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The structure of the complex between a-tubulin, TBCE and TBCB
reveals a tubulin dimer dissociation mechanism
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ABSTRACT

Tubulin proteostasis is regulated by a group of molecular chaperones

termed tubulin cofactors (TBC). Whereas tubulin heterodimer

formation is well-characterized biochemically, its dissociation

pathway is not clearly understood. Here, we carried out

biochemical assays to dissect the role of the human TBCE and

TBCB chaperones in a-tubulin–b-tubulin dissociation. We used

electron microscopy and image processing to determine the three-

dimensional structure of the human TBCE, TBCB and a-tubulin (aEB)

complex, which is formed upon a-tubulin–b-tubulin heterodimer

dissociation by the two chaperones. Docking the atomic structures

of domains of these proteins, including the TBCE UBL domain, as we

determined by X-ray crystallography, allowed description of the

molecular architecture of the aEB complex. We found that

heterodimer dissociation is an energy-independent process that

takes place through a disruption of the a-tubulin–b-tubulin interface

that is caused by a steric interaction between b-tubulin and the TBCE

cytoskeleton-associated protein glycine-rich (CAP-Gly) and leucine-

rich repeat (LRR) domains. The protruding arrangement of

chaperone ubiquitin-like (UBL) domains in the aEB complex

suggests that there is a direct interaction of this complex with the

proteasome, thus mediating a-tubulin degradation.
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INTRODUCTION
Microtubules (MTs) are essential cytoskeletal polymers that are
composed of a-tubulin–b-tubulin heterodimers (tubulin dimers)

that provide structural support to the cell and have important
functions in key cell processes such as division, motility and
intracellular transport (Kaverina and Straube, 2011). MTs are

very dynamic structures that switch stochastically between
growing and shrinking phases. This dynamic instability
(Mitchison and Kirschner, 1984) is based on GTP binding and

hydrolysis at the b-tubulin nucleotide exchangeable site (E-site).
Only GTP-bound tubulin dimers can polymerize, but after

polymerization the nucleotide is hydrolyzed and becomes non-

exchangeable until the tubulin dimer is released from the

microtubule during depolymerization (Alushin et al., 2014).

Throughout the cell cycle, the precise temporal and spatial

regulation of this non-equilibrium behavior is governed largely by

MT-associated proteins and by factors that control the local soluble

tubulin dimer concentration accessible for MT polymerization

(Lundin et al., 2010). Polymerization is regulated in part by a- and

b-tubulin monomer folding and degradation, as well as by tubulin

dimer formation. In contrast to actin or c-tubulin, a- and b-tubulin

require additional folding steps, which involve not only the

cytosolic chaperonin complex CCT, the co-chaperone complex

prefoldin (PFD) and phosducin-like proteins (PhLPs), but also Arl2

and five tubulin-binding cofactors (TBC) termed TBCA, TBCB,

TBCC, TBCD and TBCE (Tian et al., 1996; Lopez-Fanarraga

et al., 2001; Lundin et al., 2010). These cofactors interact

differentially with a- or b-tubulin in a pathway that converges to

control tubulin dimer formation (Fontalba et al., 1993; Tian et al.,

1999). TBCE and TBCB are specific cofactors that interact with

a-tubulin after its CCT-assisted folding (Tian et al., 1997), and

TBCB has recently been shown to interact directly with CCT

(Carranza et al., 2013). The TBCs are considered central factors in

tubulin proteostasis because of their unique intrinsic ability to

dissociate tubulin dimers (Lopez-Fanarraga et al., 2001). The

tubulin dimer is very stable, with a Kd of ,10211 M, and its

spontaneous dissociation is thus very unlikely (Caplow and Fee,

2002).

Overexpression of TBCE or TBCD abolishes the entire MT

network of the cell, dissociating the tubulin dimer and

sequestering a-and b-tubulin monomers, respectively (Martı́n

et al., 2000; Kortazar et al., 2006; 2007). TBCB overexpression

also interferes with the MT network, although less efficiently

(Carranza et al., 2013). The TBCs are necessary for tubulin dimer

dissociation and have an important role in regulation of MT

plasticity and composition. The diversity of MT determines their

dynamic properties; this is achieved by distinct tubulin isotypes

leading to heterogeneity in tubulin dimer composition and by a

plethora of post-translational modifications (Verhey and Gaertig,

2007). Although a large proportion of tubulin dimers might be

recycled directly as new polymers, in some circumstances tubulin

monomers are targeted for degradation (Lundin et al., 2010),

probably through the ubiquitin-proteasome system (Mi et al.,

2009).

Whereas the regulatory mechanisms of MT dynamics and

tubulin biogenesis in vitro and in vivo are well described,

relatively little is known about the regulation of tubulin turnover.

TBCE and TBCB cooperate in tubulin dissociation both in vivo

and in vitro, by sequestering a-tubulin and forming a stable

ternary a-tubulin–TBCE–TBCB complex (hereafter denoted
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aEB) (Kortazar et al., 2007). Here, we used electron microscopy
(EM) and single-particle image processing to determine the

structures of human TBCE and the aEB complex, both of which
are involved in a-tubulin proteostasis. We also used X-ray
crystallography to determine the atomic resolution structure
of the human TCBE ubiquitin-like (UBL) domain. This structure

and those of homologous domains from TBCB and TBCE,
as well as the a-tubulin structure, were fitted unambiguously in
the EM volumes, from which we derived the molecular

architecture of TBCE and the aEB complex. These model
structures show the topology of TBCE and the aEB complex; in
the latter, this identified the regions involved in formation of the

complex, as well as putative regions that interact with the
proteasome. These structural studies, combined with other
biophysical techniques, biochemical assays and cell biology

analyses, allow us to propose a model for the TBCE- and TBCB-
mediated tubulin dissociation reaction and its implications in
tubulin turnover. This study offers a new view of the a-tubulin–b-
tubulin dissociation mechanism and its effects on MT dynamics

and composition regulation.

RESULTS
Characterization of a-tubulin–b-tubulin dissociation by TBCE
and TBCB
The post-CCT chaperones TBCE and TBCB are involved in a-
tubulin folding and degradation through a poorly characterized
molecular mechanism that is essential for control of cell tubulin

dynamics and turnover (Lundin et al., 2010). To better understand
the turnover process, we cloned, overexpressed and purified
human TBCB and TBCE (Kortazar et al., 2007; Carranza et al.,

2013) and analyzed their ability to dissociate tubulin dimers
(Fig. 1; supplementary material Fig. S1). The a-tubulin–b-tubulin
dissociation process was efficient only when both TBCE and

TBCB were present in the reaction mixture; TBCB alone was
unable to dissociate tubulin dimers and TBCE alone did so very
inefficiently. The a-tubulin monomer released from the tubulin

heterodimer was stabilized as a ternary complex with TBCE and
TBCB only in the presence of both chaperones (Fig. 1;
supplementary material Fig. S1A–C), whereas the b-tubulin
monomer was released and became aggregated in the absence of

its specific post-CCT chaperones (supplementary material Fig.

Fig. 1. a-tubulin–b-tubulin dissociation induced by TBCE, TBCB and various mutants of these two chaperones. (A) Left, amino acid sequence of TBCB;
residues of the UBL (green), the coiled-coil (CC; red) and the CAP-Gly domains (blue) are highlighted. The sequences for the atomic structures of the fragments
solved for this cofactor are in boxes, green for the TBCB UBL domain (PDB 1V6E) and blue for the CC and CAP-Gly domain sequences (PDB 1WHG).
Right, structural domains of TBCB and the deletion mutants (TBCBubl and TBCBcg) used in the a-tubulin–b-tubulin dissociation assay. (B) a-tubulin–b-tubulin
dimer dissociation analyzed by native gel electrophoresis, using TBCE and different TBCB forms (full-length, TBCBcg and TBCBubl). (C) Left, amino acid
sequence of TBCE; residues of the CAP-Gly (blue), LRR (orange) and UBL domains (green) are highlighted. In the blue box, the sequence for the human UBL
domain (PDB 4ICU) whose X-ray structure is reported here is shown; the orange box shows the amino acid sequence for the LRR domain from Brassinosteroid
insensitive 1 from Arabidopsis thaliana (PDB 3RJ0), and the green box shows that for the murine TBCB CAP-Gly domain (PDB 1WHG), whose atomic
structures were used for docking analyses. Right, structural domains of TBCE and the deletion mutants (TBCEcg, TBCEubl, TBCElink, TBCEDubl and
TBCEDcg) described here. (D) a-tubulin–b-tubulin dimer dissociation analyzed by native gel electrophoresis, using TBCB and several TBCE forms (full-length,
TBCEcg and TBCEubl). In the functional experiments (B,D), tubulin dimer dissociation was determined as a decrease in a-tubulin–b-tubulin band intensity as
quantified by densitometry. Only full-length TBCE and TBCB generated a stable ternary complex with the two chaperones and a-tubulin (gray box).
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S1D). b-tubulin aggregation was prevented when TBCA is
present in the tubulin dimer dissociation assay, because this

cofactor binds the b-tubulin monomer (Campo et al., 1994;
Kortazar et al., 2006).

We then tested which of the TBCE and TBCB domains were
involved in a-tubulin–b-tubulin dissociation. Domain organization

was similar in both chaperones (Fig. 1A,C). Both proteins have a
cytoskeleton-associated protein glycine-rich (CAP-Gly) and a
UBL domain; in the case of TBCB, the UBL is located at the N-

terminal and CAP-Gly at the C-terminal end, whereas the opposite
arrangement is found in TBCE (Grynberg et al., 2003). The TBCB
intermediate region has a short coiled-coil region (CC), whereas

that of TBCE has a leucine-rich repeat (LRR) domain. For TBCB
we cloned, expressed and purified two deletion mutants, one
containing only the UBL domain (TBCBubl), and the other with

the coiled-coil and CAP-Gly (TBCBcg) domains (Fig. 1A). In the
case of TBCE, we used two mutants, one with only the UBL
domain (TBCEubl) and the other with the CAP-Gly domain
(TBCEcg) (Fig. 1C).

The a-tubulin–b-tubulin dissociation activity of the different
TBCE and TBCB deletion mutants was assayed using native
PAGE. Whereas full-length TBCE induced some dissociation

(Fig. 1B,D), this did not occur in the presence of a TBCEubl
and TBCEcg mixture (Fig. 1D). Likewise, although TBCB in
the presence of full-length TBCE induced tubulin dimer dissociation

there was no dissociation when TBCB was combined with
TBCEubl or TBCEcg (Fig. 1D). These experiments show that
there is efficient tubulin dissociation in the presence of the two

chaperones, and that whereas the TBCE LRR domain is important
in this process, the TBCB UBL domain is dispensable (Fig. 1B,D).

Structure of TBCE and the aEB complex
To analyze the TBCE structure, we used negative staining EM, a
technique suitable for small specimens such as TBCE (,60 kDa).
A total of 12,000 particles were selected and used to generate a

3D reconstruction (Fig. 2A; supplementary material Fig. S2;
18 Å resolution). The refined structure showed an asymmetric,

L-shaped volume with one short globular arm and a long, flat arm
from which a small globular domain protrudes.

The ternary aEB complex was generated by incubating TBCE
and TBCB with tubulin dimers and purifying the stable complex by
size exclusion chromatography (supplementary material Fig. S1D)
(Kortazar et al., 2007). Owing to the small size of the complex

(,140 kDa), it was also prepared for negative staining EM. We
selected 26,129 particles, which were used to generate a 3D
reconstruction of the aEB complex (Fig. 2B; supplementary

material Fig. S2, 21 Å resolution). This structure is U-shaped,
with two curved arms composed of small, globular domains placed
almost symmetrically relative to a larger, globular base. For both

TBCE and aEB, parallel and independent reconstructions from
different initial models were carried out to validate the final model.

Topology of the aEB complex
We then determined the positions of TBCE, TBCB and a-tubulin
within aEB. We deduced the location of TBCE directly, by
comparing the refined 3D structures of TBCE and aEB (Fig. 2C);

this showed that the TBCE structure and conformation were
almost completely conserved in aEB. To ascertain TBCB
position and orientation in the complex, we designed and

purified an N-terminal GFP-tagged human TBCB fusion protein
(TBCB–GFP). The tubulin dimer dissociation activity of TBCB–
GFP was similar to that of wild-type TBCB, and it maintained its

ability to form a stable ternary complex with a-tubulin and TBCE
(aEB–GFP) (Fig. 3A). This aEB–GFP complex was purified by
gel filtration chromatography (Fig. 3B) and analyzed by EM to

generate the final volume using 16,702 selected particles
(Fig. 3C; supplementary material Fig. S2, 23 Å resolution). The
3D structure of the aEB–GFP complex showed features very
similar to those of aEB, with the exception of an extra mass

protruding from the end of one arm (compare Fig. 3C and
Fig. 3E). This extra density fits accurately with the GFP size and
barrel-shaped structure (Fig. 3D), which allowed us to assign the

TBCB position unambiguously in this arm of the aEB complex,
whose dimensions (,60630 Å) are compatible with TBCB

Fig. 2. 3D structure of TBCE and the aEB complex.
Series of orthogonal views and dimensions are shown.
(A) 3D reconstruction of TBCE. (B) 3D reconstruction of
the aEB complex. (C) Localization of the TBCE density
map (blue) within the aEB complex.
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molecular mass (,27 kDa). These results imply that the TBCB
CAP-Gly domain is in close contact with the main body of the

complex, whereas the UBL domain protrudes from the structure.
This latter result is consistent with the finding that this domain
did not alter dissociation activity (Fig. 1B), and confirmed the
TBCB orientation suggested by 3D reconstruction. The remainder

of the aEB density not occupied by TBCE or TBCB and
represented by the large central core would correspond to
a-tubulin; the dimensions and shape of this region are

compatible with those of an a-tubulin molecule.

The TBCE CAP-Gly domain interacts specifically with the
a-tubulin C-terminal EEY motif
The CAP-Gly domain is a sequence of 80 amino acids, conserved
from yeast to man, that is typically defined as a tubulin-

interacting domain. One of its main structural and functional
features is a conserved GK(N/H)DG motif that defines a basic
groove. In some proteins like CLIP170 (also known as CLIP1) or
the p150Glued (also known as DCTN1) subunit of the dynactin 1

complex, this basic groove is involved specifically in binding the
EEY motif in the acidic C-terminal tail of several proteins such as
a-tubulin or EB1 (Steinmetz and Akhmanova, 2008).

The TBCE N-terminal CAP-Gly domain is crucial for the
a-tubulin interaction during tubulin folding and dissociation

reactions. Characterization of this interaction could help to define
the correct position of each domain within TBCE structure and
thus, within the aEB complex. We first subjected tubulin dimers
to limited proteolysis with the serine endopeptidase subtilisin to

generate C-terminus-truncated forms (a-S-tubulin and b-S-
tubulin), which were further purified by gel filtration
chromatography; dimers were then dissociated by adding TBCE

or TBCE plus TBCB. Native gel electrophoresis and western blot
experiments showed a complete lack of cofactor-dissociating
activity (Fig. 4A).

We analyzed the role of the tyrosine residue in the a-tubulin
EEY C-terminal motif by treatment with carboxypeptidase A
(CPA), an exopeptidase that specifically removes aromatic

residues at the C-terminal end of a target protein. After
detyrosination of the tubulin dimers (DYtubulin), confirmed by
western blot analysis with anti-tyrosinated tubulin antibody,
dimers were purified by gel filtration chromatography. The

modified dimers were incubated with TBCE and analyzed by
native gel electrophoresis, which showed that this cofactor was
unable to dissociate the DYtubulin dimer (Fig. 4B).

Fig. 3. Purification and 3D structure of the ternary aEB–GFP complex. (A) The TBCB–GFP mutant retains its ability to enhance tubulin dissociation by
TBCE. The presence of the fusion protein in the reaction substantially reduces the amount of the tubulin dimer with respect to the control with TBCE alone as it is
shown in the Coomassie-stained native gel. The presence of both TBCE and TBCBgfp cofactors leads to the formation of an aEB–GFP complex
(highlighted with a red box) with an electrophoretic mobility similar to the aEB complex. (B) Gel filtration chromatography purification of the ternary aEB–GFP
complex (red profile). A high-molecular-mass peak that contains the complex (indicated with an asterisk) is separated from TBCE, TBCB and tubulin dimers,
whose mobility controls are depicted as discontinuous green, dark blue and light blue, respectively. (C) Side view of the 3D reconstruction of the aEB–GFP
complex, where the green density belongs to GFP and the yellow one to TBCB. (D) The same view of aEB–GFP complex with the atomic structure of GFP fitted
within the assigned density. (E) The same view of the aEB complex, in which the TBCE density is colored blue and TBCB, yellow.
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To analyze the EEY motif interaction with the TBCE CAP-Gly

domain by fluorescence anisotropy, we designed two fluorescein-
tagged peptides, one with the last ten residues of the acidic tail of
a-tubulin isotypes 1 and 2 (GEGEEEGEEY), and the other
without the last tyrosine residue (GEGEEEGEE). The two

peptides were incubated with increasing TBCE concentrations,
and fluorescence intensity was measured to calculate the
dissociation constant for each. The tubulin peptide lacking the

final residue showed a greatly reduced affinity (140 times less)
for the TBCE CAP-Gly domain compared to the longer peptide
(dissociation constant 73 mM compared to 0.53 mM; Fig. 4C).

This finding confirms the need for this amino acid for efficient
TBCE interaction and tubulin dimer dissociation.

Structure of the human TBCE UBL domain
Although crystallization of the full-length TBCE and TBCB was
unsuccessful, probably due to their intrinsic flexibility, we

determined the crystal structure of the human TBCE UBL

domain (Q444-W527) at 1.45 Å resolution (supplementary
material Table S1) by single-wavelength anomalous diffraction
(SAD), using a praseodinium (III) heavy-atom derivative. The
UBL structure consists of a five-stranded, mixed b-sheet of

topology 21534 that diagonally cradles an a-helix at its concave
face (Fig. 5A). This b-grasp fold is characteristic of ubiquitin and
UBL domains in many proteins. A structural comparison of

human TBCE UBL and ubiquitin (PDB code 1TBE; Cook et al.,
1994) confirms the similarity of these protein structures (r.m.s.d.
1.4 Å for 72 equivalent Ca atoms), although sequence identity is

low (20%) (Fig. 5B,C). The main differences are related to the
length and the conformation of two loops, L1 (that connects
strands S1 and S2) and L4 (that connects strands S3 and S4),

which define a deep groove at the face of the b-sheet that is
opposite to the one holding the a-helix (Fig. 5D). The equivalent
groove in ubiquitin participates in the interaction with the

Fig. 4. The a-tubulin C-terminal EEY motif binds
specifically to TBCE. (A) TBCE alone is able to
dissociate wild-type but not S-tubulin dimers, as
monitored by reduction in the amount of tubulin dimer in a
Coomassie-stained native gel. The lower panel shows a
western blot analysis using anti-b-tubulin antibody.
(B) Incubation of TBCE with wild-type or DY-tubulin
dimers leads to dimer dissociation only with wild-type
tubulin. Right, TBCE dissociative activity with wild-
type (blue line) or DY-tubulin dimers (red line).
(C) Fluorescence anisotropy curves obtained after
incubation of increasing concentrations of TBCE with two
fluorescein-tagged peptides, one with the ten last
residues of the a-tubulin acidic tail (blue) and one without
the final tyrosine residue (red). Kd values expressed
as mean6s.d.

Fig. 5. Crystal structure of the human TBCE UBL domain.
(A) Three orthogonal views of the structure. The a-helices H1
and 310 H2 are depicted in orange, b-strands (S1–S5) in blue,
and loops and connecting regions in gray (only loops L1 and L4
are labeled). (B) Superposition of the UBL domain of TBCE
(green) and ubiquitin (pale blue; PDB 1TBE). Ubiquitin C-
terminal residue G76, essential for polyubiquitylation, is labeled
for reference. (C) Close-up of the area indicated by a red
rectangle in B, showing the lysine side chains for both
structures. (D) Electrostatic surface of the TBCE UBL domain
showing the hydrophobic patch (white) extending from the
lower part of the groove. Proline residues 496 and 499 are
labeled for reference.
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ubiquitin-interacting motif (UIM) of the proteasome subunit
Rpn10 (Riedinger et al., 2010).

Human TBCE UBL has no lysine residues at positions
equivalent to ubiquitin K48 and K63, the sites for poly-ubiquitin
linkage, although there are three exposed lysine residues, K497 and
K498 at loop L4, and K510 at loop L5 (Fig. 5C). The C-terminal

part is five residues shorter in human TBCE UBL and does not
have the tandem glycine residues that in ubiquitin are responsible
for covalent bond formation with target protein lysine residues

(ubiquitylation) or ubiquitin polymerization.

Molecular architecture of the aEB complex
After localizing TBCE, TBCB and a-tubulin within aEB and
determining the interacting regions between TBCE and a-tubulin,
we docked the atomic structures of the TBCB (CAP-Gly and

UBL), TBCE (CAP-Gly, LRR and UBL) and a-tubulin domains
into the 3D reconstruction of the aEB complex (supplementary
material Movie 1). As there is no information for the atomic
structure of human TBCE and TBCB domains except the TBCE

UBL domain (Fig. 5), we used the atomic structures of
homologous proteins to dock the remainder of the protein
domains.

Docking of the two TBCB domains was straightforward, given
that comparison of the 3D reconstructions of aEB and aEB–GFP
located the TBCE UBL domain at the tip of one arm of the

complex (Fig. 3C–E). The nuclear magnetic resonance (NMR)
structures of the murine UBL and CAP-Gly domains [PDB codes
1V6E (Lytle et al., 2004) and 1WHG; 82% and 83% sequence

identity with the human counterparts, respectively; supplementary
material Fig. S3A,B] were docked such that the former was located
at the tip and the latter at the base of the small globular domain
(Fig. 6A).

The functional domains of TBCE were also docked into the
aEB complex. For the LRR domain, we used the atomic structure
of the closest structural homolog, the LRR domain of the kinase

Brassinosteroid insensitive 1 (BRI1) in Arabidopsis thaliana

(80.2% sequence identity) (PDB code 3RJ0; Hothorn et al., 2011)
(supplementary material Fig. S3C). Owing to its solenoid shape,

this structure fits unambiguously into the concave central region
in both the aEB complex (Fig. 6B) and TBCE (Fig. 6D).

This leaves the localization of the other two domains, UBL and
CAP-Gly, at the ends of the LRR domain. The CAP-Gly domain

was assigned by considering the following points. First, that the
conserved GKHDG motif, present in the CAP-Gly domain, must
be in contact with the density of a-tubulin, as shown previously

(Fig. 6B). Second, that TBCE and TBCB have recently been
shown to form a transient complex before tubulin dimer
dissociation – this interaction is mediated by the last three

residues of the TBCB C-terminal domain (DEI), similar to the a-
tubulin C-terminal EEY motif (Carranza et al., 2013), and the
TBCB and TBCE CAP-Gly domains must therefore make

contact. Finally, that the TBCBcg mutant assists tubulin dimer
dissociation mediated by TBCE (Fig. 1B), again suggesting that
both CAP-Gly domains are in proximity.

Our tubulin dimer dissociation experiments showed that both

TBCE and TBCB are needed for 100% dissociation of tubulin in a
stoichiometric reaction, whereas no dissociation takes place when
only TBCB is present, and only ,35% dissociation occurs in the

presence of TBCE alone. The available atomic structures of TBCE
domains occupied most of the density ascribed to this protein
within the ternary complex. The exception was a region between

the UBL and LRR domains (hereafter, the linker; ,100 residues,

Fig. 1C), whose structure has not yet been determined, but which is
involved in a-tubulin–b-tubulin dissociation. Addition of the

TBCBubl mutant to TBCE did not increase tubulin dimer
dissociation, whereas TBCBcg increased dissociation (Fig. 1B).
Given these findings, the TBCE CAP-Gly domain must make

contact with its TBCB counterpart; indeed, the docking of a CAP-
Gly domain between the TBCE LRR domain and the TBCB CAP-
Gly domain showed a good fit (Fig. 6B,C).

Once the CAP-Gly and LRR domains were placed, the TBCE
UBL domain was located to the other small globular domain of the
part assigned to this cofactor in the aEB complex. Docking of our

human atomic structure into this globular domain was also good,
not only in the aEB complex (Fig. 6B), but also in the TBCE
structure (Fig. 6D). Finally, the atomic structure of a-tubulin
(Nogales et al., 1998) was docked into the globular domain at the

base of the aEB structure (Fig. 6C). The best docking left the a-
tubulin C-terminal region facing the TBCE CAP-Gly domain; this
docking was reinforced by the biochemical findings showing

specific interaction between the C-terminal region of the
cytoskeletal protein and the TBCE CAP-Gly domain (Fig. 4).

In vivo analysis of tubulin dissociation activity of truncated
TBCE mutants
The proposed molecular architecture of aEB indicates that the
closest contacts TBCE establishes with a-tubulin take place at

Fig. 6. Molecular architecture of TBCE and the aEB complex.
(A) Docking of the TBCB UBL domain (magenta; PDB 1V6E) and CAP-Gly
domain (dark blue; PDB 1WHG). The TBCB acidic C-terminal tail (DEI),
involved in the interaction with TBCE, is in green. (B) Docking of the solved
atomic structure of the human TBCE UBL domain (green; PDB 4ICU and
4ICV), the LRR domain (orange; PDB 3RJ0), and the CAP-Gly domain (light
blue; PDB 1WHG), within the density assigned to TBCE. The conserved
CAP-Gly domain GKHDG motif, involved in the interaction with the a-tubulin
C terminus, is highlighted in magenta. (C) Two orthogonal views showing all
domain structures fitted into the aEB ternary complex, including a-tubulin
(yellow; PDB 1TUB). (D) The same views of the 3D reconstruction of TBCE
with fitting of the domain structures. Scale bars: 2 nm.
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both ends of the central cavity and include its CAP-Gly and LRR

domains, as well as the linker that connects the UBL domain. We
reasoned that this tight association might be central to the tubulin
dissociation reaction. To confirm this hypothesis, we designed

three TBCE deletion mutants that lack the UBL domain
(TBCEDubl), the UBL domain and the linker (TBCElink), or
the CAP-Gly domain (TBCEDcg) (Fig. 1C). Each truncated

TBCE mutant was cloned as a citrine fusion protein and used to
transfect HeLa cells (Fig. 7). Confocal microscopy images of
HeLa cells in which these TBCE mutants were overexpressed

clearly indicated that absence of the UBL domain did not affect
TBCE MT depolymerization activity (Fig. 7C), whereas this
activity was abolished in the absence of the CAP-Gly domain
(Fig. 7B) or the linker (Fig. 7D). These findings confirm the

importance of these two regions and the central LRR domain
in the tubulin dimer dissociation process, as well as the
irrelevance of the UBL domain, and are thus consistent with

our model.

GTP hydrolysis is not necessary for tubulin
dimer dissociation
TBCE and TBCB are able to dissociate tubulin dimers with GTP
at the non-exchangeable site and GDP or GTP at the

exchangeable site (E-site, Jacobs, 1975; Kortazar et al., 2007).
It was thus possible that these cofactors mediate tubulin

dissociation through hydrolysis of GTP bound to the a-tubulin

subunit. To resolve this issue, and given that in our in vitro

system this GTP bound to a-tubulin is the only external source of
energy available for tubulin dissociation, we developed an assay

that allowed accurate measurement of GTP and GDP amounts
before and after tubulin dissociation. Tubulin dimers were
subjected to an assembly–disassembly cycle to produce tubulin

dimers containing mostly GDP at the E-site. After purification,
the GDP–tubulin dimers were completely dissociated in the
presence of over-stoichiometric amounts of TBCE and TBCB.

GTP and GDP were then isolated and quantified by HPLC
(supplementary material Fig. S4). We found the same GTP:GDP
ratio before and after tubulin dissociation, which shows that GTP
hydrolysis is unnecessary for tubulin dimer dissociation by TBCE

and TBCB, and therefore that no energy is needed in the
dissociation process. The tubulin dimer is a very stable complex
with a Kd of 10211 M (Caplow and Fee, 2002). The absence of

energy consumption during its dissociation points to the
importance of TBCE and TBCB activity, which give rise to a
very stable aEB complex. It is tempting to suggest that, after

TBCE and TBCB interaction with the tubulin dimer, an unstable,
quaternary a-tubulin–b-tubulin–TBCE–TBCB (abEB) complex
is formed that could have greater free energy, which would in

turn drive the reaction to the final aEB complex. To date, no
intermediate abEB complex has been isolated or reported.

Fig. 7. In vivo microtubule depolymerization activity is
abolished in truncated TBCEDcg and TBCElink mutants.
Confocal microscopy images of HeLa cells overexpressing (A)
wild-type TBCE, (B) TBCEDcg, (C) TBCEDubl and (D)
TBCElink mutants. a-tubulin (red, left column) and the
overexpressed TBCE mutants (green, center) are shown.
Nuclei (blue) were stained with Hoechst 33258 in the merged
images (right). White arrows indicate cells that completely lack
a microtubule network when wild-type TBCE or TBCEDubl
was overexpressed.
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DISCUSSION
One of the central questions in MT dynamic regulation is the

control of local free tubulin dimer concentration, which in turn
depends on tubulin dimer formation and dissociation. TBCs are
implicated in these processes (Tian et al., 1996); TBCE and
TBCB control the a-tubulin biogenesis and degradation

pathways. The scarcity of structural information regarding these
TBCs has nonetheless prevented elucidation of the molecular
mechanisms of these functions.

Our functional assays with various TBCE and TBCB mutants,
together with the EM structural determination of TBCE and the
aEB complex, and interpretation by molecular fitting of the

protein domain atomic structures, allowed us to develop a model
that explains the molecular mechanism by which tubulin
cofactors cooperate in dimer dissociation and guide the a-

tubulin monomer towards degradation. 3D reconstruction of
TBCE showed an L-shaped structure with its central core domain
occupied by a large concave LRR domain, whereas the two other
functional domains, CAP-Gly and UBL, occupy two globular

regions at either side of the central domain (Fig. 6D).
Based on the literature and our own observations, TBCE alone

is able to dissociate the tubulin dimer in vitro (Kortazar et al.,

2007), which indicates direct interaction with a-tubulin. There is
nonetheless no biochemical or structural evidence that could help
map this interaction. Only one previous structure prediction study

proposed that TBCE has an N-terminal CAP-Gly domain,
typically involved in tubulin binding, which could be
responsible for such an interaction (Grynberg et al., 2003). The

CAP-Gly domains have a conserved basic groove composed of
the GK(N/H)DG consensus motif, which specifically binds the
conserved EEY motif at the end of the a-tubulin acidic C-
terminal tail (Steinmetz and Akhmanova, 2008). Here, we show

that the EEY motif is involved in TBCE interaction, as TBCE
tubulin dimer dissociation activity is impaired when the last

aromatic residue in the motif is absent (Fig. 4, Fig. 8A). This
interaction could also be responsible for TBCE specificity for a-

tubulin, given that b-tubulin lacks this C-terminal motif. We
clearly established the in vivo role of the TBCE CAP-Gly domain
in tubulin dimer dissociation, as MTs did not depolymerize in cells
transfected with a TBCE mutant that lacked this domain (Fig. 7C).

Our analysis of the molecular architecture of aEB suggests that
TBCE establishes additional interactions with a-tubulin,
specifically between helix H12 of the cytoskeletal protein and

the region that comprises the LRR domain and the linker. This
was confirmed by our finding that MTs did not depolymerize in
the presence of the isolated TBCE CAP-Gly domain or in

experiments in which the linker was absent (Fig. 7D). The
additional interaction surfaces provided by the LRR and the
linker might be essential not only for dissociation but also for a-

tubulin monomer stabilization, given that isolated monomeric
tubulin forms aggregates (Lopez-Fanarraga et al., 2001; Kortazar
et al., 2007). Whereas TBCE interacts with and dissociates the
tubulin dimer, a stable complex is formed between this cofactor

and a-tubulin only when TBCB is present (Kortazar et al., 2007).
Although previous studies have suggested that there is an
association between TBCB and TBCE (Grynberg et al., 2003;

Kortazar et al., 2007), the only direct physical interaction
characterized to date is between TBCE and the acidic TBCB C-
terminal tail (Carranza et al., 2013). Analysis of the molecular

architecture of the aEB complex suggests that TBCB interacts
with TBCE, whereas there appears to be no notable interaction
between TBCB and a-tubulin in the ternary complex. Indeed, as

human TBCB is reported not to interact with native tubulin
dimers (Tian et al., 1997; Kortazar et al., 2007), involvement of
this cofactor in the a-tubulin dissociation pathway appears to be
through interaction with and regulation of TBCE activity.

Based on our model, placement of the TBCE CAP-Gly domain
with the GKHDG motif orientated towards the C-terminal end of

Fig. 8. Proposed model for the dissociation of tubulin dimers by the EB complex and its possible effect in tubulin degradation. (A) Interaction between
the docked TBCE CAP-Gly domain (light blue) and a-tubulin (yellow); the right image shows an enlargement of the contact regions, comprised of the TBCE
CAP-Gly domain GKHDG motif (magenta) and the a-tubulin EEY motif (black). (B) Interaction between TBCE CAP-Gly domain (light blue) and the TBCB
acidic tail next to its CAP-Gly domain (dark blue). A magnified view of the atomic structure of TBCE CAP-Gly (light blue) including the conserved S2–S3
loop (green) that might be responsible for interaction with the DEI motif in the TBCB acidic tail (red) is shown on the right. (C) Model of the TBCE- and TBCB-
assisted tubulin dimer dissociation mechanism. (1) A binary TBCE:TBCB complex interacts with a-tubulin in the dimer through the TBCE CAP-Gly domain
GKHDG motif (red). (2) Next, a-tubulin establishes additional contacts with the TBCE LRR domain and linker (orange), producing (3) a steric impediment
between the LRR domain and b-tubulin (light blue) that (4) forces release of the latter, and (5) leads to formation of a stable aEB complex. (D) The ternary aEB
complex might guide a-tubulin to the proteasome. The UBL domains of the tubulin cofactors would interact specifically with the Rpn1 and/or Rpn10
proteasomal subunits.
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a-tubulin (Fig. 8A) leaves the S2–S3 loop of this domain to be
positioned near the DEI motif of the TBCB acidic C-terminal tail.

A similar arrangement was described for interaction of the CAP-
Gly domains of p150Glued, tubulin and EB1, where the basic
groove of p150Glued contacts the a-tubulin acidic tail and the S2–S3
loop interacts specifically with EB1 (Steinmetz and Akhmanova,

2008) (Fig. 8B). In summary, the TBCE CAP-Gly domain appears
to have a crucial role in tubulin dimer dissociation and subsequent
a-tubulin stabilization by binding TBCB and a-tubulin.

TBCE is able to dissociate the tubulin dimer in vitro without
the assistance of any other cofactor, but TBCB clearly enhances
this activity (Kortazar et al., 2007; Carranza et al., 2013; this

study). Given that TBCE retains its dissociative ability alone, this
must be regulated through activity enhancement, probably based
on a conformational change in TBCE after TBCB interaction.

This change would affect the TBCE CAP-Gly domain, increasing
its accessibility to a-tubulin. The resolution of the 3D
reconstructions of TBCE and the aEB complex is insufficient
to confirm this conformational change.

The molecular architecture of the aEB complex helps to clarify
the molecular mechanism of TBCE- and TBCB-mediated tubulin
dimer dissociation (Fig. 8C). Although TBCC is the only tubulin

cofactor whose catalytic activity has been reported (Tian et al.,
1999), we tested whether energy from possible GTP hydrolysis in
a-tubulin could be used for tubulin dimer dissociation. We

measured the amounts of GTP and GDP in the reaction before
and after tubulin dissociation and found no significant
differences; this implies that the TBCE- and TBCB-mediated

tubulin dimer dissociation reaction is independent of energy
(supplementary material Fig. S4).

As to how heterodimer dissociation takes place, the answer
appears to lie in the position of the b-tubulin molecule. Fitting the

heterodimer into the aEB complex using the a-tubulin position in
our model as a template reveals a steric impediment between b-
tubulin and the TBCE linker. We demonstrated the importance

not only of the TBCE CAP-Gly domain in dissociating tubulin
dimers (Fig. 4; Fig. 7B) but also that of the linker, given that its
absence impairs this activity (Fig. 7D). It is tempting to suggest a

model whereby tubulin dimer dissociation is assisted by TBCE
and TBCB (Fig. 8C; supplementary material Movie 1) as follows.
First, tubulin dimers are first recognized and bound by the TBCE
CAP-Gly domain. This process would be enhanced by formation

of a TBCE–TBCB binary complex (Carranza et al., 2013),
generated by interaction of the TBCE CAP-Gly domain and the
TBCB acidic tail. Second, the a-tubulin monomer then

establishes a number of additional interactions with the LRR
domain of TBCE, such that the C-terminal end of the LRR
domain and the linker contact the b-tubulin monomer. Third, as a

result of this interaction, an induced conformational change in the
heterodimer would destabilize the a-tubulin–b-tubulin interface,
resulting in b-tubulin monomer release and finally generation of

the final, stable aEB complex.
The tubulin degradation pathway contributes to the proteostasis

of these cytoskeletal proteins. Although it has never been
thoroughly investigated, recent studies have indicated that this

degradation process is relevant to human diseases (Lundin et al.,
2010). Tubulin is degraded by the ubiquitin-proteasome system
(Mi et al., 2009) through an unknown mechanism that might

involve some of the TBCs (Bartolini et al., 2005; Keller and
Lauring, 2005; Lundin et al., 2010). The UBL domains are
typically involved in proteasome-mediated proteolysis through

specific interaction with the Rpn10 subunit of the proteasome,

through transfer of ubiquitylated substrates to the proteolytic
machinery and/or formation of ubiquitin–protein conjugates

(Upadhya and Hegde, 2003). Pac2, the TBCE ortholog in
budding yeast, also interacts through its UBL domain with the
proteasome Rpn10 subunit, to mediate Pac2 turnover (Voloshin
et al., 2010). In the aEB complex structure shown here, the UBL

domains of both TBCE and TBCB cofactors remain free and
accessible for the proteasome interaction needed for a-tubulin
degradation. The groove in the TBCE UBL domain, which in

ubiquitin docks with the Rpn10 UIM a-helix (Riedinger et al.,
2010), is fully accessible and points towards the tip of one of the
protruding lobules of the complex (Fig. 8D). In TBCEubl, this

groove contains an elongated hydrophobic patch on one wall that
might be appropriate for protein–protein interaction (Fig. 5D).
Whereas TBCE and TBCB, both of which have a single UBL

domain, can interact on their own with the isolated a-tubulin
monomer in the heterodimer formation pathway (Tian et al.,
1997), TBCB cannot interact on its own with the tubulin dimer
(Carranza et al., 2013). The simultaneous presence of both UBL

domains in the aEB complex could thus be a signal for tubulin
heterodimer disassembly and would drive the a-tubulin monomer
towards proteasomal degradation (Fig. 8D). This mechanism

would resemble the classical cooperation of a UBL domain with
its closely related homolog, the ubiquitin-associated (UBA)
domain, which act as a carrier to deliver ubiquitylated

substrates to the proteasome (Kaplun et al., 2005).
In summary, we have determined, by performing EM, the

structure of the human aEB complex formed after a-tubulin–b-

tubulin dissociation assisted by chaperones TBCE and TBCB. We
have found the dissociation process is energy-independent and
takes place through a disruption of the a-tubulin–b-tubulin
interface that is caused by a steric interaction between b-tubulin

and the TBCE CAP-Gly, LRR and linker domains. The
protruding arrangement of the two UBL domains in the aEB
complex points to a direct interaction of this complex with the

proteasome, thus mediating a-tubulin degradation. This study
offers a new view of the a-tubulin–b-tubulin dissociation
mechanism and its consequences on MT dynamics.

MATERIALS AND METHODS
Protein production
Human TBCE and TBCB were cloned and purified from insect cells

infected with recombinant baculovirus and Escherichia coli cells,

respectively (Kortazar et al., 2007). Tubulin dimers were purified from

bovine brain (Avila et al., 2008). The TBCB–GFP fusion protein was

expressed in BL21(DE3)pLysS E. coli cells and purified by hydrophobic

(phenyl-Sepharose column, GE-Healthcare) and ion exchange (HiTrapQ

HP and MonoQ 4.6/100 PE columns, GE-Healthcare) chromatography.

TBCBubl and TBCBcg were also expressed in BL21(DE3)pLysS E. coli

cells and purified by affinity chromatography (HisTrap HP, GE-

Healthcare). TBCB–GFP, TBCBubl and TBCBcg were further purified

by gel filtration chromatography (Superdex 75 10/300 GL column, GE-

Healthcare). TBCEubl was expressed in B834(DE3) E. coli cells and

purified by affinity (HisTrap HP, GE-Healthcare) and gel filtration

(Superdex 75 HL 16/60 column, GE-Healthcare) chromatography.

TBCEDcg, TBCEDubl, and TBCElink mutants were cloned into the

pSI-DAL2 plasmid for expression in mammalian cells. The primers used

in the cloning of the TBCE and TBCB mutants are shown in

supplementary material Table S2.

Tubulin dimer dissociation activity assay and purification of aEB
and aEB–GFP protein complexes
Activity was assayed for each tubulin cofactor by analyzing tubulin

heterodimer dissociation ability by non-denaturing gel electrophoresis
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(Zabala and Cowan, 1992; Kortazar et al., 2007). Briefly, stoichiometric

amounts of each component (5 mM of TBCE, TBCB and tubulin dimer)

were incubated (30 C̊, 30 min) in a buffer containing 0.5 M MES-NaOH,

25 mM KCl, 1 mM MgCl2, 1 mM EGTA and 1 mM GTP, pH 6.7.

Samples were loaded in a non-denaturing polyacrylamide gel and

electrophoresis was carried out at 4 C̊ in a buffer containing 0.1 M MES-

NaOH, 1 mM MgCl2, 1 mM EGTA and 0.1 mM GTP, pH 6.7. When

needed, Coomassie-stained protein bands were quantified by

densitometry using QuantityOne software (Bio-Rad).

aEB and aEB–GFP complexes were formed by incubation of TBCE

and TBCB or TBCB–GFP with tubulin dimers, then purified by gel

filtration chromatography (Kortazar et al., 2007).

Proteolysis assays
Limited proteolysis assays of tubulin dimers were performed with distinct

concentrations of subtilisin [0.5–2% (w/v)] (Fontalba et al., 1995). S-

tubulin purification was based on the microtubule polymerization at 35 C̊

in the presence of 1 mM GTP and 2 mM CaCl2, as Ca2+ inhibits tubulin

assembly by interfering with the tubulin C-terminal residue not present in

the S-tubulin monomers (Serrano et al., 1986). Polymerized microtubules

were purified by ultracentrifugation (40,000 g, 1 h) and subsequently

depolymerized (2 h, 4 C̊) by adding 0.3 M KCl, followed by

ultracentrifugation (12,000 g, 15 min, 4 C̊), then loaded onto a

Superdex 200 PC 3.2/30 gel filtration column equilibrated with 0.1 M

MES-KOH, 1 mM MgCl2, 25 mM KCl, 1 mM GTP, pH 6.7. S-tubulin

fractions were pooled and concentrated by ultracentrifugation in Amicon

UltraCell units. The final residue of the a-tubulin Cterminal end (Tyr; Y)

was removed specifically by treating tubulin dimers with the exoprotease

carboxipeptidase A (CPA). Detyrosinated tubulin (DYtubulin) was

purified as for S-tubulin, in the absence of Ca2+. Tubulin dimer

dissociation activity was quantified by densitometry of tubulin dimer

bands in Coomassie-stained polyacrylamide gels using QuantityOne.

Estimation of the dissociation constant of TBCE and C-terminal
tail of a-tubulin by fluorescence anisotropy
The dissociation constant was estimated by fluorescence anisotropy in a

Wallac Victor 2V 1420 multilabel counter (PerkinElmer). Two a-tubulin

peptides N-terminally tagged with fluorescein were designed and

synthesized by Genosphere Biotechnologies, with the last ten (sequence

GEGEEEGEEY) or nine (sequence GEGEEEGEE) C-terminal amino

acids of atubulin separated from the fluorescein by a C6 spacer. Each

peptide (0.5 nmol) was mixed with tubulin dimers (0–8 mM) in a binding

buffer containing 20 mM potassium phosphate buffer, 50 mM KCl, 1 mM

TCEP, pH 7.5 (30 C̊, 30 min). Fluorescence intensity was measured with a

485 nm excitation filter and a 535 nm emission filter. Normalized data

were used to calculate the Kd (Roehrl et al., 2004).

Immunocytochemistry and confocal microscopy
HeLa cells were transiently transfected using X-tremeGENE

Transfection Reagent (Roche). After 26 h, cells were fixed in 4%

paraformaldehyde, permeabilized in PBS-1% Triton X-100 and stained

using the B512 antibody to a-tubulin (Sigma-Aldrich) and Cy3-

conjugated goat anti-mouse-IgG secondary antibody. Nuclei were

stained with Hoechst 33258 fluorescent stain (Sigma-Aldrich). Images

were acquired in a Zeiss Axio Observer.Z1 microscope equipped with a

Yokogawa CSU-X1 Spinning Disc for live cell microscopy. In these

triple-labeling experiments, images were scanned sequentially to avoid

fluorescent channel emission crosstalk or bleedthrough. Images were

acquired with a Photometrics QuantEM CCD camera.

Nucleotide isolation and quantification by high-pressure
liquid chromatography
To analyze GTP hydrolysis during tubulin dissociation by TBCE and

TBCB, we used purified tubulin dimers (0.5 nmol), which were subjected

to an assembly-disassembly cycle to remove all traces of GTP, and

incubated with TBCE (15 mM) and TBCB (10 mM) (30 C̊, 30 min) to

ensure complete heterodimer dissociation. After incubation, the reaction

was heated (100 C̊, 2 min) to separate a- and b-monomers from free

nucleotides. The reaction mixture was centrifuged, loaded onto a MonoQ

5/50 column equilibrated with 20 mM HCl, and nucleotides were eluted

with a linear gradient of 1 M NaCl.

Electron microscopy and 3D reconstruction
TBCE, aEB and aEB–GFP samples were negatively stained with 2%

(w/v) uranyl acetate and imaged in a JEM 1200 EX-II transmission

electron microscope (JEOL) operated at 100 kV under low-dose

conditions. Micrographs were recorded on Kodak SO-163 plates at

60,000 magnification, digitized using a Photoscan TD (Zeiss) and CTF-

corrected with CTFfind3 and XMIPP (Marabini et al., 1996; Mindell and

Grigorieff, 2003; Scheres et al., 2008). A total of 12,000 particles were

selected for TBCE, 26,129 for aEB, and 16,702 for aEB–GFP samples,

and were downsampled to 4.66 Å/pixel and normalized using XMIPP

procedures. All particles were initially classified using clustering

reference-free methods implemented in XMIPP (Marabini et al., 1996;

Sorzano et al., 2010). Angular refinement was performed using EMAN

and XMIPP (Marabini et al., 1996; Ludtke et al., 1999; Scheres et al.,

2008). Resolution was estimated by Fourier shell correlation (FSC) at 0.3

criteria (Penczek, 2002). The atomic structures were fitted manually into

the EM density maps using UCSF Chimera (Pettersen et al., 2004). The

final docking solutions for TBCE and the aEB complex were obtained by

fulfilling the constraints imposed by the biochemical data for the protein–

protein interactions of the complex components and by the structural

requirements of the 3D reconstructions. Goodness of docking was

quantified using Chimera software, based on the correlation between the

models built for TBCE and the aEB complex and their 3D

reconstructions, which showed values of 0.76 and 0.78, respectively.

Crystallization and structure determination of human TBCEubl
Sitting drops were prepared by mixing 0.1 ml protein (25 mg/ml) with the

same volume of reservoir solution. Two crystal forms of the TBCEubl

protein were obtained. The A form was obtained from 100 mM Tris-HCl

pH 8.5, 200 mM sodium acetate and 30% (v/w) PEG 4000, and the B

form from 100 mM Bis-Tris pH 6.5, 45% (v/v) PEG 400 and 100 mM

praseodymium (III) acetate. Diffraction data for both crystal forms were

collected on the micro-focus beamline ID23-2 (ESRF, Grenoble, France)

using a CCD detector (MarMosaic 225) with a 0.8726 Å wavelength and

10-mm beam diameter. Both data sets were indexed and integrated using

XDS (Kabsch, 2010) and scaled with SCALA (Steller et al., 1997).

Intensities were converted into structure-factor amplitudes using

TRUNCATE (French and Wilson, 1978; CCP4, 1994). The structure of

the crystal form B was solved by the SAD protocol of Auto-Rickshaw

(Panjikar et al., 2005; Panjikar et al., 2009) and used to solve the structure

of the crystal form A by molecular replacement using the PHASER

program (McCoy et al., 2007). Both crystal forms were further refined in

REFMAC5 (Murshudov et al., 1997) using the maximum-likelihood

target function and including TLS parameters (Winn et al., 2001).
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Fig. S1.  Tubulin dimer dissociation assay and purification. (A, B) Coomassie-

stained native polyacrylamide gel showing the ability of TBCE (A) and TBCB (B) to 

dissociate tubulin dimers, evaluated as decreasing intensity of the tubulin dimer band.  

Various chaperone concentrations were tested to confirm that stoichiometric amounts of 

these cofactors were sufficient to dissociate the tubulin dimers completely. (C) 2D 

native/SDS-PAGE was performed (see Carranza et al., 2013).  Left, TBCB and TBCE 

and tubulin heterodimers were incubated (30°C, 30 min) and loaded onto a 6% native 

gel.  Right, after electrophoresis, bands were excised and samples loaded onto an SDS 

gel.  The presence of TBCE, TBCB and α-tubulin was confirmed by western blot using 

specific antibodies.  An excess of tubulin dimers was used to illustrate the presence of α 

and β tubulin monomers in the dimer band. (D) Isolation of the ternary complex formed 

by TBCB, TBCE and α-tubulin.  The elution profiles of TBCB, TBCE, αβ-tubulin and 

αEB complex formation were analyzed by gel filtration on a Superdex 200 PC 3.2/30 

column (GE-Healthcare), followed by SDS-PAGE (bottom). 
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Figure S2. 3D reconstruction of TBCE, αEB and αEBGFP complexes.  (A) 

Representative area of micrographs from TBCE (left), αEB (center) and αEBGFP 

samples (right).  (B) Examples of volume evolution during iterative refinement using 

different initial references.  Convergence was achieved in all cases.  (C) Fourier shell 

correlation curves of 3D reconstructions of TBCE, αEB and αEBGFP showing the final 

resolutions of 18, 21 and 24 Å, respectively (0.3 criterion).  (D) Representative 

projections (Proj) of the final reconstruction of each sample are shown next to the 

associated class averages (Avg) and the average obtained after the initial reference-free 

classification (AvgRF).  The similarity among these images strengthens the quality of the 

reconstructions.  (E) Diagram showing the distribution of projection orientation used 

during refinement.  Brighter dots indicate a larger number of particles. 
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Fig. S3. Atomic structures of the domains used for docking into the 3D 

reconstructions of TBCE and the αEB complex. (A) Top, sequence alignment of the 

UBL domains of murine TBCB, human TBCB and human TBCE.  In the first sequence, 

β-strand and α-helix residues of the atomic structure of murine UBL (PDB 1V6E) are in 

orange and blue, respectively.  The secondary elements of the atomic structure of 

murine TBCB UBL domain are shown, with β-strands numbered S1-S5 in orange and 

the single α-helix in blue.  Bottom, atomic structure of the UBL domain of murine 

TBCB with color and number codes as above for the secondary structure elements.  (B) 

Top, sequence alignment of CAP-Gly domains of murine TBCB, human TBCB and 

human TBCE.  The secondary elements of murine TBCB CAP-Gly domain (PDB 

1WHG) are shown beneath the sequences.  Bottom, atomic structure of murine the 

CAP-Gly domain with color and number codes as above for the secondary structure 

elements.  (C) Amino acid sequence alignment of TBCE LRR domain and the 

homologous domain in the BRI1 kinase.  The secondary structure elements of the last 

domain are shown beneath the sequence alignment and in the LRR structure of the BRI-

1 protein (PDB 3RJ0). 
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Fig. S4.  Tubulin dimer dissociation does not require GTP hydrolysis.  (A) Isolation 

of GTP, GDP and GTPγS on a high-resolution Mono Q 5/50 anion exchange column.  

(B) Detection of tubulin-bound nucleotides (GTP or GDP).  Control tubulin (red) and 

dissociated tubulin in the presence of tubulin cofactors (blue). 
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Download Table S1

Download Table S2

Movie 1. Molecular architecture of the complex formed by a-tubulin and the molecular chaperones TBCE and the TBC (aEB 
complex). 
The movie shows the 3D reconstruction of the aEB complex and the docking of the atomic structures of the different domains of the 
three proteins, using also the biochemical information supporting this molecular architecture. Finally, the movie shows the proposed 
model for the dissociation of tubulin dimers by the EB complex and its possible effect in tubulin degradation.
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