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I. INTRODUCTION 

In the last decades, major advances have been made in the proposal of alternative 

methods to analyze the dynamics of a distribution, the foremost, undoubtedly, being the 

intra-distribution dynamics approach. This approach examines directly how the whole 

distribution changes over time, its main advantage being that it allows us to see changes 

in the relative positions of the elements that comprise the distribution, and therefore to 

analyze its internal dynamics.  

In this framework, discrete-state, discrete-time stochastic processes (the so-called 

transition matrix approach) have been extensively used in a variety of areas of inquiry. 

In the last decades, some advances were made regarding the discrete-state nature of 

these processes. As noted by Quah (1997) and Bulli (2001), discretization of the state-

space may distort dynamics and even remove the Markovian property (Bickenbach and 

Bode, 2003).1 To resolve this drawback, Quah (1997) proposed the use of a Markov 

transition function (or stochastic kernel), which is essentially a continuous-state, 

discrete-time Markov process; this, indeed, has been the main and more promising way 

forward in such a research context (Magrini, 2004).2 In any case, the estimation of 

discrete-state stochastic processes for examining distribution dynamics keeps being 

quite widespread in the literature and, in fact, is employed in this paper. As indicated by 

                                                 
1 Loss of the Markovian property would mean that the state that the process arrives in a forward step 

would depend not only on its immediate predecessor, but also on others before that. 

2 In addition, Johnson (2000) extended the analysis by providing a way to estimate the long-run 

equilibrium (or ergodic density). Recently, Fotopoulos (2006, 2008) has also suggested a non-parametric 

quantile method based on the stochastic kernel. 
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Maza et al. (2010), its use as a complementary approach to the estimation of 

continuous-state processes is highly recommended. While not denying drawbacks 

coming from the use of a discrete state-space approach, it is the only methodology that 

really allows us to, by formalizing the process of successive transitions between income 

states and through the definition of some scalar measure, quantify the mobility degree 

within a distribution. Following this vein, a discrete-space Markov process is employed 

in this paper. 

On a different note, and with respect to the discrete-time nature of the stochastic 

processes, the choice between continuous or discrete-time modelling in dynamic 

analysis is another moot question (see Gandolfo, 1997, for a thorough discussion on this 

issue). Empirical studies on intra-distribution dynamics have commonly relied on 

simple estimation procedures, in which the discrete-time assumption plays a key role.3 

This assumption has been often made on the basis that the availability of continuous 

data is not the general rule in economics. Note, however, that the distinction between 

flow and stock variables should be borne in mind for selecting the appropriate time-

scale for such stochastic processes. More specifically, whereas a flow variable (as GDP 

per capita), defined for a given period, cannot be modeled by a continuous-time process 

except in the limiting case where the interval of observation is going to zero, a stock 

variable (for example, wealth and human capital) should be modeled by continuous-

time stochastic processes as it is measured at one point in time. This distinction is far 

from being trivial, as discrete and continuous-time estimations may differ significantly. 

  Accordingly, this paper tries to contribute to the existing literature on intra-

distribution dynamics by illustrating, both from a theoretical and an empirical 

                                                 
3 Another common assumption is stationarity. This is relaxed in the paper by Hierro and Maza (2009). 
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perspective, the differences between discrete-time and continuous-time estimation 

procedures. For a set of data on wealth in Europe, the paper shows that, without much 

more computational effort, the continuous-time formulation provides a finer estimation 

of transition probabilities over any time horizon and, therefore, a more realistic 

framework than the discrete-time one  

More specifically, a set of national data on per capita wealth for forty European 

countries during the period 2000-2010 is used. We opt for using the European case as a 

sort of laboratory because the study of national/regional disparities in the oldest 

continent has become a heated topic in the last two to three decades, where the interest 

on this topic has been fostered by concerns about the ongoing process of economic 

integration (see, e.g, papers by Quah, 1996, 1997; López-Bazo et al., 1999; Magrini, 

1999; Fingleton, 2003; López-Bazo, 2003; Le Gallo, 2004; Ezcurra et al., 2005; Tortosa 

et al., 2005; Ertur et al., 2006; Fotopoulos, 2006; Geppert and Stephan, 2008; Desli, 

2009; Petrakos and Artelaris, 2009; Archibugi and Philippetti, 2011; Cavenaile and 

Dubois, 2011); furthermore, among these studies those that apply the distribution 

dynamics approach have resorted to the estimation of discrete-time rather than 

continuous-time transition matrices (see, e.g., Le Gallo, 2004; Le Gallo and Chasco, 

2008; Sakamoto and Islam, 2008; and Bosker, 2009).4 Additionally and due to the 

characteristics of our estimation procedure, it is convenient to emphasize that our 

variable of analysis is, instead of the traditional per capita income (productivity), the 

                                                 
4 A contribution in this field has been made by Rummel (2009) by considering a hidden Markov chain 

approach. Unlike Rummel, in this paper we assume that wealth states are observable like is common 

practice in the literature. In fact, we choose the classification of states traditionally used in European 

studies to gain interpretation by discerning between poor, middle-poor, middle, middle-rich and rich 

countries. 
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average wealth per inhabitant. The reason for this choice is twofold: firstly, as already 

mentioned, that stock variables are more suitable for the estimation of continuous-time 

models than flow variables; secondly, that wealth is one of the main determinants of 

well-being and, therefore, an appropriate variable when it comes to evaluating the 

dynamics of cross-country disparities.   

The remainder of this paper is divided into two parts. The first one, Section II, 

introduces notation and sets up the analytic framework behind the continuous-time 

estimation procedure, emphasizing its differences with the discrete-time one. The 

second part of the paper, Section III, compares, by using European per capita wealth 

data as a test bank for our analysis, the results obtained from discrete and continuous-

time estimation. Finally, some concluding remarks are given in the final section.  

 

II. DISCRETE-TIME VERSUS CONTINUOUS-TIME ESTIMATION FOR 

TRANSITION PROBABILITIES 

Empirical studies on intra-distribution dynamics using a transition matrix approach have 

traditionally assumed a discrete-time scale for estimation purposes. Thus, let suppose 

that the distribution under analysis is divided into an exhaustive finite set of m  

mutually exclusive states, denoted by S . Additionally, if changes between states occur 

at discrete times, let StX )(  indicate the state occupied at time ),...,1,0( Ttt  . For a 

given time period ),0( t , let ),0( tP  be the mm   transition probability matrix with 

entries: 

 

 iXjtXPrtpij  )0(|)(),0(    (1) 
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for all Sji , .  

 

Finally, let assume that the hypothesis of stationary transition probabilities is 

adopted, so that transition probabilities can also be denoted as: 

 

)(),0( tptp ijij      (2) 

 

Under the above assumptions, the maximum likelihood estimator for the discrete-

time transition probability from a state i  to another j  over a period t  is given by:  

 

i

ijD
ij n

n
tp )(ˆ  ,     (3) 

 

where ijn  represents the number of countries in state j  after a period t , having been 

initially in state i , and in  is the number of countries initially in state i  (Cox and Miller, 

1965; Chung, 1967).  

Despite its widespread use, it is worth noting that the discrete-time approach does 

not always provide the most appropriate framework for an intra-distribution dynamics 

analysis. According to some authors (Singer and Spilerman, 1973), for most social 

mobility processes changes in intra-distribution dynamics occur at continuous-time 

points. Then, why a discrete-time scale has been so much more successful than a 

continuous-time scale in modeling transition probabilities? One reason is obviously that 

such assumption is particularly attractive for its simplicity. In addition, the use of a 
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discrete-time scale has found justification on the more extended use of flow rather than 

stock variables.  

Accordingly in the cases, as here, where a stock variable is examined this second 

argument loses its force, leaving only the weak claim of simplicity as justification for 

applying a discrete-time framework. In these occasions, therefore, a continuous-time 

approach is mandatory. Thus, under the same finite set of states , let suppose that 

StX )(  is observed continuously in the time interval  T,0 , i.e.  TttX 0|)( , and 

that transition probabilities are governed by the following system of ordinary 

differential equations (Cox and Miller, 1965; Chung, 1967; Singer and Spilerman, 

1976):  

)()( tPQdttdP      (4) 

 

where Q  is a matrix with dimension mm . If Q  is a matrix with entries ijq satisfying:  

 

 
ij ijiiiiij qqqq ,0,0 ,   (5) 

 

then, )(tP  comprises the continuous-time transition matrix with solution given by the 

exponential formula:  

0,
!

)exp()(
0

 
 t

k

tQ
tQtP

k

kk
     (6) 

 

with )(exp   denoting the matrix exponential function.  
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Thus, the continuous-time transition matrix for every time horizon t  is a function of 

the matrix Q , commonly known as the transition intensity matrix, whose elements ijq , 

the so-called transition intensities, can be interpreted as the instantaneous rate of 

transition between pair of states, i  and j : 

ji
dt

dtp
q

ij

dt
ij 


,

)(
lim

0
    (7) 

 

Additionally, elements iiq  have an interesting probabilistic interpretation: iiq1   

gives the expected length of time for a country in state i  to remain in that state (Chung, 

1967). 

When information on all movements is available over a time interval  T,0 , 

estimates for the transition intensities can be found by maximum-likelihood estimation 

from the expression (Billingsley, 1961; Küchler and Sørensen, 1997; Lando, 2004):  

 

ji
dssn

Tn
q

T

i

ij
ij 


,

)(

)(

0

,    (8) 

 

where )(Tnij  represents the total number of transitions between states i  and j  over the 

whole period  T,0 , and )(sni  is the number of countries in state i  at time s . 

Estimation for diagonal elements would be, accordingly,  


ij ijii qq . Next, 

applying the exponential function, given in expression (6), to transition intensities 

estimates appropriately scaled by the chosen time horizon t , we obtain the continuous-

time transition probability estimates )(ˆ tpC
ij .  
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Bearing in mind the ultimate aim of this paper, it is convenient to notice that there 

are two significant differences between the discrete and continuous-time approaches 

that are behind the different maximum likelihood estimates for transition probabilities. 

Firstly, as pointed out by Lando and Skodeberg (2004), while the continuous-time case 

counts through )(Tnij  all transitions from i  to j  over the entire period of observation 

(see equation (8)), the discrete-time case only considers, as defined by ijn , the number 

of transitions from i  to j  between the initial and final year of any period of duration t  

(equation (3)), thus deliberately ruling out any transition from i  to j  occurring in-

between years. Secondly, if we take a look to the denominator of equation (8), we can 

see that the continuous-time estimation is more informative as it considers all countries 

staying at a state i  “at any time” during the time interval  T,0 , being these countries 

weighted by the exact time spent at this state. For the discrete case, however, only 

countries originally staying in state i  are considered, and all exactly in the same way 

(see denominator of equation (3)), that is, without consideration of the time spent in 

such state.   

 

III. AN APPLICATION TO THE EUROPEAN PER CAPITA WEALTH 

DISTRIBUTION 

As an illustration of differences in results obtained by discrete and continuous-time 

estimation, in this section we examine the dynamics of the European wealth distribution 

over the period 2000-2010. To the best of our knowledge, this is the first time that a 

continuous-time approach is applied to the long-studied topic of European disparities. 

Data employed in this study consist of annual relative per capita wealth of 40 European 
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countries. These data have been drawn from the publication “Credit Suisse Global 

Wealth Databook 2010”, published by the Credit Suisse Research Institute.5 As is usual 

in the literature, national per capita wealth is normalized by the European average 

(Europe=100) in order to take out from the analysis the effect of absolute changes over 

time and, thus, to pave the way for comparisons. 

Anyway, and before proceeding to the analysis, some remarks must be made 

because, as it is well-known, the transition matrix results depend critically on the 

number and length of the intervals considered. Following the criteria suggested by Quah 

(1993), the overall wealth distribution is divided into five exhaustive and mutually 

exclusive wealth states of equal size at t representing poor, middle-poor, middle, 

middle-rich and rich countries.6 In addition, the results also depend on the transition 

period length. In this case, and as is also common in many applications on distribution 

dynamics, we opt for estimating a five-year transition probability matrix (that is, 5t  

in previous equations).7 Based on the above considerations, we begin by estimating the 

discrete-time transition matrix, reported in Table 1, and so following with the intensity 

matrix (Table 2a) and the continuous-time transition matrix (Table 2b).   

                                                 
5 Wealth data are computed from Household Balance Sheet (HBS) data and theoretical models estimated 

by standard econometric techniques. For more information see Shorrocks et al. (2010). 

6 Magrini (1999) suggests an alternative method for the discretization of the distribution based on the 

minimization of an error measure. However, this method of boundary selection may lead to having a 

disproportionate number of states, some of them, as indicated by Bosker (2009), containing very few 

observations. 

7 Whereas a one-year transition period, for example, would imply a very low degree of mobility and 

emerging patterns would be really difficult to detect, a longer transition period, 10 or 15 years, would 

lead, in the case of discrete-time estimation, to a noteworthy loss of information. 
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 [Table 1 around here] 

[Table 2 around here] 

 

Given the reasons mentioned in the previous section, it is expected that the 

continuous-time estimation provides a more precise description of wealth distribution 

dynamics than its static counterpart. In any case, in order to assess it properly we 

calculate the accuracy of both estimations using, as in Hierro (2009), the Root Mean 

Square Error (RMSE), the results (0.101 for the continuous case and of 0.118 for the 

discrete one) confirming our previous intuition. On the other hand, we should also 

question how different are the discrete and continuous-time matrices. In order to gain an 

overall view of these differences, we use the metric proposed by Jafry and Schuermann 

(2004), namely SVDM , that is simply the average of the singular values of the so-called 

mobility matrix P~ , defined as the estimation of the original transition matrix – either 

the discrete-time matrix ( DP̂ ) or the continuous-time matrix  ( CP̂ ) – minus the identity 

matrix of the same dimension.8 We obtain 4421.1))5(ˆ( C
SVD PM  and 

2841.0))5(ˆ( D
SVD PM , so that 158.1))5(ˆ())5(ˆ(  D

SVD
C

SVD PMPM . This makes clear 

that differences for the whole matrix are apparently large. In fact, by comparing both 

matrices in a more meticulous way we appreciate the existence of significant differences 

between some discrete transition probabilities and their counterpart. Thus, for example, 

                                                 
8 Unlike other metrics proposed in the literature for comparing matrices, that proposed by Jafry and 

Schuermann (2004) is particularly appealing as it verifies, among other properties, monotonicity, that is, 

larger off-diagonal transition probabilities imply larger values of the metric, and distribution 

discriminatory, that is, the metric is sensitive to the distribution of off-diagonal probability mass.  
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the third diagonal entry is 0.958 for the discrete-time setting and 0.827 for the 

continuous-time one.  The transition probability from middle-rich to rich countries and 

that from poor to middle-poor ones are other cases for which estimations are markedly 

different.   

 Leaving disparities between absolute values aside, another distinctive difference 

between both estimations is that most transition probabilities equal to zero in the 

discrete case vanish in the continuous counterpart. This fact maybe is not very 

remarkable from an economic point of view, but reflects a different concept of 

transition. The explanation is simple. Let consider as example the transition probability 

from poor to middle wealth countries. It is clear that the discrete-time method estimates 

its value to be zero, as there are no sample records of any country moving “directly” 

between these states for any five-year period. In the continuous case, however, 

considering the fact that the probabilities of moving from poor to poor-middle countries 

and, subsequently, from this last state to middle wealth countries (namely “indirect 

transitions”) are positive, an strictly positive probability is obtained. Thus, the 

continuous estimation assigns a positive transition probability to a transition, even if 

there was no country that experienced that transition directly, insofar as that transition is 

possible to occur indirectly through other intermediate states. In this regard, and as 

pointed out by Gómez-González and Kiefer (2009), the continuous-time formulation is 

more realistic and offers the advantage of taking into account not only “direct 

transitions”, but also “indirect transitions” between states, overcoming the problem of 

underestimating the probability of infrequent transitions.  

Finally, in order to address which implications these differences may have on the 

hypothetical long-term equilibrium distribution, the last row in Tables 1 and 2b displays 
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the ergodic distribution in either case (discrete- and continuous-time).The results show 

that differences in the ergodic distribution are much more salient than in the transition 

probabilities. This is especially so when comparing the third value of each ergodic 

distribution, as the discrete-time estimation gives the middle wealth state a proportion in 

the long-term almost two times larger than the continuous-time estimation. In other 

words, our results reveal that the discrete-time approach highly overestimates the share 

of middle wealth European countries in the long term. 

 

IV. CONCLUSION 

Formulation of discrete-time transition matrices has been a constant in empirical 

analysis on intra-distribution dynamics so far. Some attempt to justify this practice, 

apart from that of simplicity, has been made on the extended use of flow variables 

which, by its nature, can be measured in discrete time. However, in those cases in which 

the analysis is carried out on the base of a stock variable, consideration of a continuous-

time process seems mandatory. This being so, the present paper highlights the main 

advantages of the continuous-time transition matrix approach compared with the 

conventional one when analysing stock variables and, using cross-national European 

data on per capita wealth for the 2000-2010 period as a benchmark dataset, illustrates 

the differences between discrete-time and continuous-time transition probabilities. As 

main conclusions, firstly the analysis revealed that the continuous-time approach yields 

higher accuracy in the estimation than the discrete-time one. Secondly, it showed the 

existence of significant differences between discrete-time and continuous-time 

transition probabilities, these being even more significant in the case of the ergodic 

distribution comparison. 
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TABLE 1 

Discrete-time estimation of the five-year transition matrix, )5(ˆ DP , and ergodic 

distribution for the period 2000-2010 

(Number) States (1) (2) (3) (4) (5) 

(48) (1) 0.521 0.479 0.000 0.000 0.000 

(48) (2) 0.021 0.688 0.292 0.000 0.000 
(48) (3) 0.000 0.021 0.958 0.021 0.000 
(48) (4) 0.000 0.000 0.104 0.771 0.125 
(48) (5) 0.000 0.000 0.000 0.104 0.896 

Ergodic distribution 0.002 0.047 0.660 0.132 0.158 

Note: The numbers in parentheses on the left are the number of country/year pairs beginning in a 

particular state.  
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TABLE 2 

Intensity matrix, Q̂ , continuous-time estimation of the five-year transition matrix, 

)5(ˆ CP , and ergodic distribution for the period 2000-2010 

a) Intensity matrix 

States (1) (2) (3) (4) (5) 

(1) -1.424 1.424 0.000 0.000 0.000 

(2) 0.489 -1.344 0.856 0.000 0.000 
(3) 0.000 0.367 -0.489 0.122 0.000 
(4) 0.000 0.000 0.256 -1.023 0.767 
(5) 0.000 0.000 0.000 0.494 -0.494 

 

b) Continuous-time transition matrix  

(Number) States (1) (2) (3) (4) (5) 

(80) (1) 0.562 0.358 0.079 0.002 0.000 

(80) (2) 0.123 0.603 0.267 0.007 0.001 
(80) (3) 0.012 0.115 0.827 0.041 0.006 
(80) (4) 0.000 0.007 0.085 0.657 0.251 
(80) (5) 0.000 0.001 0.010 0.162 0.828 

Ergodic distribution 0.055 0.159 0.367 0.166 0.253 

Note: The numbers in parentheses on the left are the number of country/year pairs beginning in a 

particular state. 

 

 


