based on testing for nonzero cyclic covari-
ance function or cyclic spectrum. There are several
works that test whether or not the estimated cyclic
covariance function or cyclic spectrum are zero [22],
[28], [34], [35]. This, however, raises the questions:
What cycle frequencies (which harmonics) and which
lags of the covariance function (or global frequencies in
the cyclic spectrum) must be selected and how should
they be combined? Since our detectors admit an inter-
pretation in terms of the cyclic spectrum they show how
to merge the information at each cycle frequency and
global frequency.

3) Techniques based on testing for correlation between the
process and a frequency-shifted version thereof. It was
proven in [36] that there exists correlation between the
CS process u[n] and v[n] = u[n]e−j2παn, which is
u[n] shifted by the cycle frequency α. This idea was
first used in [37] to estimate the number of CS signals
impinging on an antenna array, by applying canonical
correlation analysis to the signals and their frequency-
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shifted versions. This has also been done in the context
of CR to detect the presence of primary users [31]. These
two papers test the correlation in the temporal domain,
although it is also possible to do so in the frequency
domain [23], where the frequency coherence between
u[n] and v[n] is used as the detector statistic. However,
these detectors only consider one lag or frequency and
one cycle frequency, and it is not clear how to select
these without knowledge of the true cyclic correlation. If
we were to consider multiple lags, it is not apparent how
we would optimally fuse the information at different lags
or frequencies and cycle frequencies.

Most of the approaches in the literature are for scalar time
series and relatively few works have considered vector-valued
time series [24]–[26], [28], [31], even though some of the
scalar detectors could easily be extended to multivariate time
series. All the detectors cited here consider testing cyclosta-
tionarity vs. wide-sense stationarity. We are not aware of any
detectors that test cyclostationarity vs. nonstationarity.

As we have already mentioned, most detectors of cyclosta-
tionarity are ad-hoc detectors, which are not derived from ac-
cepted statistical principles, such as the generalized likelihood
ratio test (GLRT), the uniformly most powerful invariant test
(UMPIT), or the locally most powerful invariant test (LMPIT),
etc. Our paper closes this gap. Our approach uses the rela-
tionship between a scalar-valued CS time series and a vector-
valued WSS time series [33] to formulate the problem as a test
for the covariance structure of the observations. The derivation
of the GLRT is relatively straightforward, and the main
difficulty is that there is no closed-form maximum likelihood
(ML) estimator of the covariance matrices because these are
block-Toeplitz. This difficulty is addressed by considering the
asymptotic case where the covariance matrices become block-
circulant. The derivation of the LMPIT is a bit more involved.
The typical approach for deriving the LMPIT is based on the
maximal invariant statistic. Then its distribution under both
hypotheses is obtained and the ratio of the distributions is
calculated. If this ratio (or a transformation thereof) does not
depend on unknown parameters it is the UMPIT. If it does,
we may instead obtain the LMPIT for close hypotheses. Yet
this approach only works for a very few selected problems.
Here, we instead use Wijsman’s theorem [38]–[41], which
allows us to obtain the ratio of the distributions of the maximal
invariant statistic without actually deriving the distributions or
even the maximal invariant statistic. Incidentally, both GLRT
and LMPIT are functions of coherence matrices, as are the
detectors for spatial correlation in [42]–[44].

The paper is organized as follows: Section II presents the
detection problem and formulates it as a test for the covariance
structure of the observations. In Section III, we reformulate
the problem in the frequency domain. Sections IV and V
derive the GLRT and the LMPIT, respectively. An illuminating
interpretation of the detectors in the Loève frequency domain
is presented in Section VI. Finally, Section VII numerically
evaluates the performance of our detectors.

II. PROBLEM FORMULATION

We consider the problem of testing whether a zero-mean
multivariate time series, observed by L sensors or antennas,
is WSS, or CS with known cycle period P , or nonstationary
(NS). That is, we are interested in the following three hypothe-
ses:

H0 : u[n] is WSS,
H1 : u[n] is CS with period P ,
H2 : u[n] is NS,

(1)

where u[n] ∈ CL is a multivariate process of dimension L,
assumed proper complex Gaussian [45]. Given NP samples
of u[n], which are collected in the vector

y =
[
uT [0] uT [1] · · · uT [NP − 1]

]T ∈ CLNP , (2)

the hypotheses in (1) may be formulated as

H0 : y ∼ CN (0,R0) ,
H1 : y ∼ CN (0,R1) ,
H2 : y ∼ CN (0,R2) ,

(3)

where Ri ∈ CLNP×LNP is the covariance matrix under the
ith hypothesis. Hence the hypothesis test is based on the
structure of Ri.

The NS case is the simplest because R2 does not have any
particular structure beyond being positive definite,

R2 =

 M2[0, 0] · · · M2[0,−NP + 1]
...

. . .
...

M2[NP − 1, NP − 1] · · · M2[NP − 1, 0]

 ,
(4)

where M2[n,m] = E[u[n]uH [n − m]] ∈ CL×L is the
NS matrix-valued covariance sequence. The structure under
stationarity is also easy to obtain [46], and the covariance
matrix is

R0 =

 M0[0] · · · M0[−NP + 1]
...

. . .
...

M0[NP − 1] · · · M0[0]

 , (5)

where M0[m] = E[u[n]uH [n − m]] ∈ CL×L is the WSS
matrix-valued covariance sequence. It is clear that R0 is block-
Toeplitz with block size L (the number of antennas or sensors).
That is, the (m, l)th block is M0[m − l]. Finally, to find the
structure of R1 under cyclostationarity, we follow our previous
work [47]. We arrange u[n] in blocks of size P to obtain the
time series

x[n] =
[
uT [nP ] · · · uT [(n+ 1)P − 1]

]T ∈ CLP , (6)

which is WSS [33]. The vector y may therefore be rewritten
in terms of x[n] as

y =
[
xT [0] xT [1] · · · xT [N − 1]

]T ∈ CLNP , (7)

which is a stack of N samples of the WSS process x[n].
Hence, the covariance matrix is also block-Toeplitz, but with
block size LP :

R1 =

 M1[0] · · · M1[−N + 1]
...

. . .
...

M1[N − 1] · · · M1[0]

 , (8)
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where M1[m] = E[x[n]xH [n−m]] ∈ CLP×LP is the matrix-
valued WSS covariance sequence. To sum up, the covariance
matrix is block-Toeplitz under H0 and H1, but only positive
definite under H2 (see Figure 1).

One final comment is in order. Only the structure of the co-
variance matrices is known under each of the three hypotheses,
but the particular values, that is, the matrix-valued covariance
sequences, are unknown. Thus, the only information available
a priori is the cycle period.

III. REWRITING THE HYPOTHESES: ASYMPTOTIC CASE

Since the covariance matrices are unknown, the hypotheses
are composite, in which case the GLRT, the UMPIT and the
LMPIT are typical approaches for binary tests [48], [49].
For the GLRT we need the ML estimates of the unknown
parameters, which, in our case, are the covariance matrices.
As we have seen, under stationarity and cyclostationarity these
covariance matrices are block-Toeplitz, for which there is
no closed-form ML estimate [49]. Thus, we will follow an
approach similar to the one proposed in [43], [46], [47], which
enables us to derive an asymptotic GLRT.

Assume that we are given M independent and identically
distributed (i.i.d.) realizations {yl}M−1m=0 of the vector y. The
likelihood of these observations under Hi is

p(y0, . . . ,yM−1; Ri) =

M−1∏
m=0

p(ym; Ri)

=
1

πLNPM det(Ri)M
exp

{
−M tr

(
R−1i R̂

)}
, (9)

where the sample covariance matrix is

R̂ =
1

M

M−1∑
m=0

ymyHm. (10)

Since there is no closed-form solution for ML estimates
of block-Toeplitz matrices we approximate them by block-
circulant matrices. Block-Toeplitz matrices are asymptotically
equivalent to block-circulant matrices [50], [51], and the like-
lihoods converge in mean-square, as shown in the following
theorem.

Theorem 1: As N → ∞, the log-likelihood random vari-
able (RV), parameterized by a block-Toeplitz covariance ma-
trix, converges in mean-square (sometimes called l.i.m.) to the
log-likelihood RV parameterized by a properly selected block-
circulant covariance matrix:

lim
N→∞

E

[
1

N2
|log p (y0, . . . ,yM−1; R)

− log p (y0, . . . ,yM−1; Q)|2
]

= 0,

where ym ∈ CNB , and R ∈ CNB×NB is the block-Toeplitz
covariance matrix with a generic block size B,

R =

 M[0] · · · M[−N + 1]
...

. . .
...

M[N − 1] · · · M[0]

 . (11)

The matrix-valued covariance sequence that generates R is
M[m] ∈ CB×B , and Q ∈ CNB×NB is the block-circulant

covariance matrix whose (m, l)th block is M[m− l mod N ].
Equivalently, the block-circulant matrix may be factored as

Q = (FN ⊗ IB) V (FN ⊗ IB)
H
. (12)

Here, FN is the Fourier matrix of dimension N , and V is
a block-diagonal matrix, whose kth block is given by the
discrete Fourier transform (DFT) of the covariance sequence,

V(θk) =

N−1∑
m=0

M[m] exp {−jθkm} , (13)

with θk = 2πk/N . Thus, V(θk) is simply the cross-spectral
matrix (CSM) at frequency θk.

Proof: The proof follows from [46] with a few modifi-
cations.

Corollary 1: The log-likelihood for the block-circulant co-
variance matrix may be rewritten as

log p (y0, . . . ,yM−1; Q) = −NBM log π

−NM
∫ 2π

0

log det V(θ)
dθ

2π
−NM

∫ 2π

0

tr
[
V−1(θ)V̂(θ)

] dθ
2π
,

(14)

where V̂(θ) is the sample CSM at frequency θ.
Taking into account Theorem 1, the hypotheses in (3) are

asymptotically equivalent to

H0 : y ∼ CN (0,Q0) ,
H1 : y ∼ CN (0,Q1) ,
H2 : y ∼ CN (0,Q2) .

(15)

For nonstationary data, Q2 is positive definite without further
structure. For cyclostationary data, Q1 is block-circulant with
block size LP and may therefore be factored as

Q1 = (FN ⊗ ILP ) V1 (FN ⊗ ILP )
H
, (16)

where V1 is an unknown positive definite block-diagonal
matrix of block size LP . For stationary data, Q0 is a block-
circulant covariance matrix with block size L, which may be
factored as

Q0 = (FNP ⊗ IL) V0 (FNP ⊗ IL)
H
, (17)

where V0 is a positive definite block-diagonal matrix of block
size L.

Let us now transform the observations as

z = (LNP,N ⊗ IL) (FNP ⊗ IL)
H

y, (18)

where LNP,N is the commutation (or “stride permutation”)
matrix [52], which fulfills vec(A) = LNP,Nvec(AT ), where
A is a P × N matrix. Basically, this transformation is a
particular reordering of the frequencies in the DFT of u[n].
We formulate the hypothesis test in terms of z instead of y
and must therefore obtain the covariance matrix of z under
the three hypotheses. Under H2, the covariance matrix is

S2 = E[zzH |H2]

=
(
LNP,NFHNP ⊗ IL

)
Q2

(
FNPLTNP,N ⊗ IL

)
, (19)
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(a) Stationary case (b) Cyclostationary case (c) Nonstationary case

Fig. 1: Structure of the covariance matrix for N = 3 and P = 2 under the three considered hypotheses. Each square corresponds
to an L× L matrix.

which is another unknown positive definite matrix. Under H0,
the covariance matrix of the transformed observations is

S0 =
(
LNP,NFHNP ⊗ IL

)
Q0

(
FNPLTNP,N ⊗ IL

)
, (20)

and, taking into account (17),

S0 = (NP )2 (LNP,N ⊗ IL) V0 (LNP,N ⊗ IL)
T
, (21)

where we have used (FNP ⊗ IL)
H

(FNP ⊗ IL) = NP ILNP .
Thus, the covariance matrix is just a scaled and permuted
version of the blocks of V0, and since V0 is unknown, S0

is also an unknown positive definite block-diagonal matrix.
Under H1, the derivation is more involved and based on the
Cooley-Tukey theorem.

Theorem 2 (Cooley-Tukey): The Fourier matrix may be fac-
tored as

FNP = (FN ⊗ IP ) TNP,P (IN ⊗ FP ) LNP,N , (22)

where TNP,P is a diagonal matrix of twiddle factors.
Proof: See [53].

The covariance matrix under H1 is given by

S1 =
(
LNP,NFHNP ⊗ IL

)
Q1

(
FNPLTNP,N ⊗ IL

)
, (23)

and, using the factorization in (16), it becomes

S1 =
(
LNP,NFTNP ⊗ IL

)
(FN ⊗ ILP )

×V1 (FN ⊗ ILP )
H (

FNPLTNP,N ⊗ IL
)
. (24)

With
FN ⊗ ILP = (FN ⊗ IP )⊗ IL (25)

and the associative property of the Kronecker product, we
obtain(

LNP,NFHNP ⊗ IL
)

(FN ⊗ ILP ) =[
LNP,NFHNP (FN ⊗ IP )

]
⊗ IL. (26)

Applying Theorem 2, the term inside the square brackets
becomes

LNP,NFHNP (FN ⊗ IP ) = N (IN ⊗ FP )
H

T∗NP,P , (27)

which yields

S1 = N2
[
(IN ⊗ FP )

H
T∗NP,P

]
⊗ IL

×V1 [TNP,P (IN ⊗ FP )]⊗ IL. (28)

It is clear that the Kronecker product of the matrix inside
the square brackets and the identity matrix results in a block-
diagonal matrix with block size LP . Since the covariance
matrix under H1 is an unknown positive definite block-
diagonal matrix multiplied on the left by a block-diagonal
matrix with the same block size and on the right by the
Hermitian transpose of this matrix, S1 is also an unknown
positive definite block-diagonal matrix with block size LP .

Putting all the pieces together, the hypotheses are

H0 : z ∼ CN (0,S0) ,
H1 : z ∼ CN (0,S1) ,
H2 : z ∼ CN (0,S2) ,

(29)

where S2 is a positive definite matrix without further structure,
S1 is a positive definite block-diagonal matrix with block size
LP , and S0 is also a positive definite block-diagonal matrix
but with block size L. Hence, under all three hypotheses,
the covariance matrices are block-diagonal. S2 contains just
one block of size LPN × LPN . This fact will simplify the
derivations of the tests. Moreover, an insightful interpretation
of these covariance matrices is presented in Section VI.

IV. DERIVATION OF THE GLRT

In the previous section, we showed that the three covariance
matrices are block-diagonal without further structure but dif-
ferent block sizes. In this section, we derive the GLRT for the
case of two block-diagonal with arbitrary block sizes. Later
on, these block sizes are chosen as those in (29) to derive the
asymptotic GLRT for the tests CS vs. WSS signals, and CS vs.
NS signals. The derivation of the LMPIT follows in Section
V.

A. GLRT for block-diagonality with different block sizes

Consider the following hypothesis test

H0 : z ∼ CN (0,D0) ,
H1 : z ∼ CN (0,D1) ,

(30)

where D0 is a block-diagonal matrix with block size B0

and without further structure, i.e. D0 ∈ SB0 , and D1 is a
block-diagonal matrix with block size B1 and without further
structure, i.e. D1 ∈ SB1

. Of course, B1 must be a multiple of
B0 because the sizes of D1 and D0 are the same.
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The generalized likelihood ratio (GLR) for the test in (30)
is given by

G =

max
D0∈SB0

p (z0, . . . , zM−1; D0)

max
D1∈SB1

p (z0, . . . , zM−1; D1)
(31)

where the maximization is carried out over the set of positive
definite block-diagonal matrices, with block size B0 under H0

and block size B1 under H1. In the following theorem we
present the solution to (31).

Theorem 3: The GLRT in (31) is

G1/M =
det(diagB1

(Ŝ))

det(diagB0
(Ŝ))

= det(ĈB1

B0
), (32)

where diagBi(Ŝ), i = 0, 1, builds a block-diagonal ma-
trix from the Bi × Bi blocks on the main diagonal
of Ŝ by setting the off-diagonal blocks equal to zero,
ĈB1

B0
= [diagB0

(Ŝ)]−1/2 diagB1
(Ŝ)[diagB0

(Ŝ)]−1/2 is a co-
herence matrix, and Ŝ is the sample covariance matrix of
z0, . . . , zM−1.

Proof: Under both hypotheses, we need the ML estimate
of a block-diagonal covariance matrix. The likelihood for a
generic block size B is given by

p(z0, . . . , zM−1; D) =

1

πNBM det(D)M
exp

{
−M tr

(
D−1Ŝ

)}
. (33)

Taking into account the block-diagonal structure of D, the
likelihood becomes

p(z0, . . . , zM−1; D) =
N∏
k=1

1

πBM det (Dk)
M

exp
{
−M tr

(
D−1k Ŝk

)}
, (34)

where Dk and Ŝk are the kth blocks of dimensions B × B
on the diagonal of D and Ŝ, respectively. Since Dk has no
structure besides being positive definite, its ML estimate is
D̂k = Ŝk, which is easily proven using the derivatives in [54].
Finally, the proof is concluded by building a block-diagonal
matrix with blocks Ŝk, with k = 1, . . . , N , which yields

D̂ = diagB(Ŝ). (35)

Applying the ML estimator in (35) directly to the block-
diagonal matrices in (30), and plugging these back into (31),
the proof follows.

B. GLRT for testing cyclostationarity vs. wide-sense station-
arity

The generalized likelihood ratio (GLR) for testing cyclosta-
tionarity vs. wide-sense stationarity is

G0:1 =
max
S0∈SL

p (z0, . . . , zM−1; S0)

max
S1∈SLP

p (z0, . . . , zM−1; S1)
, (36)

for which we may use the results in the previous subsection.
The solution is presented in the following theorem.

Theorem 4: Asymptotically, as N → ∞, the GLR for the
test H0 vs. H1 is

G1/M0:1 =
det(diagLP (Ŝ))

det(diagL(Ŝ))
= det(ĈLP

L ) =

N∏
k=1

det(Ĉk),

(37)
where ĈLP

L = [diagL(Ŝ)]−1/2 diagLP (Ŝ)[diagL(Ŝ)]−1/2 is a
coherence matrix, and the kth LP×LP block on the diagonal
of ĈLP

L is denoted by Ĉk.
Proof: The proof is a direct application of the GLRT in

the previous subsection.
It is clear that G0:1 is invariant to multiplications by a

nonsingular block-diagonal matrix with block size L. This
means the GLRT is asymptotically invariant to multiplications
in the frequency domain, hence invariant to MIMO linear
filtering (circular convolution) of u[n]. For finite N , this
invariance only holds approximately.

Interestingly, using the properties of the determinant, the
above GLRT may be rewritten as

log G0:1 =

∫ 2π

0

log det V̂1(θ)
dθ

2π
− P

∫ 2π

0

log det V̂0(θ)
dθ

2π
,

(38)
where V̂1(θ) is the estimate of the CSM of the WSS vector
representation x[n], given by

V̂1(θ) =
1

M

M−1∑
m=0

xm(θ)xHm(θ), (39)

where

xm(θ) =
1√
N

N−1∑
n=0

xm[n]e−jθn. (40)

Similarly, V̂0(θ) is the estimate of the CSM of u[n], given by

V̂0(θ) =
1

M

M−1∑
m=0

um(θ)uHm(θ), (41)

with

um(θ) =
1√
NP

N−1∑
n=0

um[n]e−jθn. (42)

For the scalar case, L = 1, this GLRT was derived in [47].

C. GLRT for testing Cyclostationarity vs. Nonstationarity

For the test H1 against H2, the GLR is

G1:2 =
max

S1∈SLP
p (z0, . . . , zM−1; S1)

max
S2∈S

p (z0, . . . , zM−1; S2)
, (43)

and the solution is presented next.
Theorem 5: Asymptotically, as N → ∞, the GLR for the

test H2 vs. H1 is

G1/M1:2 =
det(Ŝ)

det(diagLP (Ŝ))
= det(ĈLPN

LP ), (44)

where ĈLPN
LP = [diagLP (Ŝ)]−1/2Ŝ[diagLP (Ŝ)]−1/2 is a co-

herence matrix.
Proof: The proof is a direct application of Theorem 3.
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L =

∑
Pκ,Pµ

∫
DB0

det(D1)−M |det(G)2M | exp
[
−M tr

(
D−11 PGŜGHPT

)]
dG

∑
Pκ,Pµ

∫
DB0

det(D0)−M |det(G)2M | exp
[
−M tr

(
D−10 PGŜGHPT

)]
dG

, (46)

We note that while the ML estimate of S1 is an asymptotic
estimate, the estimate S2 is an ML estimate for finite values
of N , provided that M ≥ LNP . Moreover, the GLRT is
invariant to multiplications by any nonsingular block-diagonal
matrix with block size LP . Hence, the GLRT for H1 vs.
H2 is asymptotically invariant to linear filtering (circular
convolution) of x[n] (rather than u[n] when testing H1 vs.
H0).

Finally, it is also worth noting that this approach can be used
to show that the GLR for the test WSS vs. NS is det(ĈLPN

L ).
However, we do not consider this test in more detail since it
is outside the scope of the paper.

V. DERIVATION OF THE LMPIT
In this section, as in the previous one, we test block-

diagonality with two different block sizes, but now using
the LMPIT. To do so, we first study the invariances of the
hypothesis test and use those to derive the LMPIT. We employ
Wijsman’s theorem to avoid having to derive the maximal
invariant statistic and its distributions. For a more detailed
review of Wijsman’s theorem, see Appendix I. Then, the
aforementioned LMPIT is particularized to the tests cyclosta-
tionarity vs. wide-sense stationarity and cyclostationarity vs.
nonstationarity.

A. LMPIT for block-diagonality with different block sizes

In this subsection we derive the LMPIT for the test in (30),
and we use this LMPIT to obtain the asymptotic LMPITs
for testing cyclostationarity vs. wide-sense stationarity and
cyclostationarity vs. nonstationarity. The first step is to find
the invariances of the detection problem. First, we may restrict
our attention to linear operations since Gaussianity must be
preserved. We may also multiply z by any nonsingular block-
diagonal matrix, with block size B0, without modifying the
structure of the hypothesis test. Moreover, we can permute
blocks of size B1 without modifying the block-diagonal struc-
ture of D1, and within these B1×B1 blocks, it is also possible
to permute blocks of size B0 without modifying the block-
diagonal structure of D0. Therefore, the invariance group is

G = {g : z→ g(z) = PGz,P = Pκ ⊗ (Pµ ⊗ IB0
)} , (45)

where Pκ ∈ Pκ,Pµ ∈ Pµ, G ∈ DB0
, Pκ denotes the set

of κ-dimensional permutation matrices and DB0 is the set of
nonsingular block-diagonal matrices with block size B0. Here,
κ is the ratio between the size of the covariance matrices and
B1, that is, the number of blocks of dimension B1×B1, and µ
is the ratio between B1 and B0, that is, the number of blocks
of dimension B0 ×B0 that forms a block of size B1 ×B1.

Given this invariance group, Wijsman’s theorem [38] allows
us to write the ratio of the distributions of the maximal

invariant statistic shown in (46) at the top of this page. In (46)
we sum over all possible permutations since the permutation
group is a finite group. In its current form, L is a function
of the unknown parameters, which prevents the derivation of
the UMPIT or LMPIT. In the following, we will simplify this
expression to derive the LMPIT.

Lemma 1: The ratio L may be simplified to

L ∝
∑
Pκ,Pµ

∫
DL
β(G)e−αdG, (47)

where β(G) = |det(G)2M |e−M tr(GGH) and

α = M

κ∑
k=1

µ∑
l,m=1
l 6=m

tr
(
D̃

(lm)
k G

(m)
k Ĉ

(ml)
k G

(l)H
k

)
. (48)

Here Gk is the kth B1 × B1 block on the diagonal of G,
which is also block-diagonal with B0 ×B0 blocks G

(l)
k . The

coherence matrix ĈB1

B0
is defined in the previous section, and it

is a block-diagonal matrix, with block size B1. The kth block
is denoted by1 Ĉk, which is itself a block matrix with B0×B0

blocks denoted by Ĉ
(ml)
k . Finally, D̃k is the kth B1×B1 block

on the diagonal of

D̃ = PT
(
diagB0

(D−11 )
)−1/2

D−11

(
diagB0

(D−11 )
)−1/2

P,
(49)

and D̃
(lm)
k denotes the (l,m)th block of D̃k of size B0×B0.

Proof: See Appendix II.
We may now present the LMPIT in the following theorem.

Theorem 6: The LMPIT statistic for the test in (30) is

L ∝
κ∑
k=1

‖Ĉk‖2. (50)

Proof: See Appendix III.

B. LMPIT for testing cyclostationarity vs. wide-sense station-
arity

We present next the asymptotic LMPIT for testing cyclo-
stationarity vs. wide-sense stationarity.

Theorem 7: Asymptotically, as N →∞, the LMPIT statis-
tic for testing H0 vs. H1 is

L0:1 ∝
N∑
k=1

‖Ĉk‖2, (51)

where Ĉk is the kth block of ĈLP
L , which is defined in Section

IV.

1Note that for the sake of notational simplicity, when there is no confussion,
we drop the super-index B1 and sub-index B0.
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Proof: Particularize the LMPIT in Theorem 6 to B1 =
LP , and B0 = L.
Again, the LMPIT is invariant to MIMO linear filtering
(circular convolution) of the sequence u[n], which shows that
the detection problem does not depend on the particular cross-
spectral matrix (CSM) of u[n].

The LMPIT in Theorem 7 is similar in form to the LMPIT
in [30] but there are differences worth mentioning. First, the
derivations are different: We used the relationship between a
scalar-valued CS process and a vector-valued WSS process,
whereas [30] works in the frequency domain. Moreover, we
consider the general multivariate case L ≥ 1 and an arbitrary
CSM under H0, whereas [30] treats the scalar case L = 1 and
assumes a white process under the null hypothesis.

C. LMPIT for testing cyclostationarity vs. nonstationarity

Theorem 8: Asymptotically, as N →∞, the LMPIT statis-
tic for testing cyclostationarity vs. nonstationarity is

L1:2 ∝ ‖ĈLPN
LP ‖2. (52)

where the coherence matrix ĈLPN
LP is defined in Section IV.

Proof: The proof is a direct application of Theorem 6.
Alternatively, it may also be proven using the results in [44].

Similarly to the GLRT, the LMPIT is invariant to MIMO linear
filtering (circular convolution) of x[n], rather than u[n]. This
invariance allows us to whiten the cyclic CSM, which shows
that the detector cannot be a function of the cyclic CSM.

VI. INTERPRETATION OF THE DETECTORS

In this section we give an insightful interpretation of the
GLRT and LMPIT in the frequency domain, for the test CS vs.
WSS signals. Unfortunately, the other hypothesis test CS vs.
NS signals does not easily admit an illuminating interpretation.
Let us start with the covariance matrix of z, and its relationship
to the Loève spectrum and the cyclic CSM. Recall that the
transformation

z̃ = (FNP ⊗ IL)
H

y ∈ CLNP (53)

is a column vector containing L-dimensional DFTs u(θk) ∈
CL of the sequence u[n], k = 0, 1, . . . , NP − 1. Hence, its
covariance matrix contains samples of the Loève spectrum,
with the (k, l)th block of dimension L× L given by

S̃k,l = E[u(θk)uH(θl)] = S(θk, θl), (54)

where S(θk, θl) ∈ CL×L is the Loève spectrum of u[n] at
frequencies θk and θl. To study the effect of the commutation
matrix, let us rewrite the indices of the blocks of S̃ as

k = i
(k)
2 N + i

(k)
1 , l = i

(l)
2 N + i

(l)
1 , (55)

where i
(k)
2 , i

(l)
2 = 0, . . . , P − 1, and i

(k)
1 , i

(l)
1 = 0, . . . , N −

1. According to [55], the commutation matrix permutes the
indices as

k → k′ = i
(k)
1 P + i

(k)
2 , (56)

l→ l′ = i
(l)
1 P + i

(l)
2 , (57)

and the blocks of S become

S
i
(k)
1 P+i

(k)
2 ,i

(l)
1 P+i

(l)
2

= S(θk, θl), (58)

where

θk =
2π
(
i
(k)
2 N + i

(k)
1

)
NP

, θl =
2π
(
i
(l)
2 N + i

(l)
1

)
NP

. (59)

Thus, the matrix S is composed of N × N blocks of size
P × P , where each element is a matrix of size L× L.

Now we look at the matrices DLP and DL. The former is
a block-diagonal matrix with block size LP and is composed
by the blocks of S that correspond to i(k)1 = i

(l)
1 , i.e., S(θk, θl)

with

θk − θl =
2π

P

(
i
(k)
2 − i(l)2

)
.

That is, the blocks of diagLP (S) are the Loève spectrum with
the frequencies separated by a multiple of 2π/P . On the other
hand, DL is also block-diagonal but with block size L and it
corresponds to the set of indices i(k)1 = i

(l)
1 and i

(k)
2 = i

(l)
2 ,

which is S(θl, θl). Let us now analyze the Loève spectrum for
these separations between the frequencies. The cyclic PSD

S(c)(θ) =
∑
m

R(c)[m]e−jθm (60)

with cycle frequency c and global frequency θ is the discrete-
time Fourier transform of the cyclic covariance function

R(c)[m] =
∑
n

E[u[n]uH [n−m]]e−j2πcn/P , (61)

which in turn is the discrete Fourier series (DFS) in n of
the periodic covariance sequence E[u[n]uH [n − m]]. For
CS processes, the Loève spectrum and the cyclic PSD are
connected as [33]

S(θk, θl) =

P−1∑
c=0

S(c)(θl)δ (θk − θl − 2πc/P ) . (62)

The support of S(θk, θl) is on the lines θk−θl = 2πc/P , that
is, harmonics of the fundamental cycle frequency. Moreover,
for θk − θl = 0 we have S(θl, θl) = S(0)(θl) = S(θl),
which is the PSD. We conclude that DLP contains sam-
ples of S(c)(θl) for c = −P + 1, . . . , P − 1 and θl =
0, 2π/NP, . . . , 2π(NP − 1)/NP , and DL contains samples
of S(θl) for θl = 0, 2π/NP, . . . , 2π(NP − 1)/NP .

Taking all of the above into account, the matrix ĈLP
L

contains blocks of the form

Ĉ(c)(θl) = Ŝ−1/2(θl)Ŝ
(c)(θl)Ŝ

−1/2
(
θl −

2πc

P

)
, (63)

which will allow an insightful interpretation.2 We start by
rewriting the cyclic PSD as [45]

S(c)(θ)dθ = E

[
dξ(θ)dξH

(
θ +

2πc

P

)]
, (64)

2Unfortunately, it does not seem possible to rewrite the matrix ĈLPN
LP

(involved in testing CS vs. NS signals) in a similarly insightful manner.
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θk

θl
c = 0c = 1c = 2

S(θl)

S(θl + 2π/P )S(1)(θl)

Stationary manifold

Fig. 2: Graphical representation of the coherence matrix in
the Loève spectrum. Only the positive cycle frequencies are
shown.

where dξ(θ) is an increment of the complex spectral process
ξ(θ) that generates the time series

u[n] =

∫
dξ (θ) ejθn. (65)

Thus, we conclude that Ĉ(c)(θl) is the coherence matrix of
the random vectors dξ (θl) and dξ(θl − 2πc/P ), which is
illustrated in Fig. 2. For CS processes, frequencies that are
separated by a multiple of the cyclic frequency are correlated,
and this coherence matrix is therefore nonzero. On the other
hand, for WSS processes, the coherence matrix is zero for
c 6= 0.

The test CS vs. WSS signals is thus a test for the strength
of the cyclic components relative to the WSS component in
the estimated Loève spectrum. The GLRT and LMPIT differ
in how they measure this relative strength, as they employ
different functions of ĈLP

L . The LMPIT uses the Frobenius
norm

L0:1 ∝
P−1∑
c=1

(P−c)N−1∑
l=0

∥∥∥Ĉ(c)(θl)
∥∥∥2 (66)

with

θl =
2πl

NP
, (67)

which, asymptotically, may be written as

L0:1 ∝
P−1∑
c=1

∫ 2π(P−c)/P

0

∥∥∥Ĉ(c)(θ)
∥∥∥2 dθ

2π
. (68)

The GLRT, on the other hand, uses the determinant, which is
given by a complicated nonlinear function of Ĉ(c)(θl).

We note that the detector in [23] uses (63) as its statistic,
but considers only the scalar case L = 1. More critically, [23]

uses only the fundamental cycle frequency c = 1 and only one
global frequency θl, instead of combining the information from
all global frequencies and all harmonics of the fundamental
cycle frequency.

VII. NUMERICAL SIMULATIONS

In this section we evaluate the performance of our detectors
using computer simulations. We consider a cognitive radio
experiment. Our detectors can exploit the cyclostationarity
induced by the symbol rate and/or the carrier frequency pro-
vided that the cycle period is known. This requires frequency
synchronization and knowledge of the symbol rate. Assuming
frequency synchronization and knowledge of the symbol rate,
we may formulate the problem as

H0 : u[n] = w[n],
H1 : u[n] = (H ∗ s)[n] + w[n],
H2 : u[n] = (Hd ∗ s)[n] + w[n],

(69)

and w[n] ∈ CL is additive Gaussian noise, which is a WSS
process generated by a moving average model of order 19.
The signal s[n] ∈ CL is a QPSK signal with rectangular
shaping and a symbol rate of Rs = 300 Kbauds. The channel
H[n] ∈ CL×L is a Rayleigh channel without correlation
among antennas, it has an exponential power delay profile with
a maximum delay of 24µs, and a delay spread of 6.24µs. The
channel Hd[n] is time-varying due to the Doppler effect, which
we generate with a normalized (to Rs) Doppler frequency
of 10−1 and a Jakes spectrum. This makes u[n] NS under
H2.3 The sampling frequency is 1.2 MHz, which yields the
cycle period P = 4, and the channel and noise coefficients
are Gaussian and randomly generated in each Monte Carlo
simulation. One final comment is in order. In these simulations
we have considered a communications example. However,
we have derived general detectors that do not exploit all the
properties present in communications signals. For instance, our
detectors do not exploit the fact that the transmit pulse shape
might be known or that the noise might be temporally and/or
spatially uncorrelated.

A. Cyclostationarity vs. wide-sense stationarity

We first compare the performance of the LMPIT and the
GLRT with the detectors in [37] (see also [31]) and [28]. These
two detectors require selecting which lags and/or harmonics of
the cycle frequency to use. This is only possible if the cyclic
covariance function is known, which may not be a realistic
assumption. For a fair comparison, we decided to use lags
0, 1, 2 and 3 of the cyclic covariance but only one harmonic
of the cycle frequency in the detector [28]. However, for the
detector [37] we selected the lag that maximizes the cyclic
covariance (although this might be unrealistic in practice)
because selecting lag 0 would yield poor performance for
a QPSK signal with rectangular shaping. Finally, we used a
Kaiser window of length 1025 to estimate the cyclic CSM
required for the detector [28].

3This is actually a generalized almost cyclostationary process [56], [57],
which for our purposes may be considered as a NS process. For a more
detailed review of this kind of process, see [58].
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Fig. 3: ROC curves for the test CS vs. WSS in a scenario with
L = 3, N = 256, P = 3, M = 15, and SNR = −16 dB
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Fig. 4: Probability of missed detection vs. SNR for the test
CS vs. WSS in a scenario with L = 3, N = 256, P = 3, and
M = 15. The probability of false alarm is fixed at pfa = 10−3.

Figure 3 shows the receiver operating characteristic (ROC)
curves for a scenario with global SNR of −16 dB, L = 3
antennas, N = 256 and M = 15. Hence, the total number of
samples at each antenna is NMP = 11520. As can be seen
in the figure, the best performance is provided by the LMPIT,
followed by the GLRT. Both LMPIT and GLRT outperform
the detectors [28], [37] because they exploit the information at
all lags and all harmonics of the cycle frequency. On the con-
trary, the detector in [37] exploits only the information at one
harmonic and one lag. While the detector in [28] utilizes the
information at multiple lags and multiple harmonics (although
we used only one) they have to be specified a priori. In addition
to this, the detector in [28] does not take into account the
information provided by the cyclic cross-covariance sequences
because it is a collaborative detector. The probability of missed
detection against the SNR for a fixed false alarm probability
pfa = 10−3 is depicted in Figure 4, where similar conclusions
can be drawn. One would expect that for some scenarios the

−10 −8 −6 −4 −2 0 2 4
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100

SNR (dB)

p
m

LMPIT
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Detector in [37]
Detector in [28]

Fig. 5: Probability of missed detection vs. SNR for the test
CS vs. WSS in a scenario with L = 2, N = 32, P = 2, and
M = 10. The probability of false alarm is fixed at pfa = 10−3.

performance of the LMPIT compared to the GLRT worsens.
Indeed that is the case in Figure 5. In this experiment we
considered a smaller problem in which the hypotheses are
not as close (the closeness of the hypotheses depends on the
dimension of the covariance matrices, the number of samples,
the SNR, . . .). Concretely, we selected L = 2 sensors, N = 32,
P = 2 (the symbol rate is Rs = 600 Kbauds), and M = 10.
In this scenario, the performance of the GLRT is slightly better
than that of the LMPIT.

B. Null distribution and threshold setting

So far we have not said anything about the threshold,
required to fix a probability of false alarm. It is expected
that deriving the distributions of the statistics, required for
selecting the threshold, is extremely difficult. However, in [59],
[60], the authors were able to derive a stochastic representation
under the null hypothesis, which is applicable to our problem.
However, here we will follow a different approach since we
want to obtain a closed-form expression for the threshold,
which we could not do using the stochastic representation.
First, our detectors are invariant to filtering. This means we
can obtain the thresholds using numerical simulations for a
white process under H0 and use these thresholds for any
arbitrary CSM. But since our LMPIT and GLRT are only
asymptotically invariant to filtering, this requires some further
analysis. We obtained the histograms of the test statistics of
our detectors for white noise and colored noise, shown in Fig.
6 for SNR = −20 dB. The remaining parameters are the same
as in Fig. 3, unless otherwise stated. Figures 6a and 6b show
the histograms of the GLR for N = 32 and N = 256, and
Figs. 6c and 6d show the histograms of the LMPIT statistic
for N = 32 and N = 256. The blue lines correspond to
white noise and the red lines to colored noise. The differences
between red and blue lines are small even for a rather small
N , and they further decrease as N increases.

Finally, Wilks’ theorem [61] states that the GLR is asymp-
totically (in M ) χ2-distributed. Because the log-det may be
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Fig. 6: Comparison between the distributions of the statistics
under H0 for white noise (in blue) and colored noise (in red)

approximated as the Frobenius norm for close hypotheses
[44], [62], the LMPIT statistic is also asymptotically χ2-
distributed. So the asymptotic distributions of the GLR and
LMPIT statistic are, respectively,

−2M log det(ĈLP
L )

H0∼ χ2
L2NP (P−1), (70)

(M‖ĈLP
L ‖2 − LNMP )

H0∼ χ2
L2NP (P−1). (71)

These distributions are shown in Fig. 7 for M = 15, 25, 40, 60,
and 100. These results show that the LMPIT statistic converges
much faster to the χ2 distribution than the GLR. This is an
interesting result since Wilks’ theorem was derived to compute
the asymptotic distribution of the GLRT. These results show
that we may also use it for the distribution of the LMPIT, and
its convergence is even much faster. To conclude, for large
enough M the χ2 distribution may be used to set the threshold
for both the GLRT and the LMPIT.

C. Cyclostationarity vs. nonstationarity

Finally, we evaluate the performance of the GLRT and the
LMPIT for the test H1 vs. H2. Figure 8 shows the ROC
curves for these two detectors in an experiment with L = 2
antennas, N = 64, M = 400, and SNR = −12 dB. At this
SNR, the LMPIT performs much better than the GLRT. It is
to be expected, however, that at higher SNRs the GLRT will
outperform the LMPIT. As we are not aware of any competing
detector, no other comparisons are shown.

VIII. CONCLUSIONS

We have presented an asymptotic GLRT and LMPIT for
testing whether a multivariate discrete-time process is CS.
Most of the state-of-the-art detectors are imaginative but ad-
hoc. Our detectors, on the other hand, are based on established
statistical principles. In the time domain, our detectors test the
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Fig. 7: Empirical cumulative distribution functions (ECDFs)
of GLRT and LMPIT statistic for M = 15, 25, 40, 60, and
100, and comparison with Wilks’ approximation. The LMPIT
curve overlays Wilks’ approximation.
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Fig. 8: ROC curves for the test CS vs. NS in a scenario with
L = 2, N = 64, P = 3, M = 400, and SNR = −12 dB

structure of the covariance matrix of the observations. In the
frequency domain, the detectors “CS vs. WSS” compare the
strength of the CS components with the WSS component. This
is also the idea behind many of the state-of-the-art detectors,
but the key is to use the right function for this comparison,
which optimally fuses the information in the 2D frequency
spectrum. Indeed, simulation results have shown that our
detectors outperform previously published detectors.

Our hypothesis tests are binary, where the alternative hy-
pothesis is either a WSS or a NS process. We did not consider
a multiple hypothesis test (CS, WSS, NS) but the technique
proposed in [63] could be directly applied to design a multiple
hypothesis GLRT. The main idea behind the technique in [63]
is that the sum of the log-GLR for testing CS vs. WSS and
the log-GLR for testing CS vs. NS signals is equal to the log-
GLR for testing NS vs. WSS signals. Using this relationship it
is possible to divide the space spanned by the two GLRs into
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three regions, where each of these regions corresponds to a
one of the hypotheses (CS, WSS, NS). Since this approach is
suboptimal, applying it to design a multiple hypothesis LMPIT
does not make as much sense since the optimality of the
LMPIT would be lost.

APPENDIX I
WIJSMAN’S THEOREM: AN ALTERNATIVE DERIVATION

FOR THE UMPIT
The derivation of the UMPIT usually requires the derivation

of the maximal invariant statistic and its distribution under
both hypotheses [49]. For many problems this is extremely
difficult or even impossible, preventing the derivation of the
UMPIT. There is, however, an alternative based on Wijsman’s
theorem [38], [64], [65]. This theorem states that, under some
mild conditions, the ratio of the distributions of the maximal
invariant statistic may be obtained as

L =

∫
G p (g(x);H1) |det (Jg)| dg∫
G p (g(x);H0) |det (Jg)| dg

, (72)

where p (g(x);Hi) is the probability density function of the
transformed observations under the hypothesis Hi, G is the
group of invariant transformations, Jg denotes the Jacobian
of the transformation g(·) ∈ G and dg is an invariant group
measure, which we take as the usual Lebesgue measure.
Even though Wijsman’s theorem is quite powerful, it has not
received much attention in the signal processing literature,
with a few notable exceptions [39], [41], [44], [66]–[70].

The main idea behind Wijsman’s theorem was first proposed
by Stein [40]. However, the conditions under which (72) is
valid were studied much later by Wijsman and other authors
in [38], [64], [66], [71]–[73]. For our problem it suffices to
consider the simplest conditions. These specify that the group
of invariant transformations G must be a Lie group, a finite
group or a composition of both, and the observations must
belong to a linear Cartan G-space.4 Since the set of invertible
block-diagonal matrices is a Lie group, the permutation group
is a finite group, and the observations belong to a linear Cartan
G-space, we may apply Wijsman’s theorem to our problem.

APPENDIX II
PROOF OF LEMMA 1

We first simplify the denominator. Ignoring the term
det(D0), which does not depend on data or the invariant
transformations, the integral in the denominator is given by∫

DB0

|det(G)2M | exp
[
−M tr

(
D−10 PGŜGHPT

)]
dG.

(73)
Taking into account the block-diagonal structure of D0 and
G, with block size B0, and the fact that the permutation P
keeps such structure, the integral may be rewritten as∫

DB0

|det(G)2M | exp
[
−M tr

(
D−10 PG diagB0

(Ŝ)GHPT
)]
dG.

(74)

4A linear Cartan G-space is a nonempty open subset (denoted as S) of the
Euclidean space such that, for every x ∈ S, there exists a neighborhood V
for which the closure of {g(·) ∈ G : g(V) ∩ V 6= ∅} is compact.

Applying now the change of variables G →
G[diagB0

(Ŝ)]−1/2, the integral becomes∫
DB0

|det(G)2M | exp
[
−M tr

(
D−10 PGGHPT

)]
dG, (75)

which does not depend on the observations. Thus, the ratio
does not depend on the denominator, which means

L ∝
∑
Pκ,Pµ

∫
DB0

|det(G)2M |

× exp
[
−M tr

(
D−11 PGŜGHPT

)]
dG, (76)

where we have also removed det(D1). It is possible to substi-
tute Ŝ by diagB1

(Ŝ) in L due to the block-diagonal structure
of D1 and G, with block size B1 in this case. Additionally,
the change of variables G→ G[diagB0

(Ŝ)]−1/2 allows us to
write

L ∝
∑
Pκ,Pµ

∫
DB0

|det(G)2M |

× exp
[
−M tr

(
D−11 PGĈGHPT

)]
dG, (77)

For every permutation we may find a matrix G ∈ DB0
, such

that the B0×B0 diagonal blocks of D−11 are IB0 , which yields

Lsc ∝
∑
Pκ,Pµ

∫
DB0

|det(G)2M | exp
[
−M tr

(
S̃GĈGH

)]
dG.

(78)
It is clear that for any permutation in G, the matrix S̃ is block-
diagonal, which allows us to simplify the exponent as

tr
(
S̃GĈGH

)
=

κ∑
k=1

tr
(
S̃kGkĈkG

H
k

)
. (79)

Finally, since the diagonal blocks of both S̃k and Ĉk are the
identity matrix, the proof follows.

APPENDIX III
PROOF OF THEOREM 7

For close hypotheses (for instance, the CS process is almost
WSS) the inverse of the whitened covariance matrix is S̃ ≈
Iκ·B1

, which implies α ≈ 0. We may therefore use a second
order Taylor’s series to approximate e−α to obtain

L ∝
∑
Pκ,Pµ

∫
DB0

β(G)(α2 − 2α)dG. (80)

We now prove that the linear term, given by∑
Pκ,Pµ

κ∑
k=1

µ∑
l,m=1
l 6=m

∫
DB0

β(G)tr
(
S̃
(lm)
k G

(m)
k Ĉ

(ml)
k G

(l)H
k

)
dG,

(81)
must be zero. To do so, let us apply the change of variables
G

(l)
k → −G

(l)
k for all possible values of k and l. Thus, the

integrals become equal to their opposites, which shows that
they are indeed zero. Using the same change of variables, it



12

is easy to show that the cross-products in the quadratic term
must also be zero, and L becomes

L ∝
∑
Pκ,Pµ

κ∑
k=1

µ∑
l,m=1
l 6=m

∫
DB0

β(G)

× tr2
(
S̃
(lm)
k G

(m)
k Ĉ

(ml)
k G

(l)H
k

)
dG. (82)

By introducing another change of variables, which involves
the matrices of left and singular vectors of S̃

(lm)
k and Ĉ

(ml)
k ,

the ratio of the distributions is only a function of the singular
values, that is,

L ∝
∑
Pκ,Pµ

κ∑
k=1

µ∑
l,m=1
l 6=m

∫
DB0

β(G)

×

(
B0∑
t,s=1

[
Λ̃

(lm)
k

]
t,t

[
Ξ̂

(lm)
k

]
s,s

[
G

(m)
k

]
t,s

[
G

(l)
k

]∗
t,s

)2

dG,

(83)

where Λ̃
(lm)
k and Ξ̂

(lm)
k are diagonal matrices that contain the

singular values of S̃
(lm)
k and Ĉ

(ml)
k , respectively. The change

of variables
[
G

(m)
k

]
t,s
→ −

[
G

(m)
k

]
t,s

allows us to get rid of

the cross-terms in the square, which yields

L ∝
∑
Pκ,Pµ

κ∑
k=1

µ∑
l,m=1
l 6=m

B0∑
t,s=1

[
Λ̃

(lm)
k

]2
t,t

[
Ξ̂

(lm)
k

]2
s,s

∆, (84)

where

∆ =

∫
DB0

β(G)Re

[([
G

(m)
k

]
t,s

[
G

(l)
k

]∗
t,s

)2
]
dG. (85)

For the considered values of k, l,m, s and t, the integral ∆
takes the same value regardless of the indices, and the ratio
simplifies to

L ∝
∑
Pκ,Pµ

κ∑
k=1

µ∑
l,m=1
l 6=m

B0∑
t=1

[
Λ̃

(lm)
k

]2
t,t

B0∑
s=1

[
Ξ̂

(lm)
k

]2
s,s
. (86)

Noting that the sum of the squared singular values is the
squared Frobenius norm, the ratio therefore becomes

Lsc ∝
κ∑
k=1

µ∑
l,m=1
l>m

∥∥∥Ĉ(ml)
k

∥∥∥2
∑

Pκ,Pµ

∥∥∥S̃(lm)
k

∥∥∥2
 . (87)

The sum over all possible permutations of the blocks S̃
(lm)
k

establishes that the term within parentheses is independent of
the indices k, l and m. Moreover, it can be shown that this
sum is given by ∑

Pκ,Pµ

∥∥∥S̃(lm)
k

∥∥∥2 ∝ ‖S̃‖2, (88)

which yields

L ∝
κ∑
k=1

µ∑
l,m=1
l>m

∥∥∥Ĉ(ml)
k

∥∥∥2 . (89)

Finally, taking into account that
∥∥∥Ĉ(ml)

k

∥∥∥2 =
∥∥∥Ĉ(lm)

k

∥∥∥2 and∥∥∥Ĉ(mm)
k

∥∥∥2 = B0, the proof follows.
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[32] M. Loève, Probability Theory II, 4th ed. New York: Springer, 1978.
[33] E. D. Gladyshev, “Periodically correlated random sequences,” Soviet

Math. Dokl., vol. 2, pp. 385–388, 1961.
[34] J.-C. Shen and E. Alsusa, “Joint cycle frequencies and lags utilization in

cyclostationary feature spectrum sensing,” IEEE Trans. Signal Process.,
vol. 61, no. 21, pp. 5337–5346, Nov. 2013.

[35] A. V. Vecchia and R. Ballerini, “Testing for periodic autocorrelations in
seasonal time series data,” Biometrika, vol. 78, no. 1, pp. 53–63, 1991.

[36] W. Gardner, “Exploitation of spectral redundancy in cyclostationary
signals,” IEEE Signal Process. Magazine, vol. 8, no. 2, pp. 14–36, April
1991.

[37] S. Schell and W. Gardner, “Detection of the number of cyclostationary
signals in unknown interference and noise,” in Asilomar Conf. on
Signals, Systems and Computers, vol. 1, Nov. 1990, p. 473.

[38] R. A. Wijsman, “Cross-sections of orbits and their application to
densities of maximal invariants,” in Proc. Fifth Berkeley Symp. on Math.
Stat. and Prob., vol. 1, 1967, pp. 389–400.

[39] J. R. Gabriel and S. M. Kay, “Use of Wijsman’s theorem for the ratio of
maximal invariant densities in signal detection applications,” in Asilomar
Conf. Signals, Systems and Computers, vol. 1, Nov. 2002, pp. 756 – 762.

[40] C. Stein, “Some problems in multivariate analysis, part 1,” Stanford Uni.
Dept. Statistics, Tech. Rep., 1956.

[41] A. A. D’Amico, “IR-UWB transmitted-reference systems with partial
channel knowledge: a receiver design based on the statistical invariance
principle,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1435–1448,
Apr. 2011.

[42] D. Cochran, H. Gish, and D. Sinno, “A geometric approach to multiple-
channel signal detection,” IEEE Trans. Signal Process., vol. 43, no. 9,
pp. 2049–2057, Sep. 1995.

[43] D. Ramı́rez, J. Vı́a, I. Santamarı́a, and L. L. Scharf, “Detection of
spatially correlated Gaussian time series,” IEEE Trans. Signal Process.,
vol. 58, no. 10, Oct. 2010.

[44] D. Ramı́rez, J. Vı́a, I. Santamarı́a, and L. L. Scharf, “Locally most
powerful invariant tests for correlation and sphericity of Gaussian
vectors,” IEEE Trans. Inf. Theory, vol. 59, no. 4, pp. 2128–2141, Apr.
2013.

[45] P. J. Schreier and L. L. Scharf, Statistical Signal Processing of Complex-
Valued Data. Cambridge University Press, 2010.

[46] D. Ramı́rez, G. Vázquez-Vilar, R. López-Valcarce, J. Vı́a, and I. San-
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