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Abstract—The spectrum sensing accuracy has been improved  Despite of several approaches, few of them are also eval-
by the introduction of cooperative spectrum sensing (CSS) yated by means of experimental measurements[[8]-[11]. In

strategies where the spatial diversity is expl_oited among non- yig paper, we extend some initial simulation results prese
legacy users. However, these CSS strategies also bring ne%hn [12], and present the experimental evaluation of a KCCA
impairments, such as the interference from other sources that ! p p

severely degrade the sensing performance. In this paper, we detector for CSS scenario, where the effect of externaifgrte
evaluate experimentally our recent proposal for CSS based on ence is also taken into account. The proposed scheme isoable t
kernel canonical correlation analysis (KCCA), where the effect® |earn the regions of decisions for the detection of the pryma
an interferer is also modeled. The experiments are conducted on signal during a learning stage. It exploits the possible-non
a cognitive radio platform composed of several Universal Radio i lati th ts of t
Peripheral (USRP) nodes, and the measurements show that our Inear correlation amqng € measurements o en_ergy regpor
scheme is able of implicitly learning the surrounding environment by each SU, after which our KCCA detector applies them for
by only exploiting the non-linear correlation among the receiver online detection. It does not involve any parameter setting
signals of each SU. Eventually, we provide comparative results and the detector can be retrained periodically to adaplif itse
where a considerable gain over a conventional energy detector v, 4 changing environment. The measurements are conducted
is obtained in spite of the impairments provoked by extermal in platform consisting of several USRP nodes that emulate an

mt?rr]fdeerf r'?erms—Cooperative Spectrum Sensing, Kernel Canon- Scenario composed of a PU and several SUs, and the results
ical Correlation, Cognitive Testbed, USRP. shows that in spite of the interference caused by some SUs,
the detection performance turns out to be more robust when

|. INTRODUCTION employing our proposal.

Due to the enormous growth of wireless services, an effi- The rest of the paper is organized as follows: In Sedtibn I,
cient use of the spectral resources is requiféd [1]. Cagnitiwe give an overview of the CSS problem, a brief description
Radio (CR) systems allows sharing the spectrum betweehour KCCA detector is given in Sectidilll. The scenario
incumbent or (PU) and non-legacy users or (SU). This teehnaind the measurement setup are described in Sdcilon IV. We
ogy relies on a spectrum sensing process that allows degectpresent the experimental results in Secfidn V and finallg, th
exploitable holes in the spectrum that can be filled by subggaper concludes with a discussion of the obtained results in
guently transmissions of SU. A more reliable spectrum sensiSectionV].
is attained by CSS 's.trat.egies that exploit t.he diversityraagpo Il. COOPERATIVE SPECTRUM SENSING
SU [2], and thus mitigating common impairments found in a o o )
local spectrum sensing such as multipath fading, shadowing-€t Us considering a scenario withl secondary users, in
and receiver uncertainty issues. which interference is present under the null hypothesiss Th

Although a SU may combine information from a databagdoblem can be formulated as,

and local sensing to further decrease missed detectioese th M

CSS strategies also brings new challenges to be overcome Hy:p(r|Hy) # Hpj,(riw'll)

during the time that the channel remains idle. Interference i=1

for instance, may come from local unintentional or intenéb M

users as it is cataloged inl[3]. The effect of misalignment Ho : p(r|Ho) = [ [ pi(ri|Ho)
i=1

among SU and impulsive noise during the sensing period are

also studied in[[4], and 5] respectively. Moreover, an gger wherer; denotes the received signal at eagh SU, andr is a
detector is severely degraded in presence of interferéfice ector signal composed of all observations. We assume-that
and its performance has been been recently improved by theonditionally independent under the null hypothesisl, aot
introduction of machine learning techniqués [7], where & sender the alternative hypothesis. In this way, a more génera
of feature vectors composed of energy levels is employeddetting where a local and uncorrelated interference coming
train a classifier, after which it labels each new energyllevieom different sources can be considered, while the primary
as channel available or unavailable. signal under the alternative hypothesis may cover a larga ar



matrices) can be calculated as,
Ki(j, 1) = ®i(2i;) " ®i(zin) = rilzij, van), 1)

In short, KCCA provides the projections of the transformed
data setsz; = K;«;, that have maximal correlation [13]. For
reasons of simplicity, we consider an scenario with= 2
SUs. Thus, the canonical correlation between the trangfdrm
data sets corresponding to a maximum variance (MAXVAR)
formulation, is given byp = z{z, = af KiKyas. The
solution of the KCCA problem can be found by solving the
following generalized eigenvalue problem (GEV)[13].

iRoz = fDa, 2

Fig. 1. A CSSin a heterogeneous network where interference fieighbour M

cells degrade the sensing performance. . .
g gp whereR, is defined as,

R — |:K1K1 K1K2}

KoK; KoK, (3)

where all SU are able to detect it. Notice that, the primany an
interference signal may follow any distribution, since we d ndD as
not make any assumption about it. In this paper, we consider a '
distributed configuration where SU do not communicate with D — [Kl(Kl +cI) 0 } 4)
each other and only report their local sensing to a central 0 Ko(Ko )|
processor known as fusion_ gent_er (FO) [2], Wher_e accordi_rﬂg this casea = o] ,a)]T and 3 = 142 the canonical
to a fusion rule a final decision is taken, and ultimately th 2

decision is broad t ing OR A i \?/eights «; are retrieved as the eigenvector corresponding
ecision is broadcast to all cooperating USErS. A paaliCUy, o largest eigenvalue of the GEV probled (2). For a

scenario where the described assumptions can be appliegnjﬁ,e detailed describtion. the reader may refe 121 and
depicted in Fidull, where a small cell (shadow one) Withigéferencesl therein. 'pHion, 4 ia [12],

a heterogeneous network receives interference from neigh
cells during the time that the channel is considered quiet. KCCA Detector

After a learning stage where the canonical weights are
obtained, our detector is given by the projection of the
transformed data,

Under the described assumptions, a local test problem at N
each SU given by, (r;|H1)/pi(ri|Ho) is addressed by our Ti(xin) = Zaijm(ximxij)
KCCA scheme. It correctly provides the channel availapilit j=1
under interference by exploiting the correlation among th

ved sional h hi h ereq;; refers to thej-th element of the canonical vector
received signals at the FC. For this purpose, the energy @' Notice thatx; utilizes both the training data set and the

the received signal is employed which allow us to make Nhergy levelr,, over which it will make a decision
assumptions about the primary signal. We dengtg as the o '

energy of the received signa) calculated overN, samples IV. TESTBEDDESCRIPTION
during then-th sensing period. In the following subsections, A cognitive radio platform has been built by integrating

we b_riefly describes our KCCA SCheme th"’_‘t consists Of.@SRP devices. Each of these nodes work with a universal
learning stage, after which a detector is obtained and wp“nardware driver (UHD) as a host driver which includes a set

for online detection. of Application Programming Interface (API) functions. We
. have developed our own Universal Software Architecture for

Learning Stage Software Defined Radio (USASDR), this third-party applica-

During this stage, a set of data composedofalues, thatis tion employs the set of API function, by including them into
{21, ®i2,...2;n }, is collected at the FC and for eaéth SU. higher level instructions from Matlab. In addition, it allaus
KCCA allow us to find the transformation of these set of dat® control simultaneously several USRP nodes, by means of
with the maximal correlation, and non-Linear transforrasi a unique controller identified by an IP address that receives
will take them from its input space to a high-dimensionalcgpainstructions from a remote PC. Both the transmitters and
Zin — P(x4,), Where it is more likely that the problem canthe receivers are composed of N210 USRP nodes, and the
be solved in a linear manner. This is calculated without thiRadio Frequency (RF) part is equipped with a XCVR2450
explicit knowledge of the non-linear transformati®fx;,) by daughterboard, which allows us to operate in the industrial
employing a kernel function on pairs of data points in theuinp scientific, and medical (ISM) band of 4.9GHz to 5.9GHz, thus
space whose corresponding Gram matrigés (or “kernel” avoiding any device transmitting in the same band, a more

I1l. KERNEL CANONICAL CORRELATION ANALYSIS FOR
CSss
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Fig. 3. Measurement procedure: the PU transmits using two shahd
frequency channels represented by two col@rslMHz & 4-6MHz), whereas
a SU (interferering node) transmits randomly on any of theselfaand the
Fig. 2. Two SU as sensing nodes, an interfering node (INT)Uadhd a Other SUs sense one of these bands of frequency.

FC in the middle of them. All USRP are synchronized by a pulsespeond

signal (PPS) provided by Signal Generator.

function of the formk; (z,, Zim) = exp(—(zin —2n)*/2w?)
) o ) is selected and the kernel width is fixed according to a
detailed description of these devices can be found.in [1Qj\erman's rule[15]. We study the decision functions give

HEI].' We emp'OY fou_r USRP nodes for the considered scenarijti, T;, and its detection performance by showing the Receiving
as it is shown in Fig[]2, where a PU, two SU nodes and %berating Characteristic (ROC) curves.

interfering node are configured and synchronized in time by a
pulse per second (PPS) signal for simultaneous transmissf Decision functions for KCCA

and reception during the measurement procedure. In Figs [4(@) anfl () the probability density function (ADF
of the measured energy levels are shown for each SU under
both hypothesis, and these curves are superimposed over the
All the measurements were tested in an indoor channglcision functiorZ;. It can be observed that the primary, the
at 5.6 GHz. Under this stationary environment, two SU Wilhojse and the interfering signal follow chi-square disttibns,
start sensing simultaneously the wireless channel whilegbe and the decision function (the projection of the transfatme
randomly interfered by the interfering node. With this aine  Jata set) obtained by KCCA is able to separate them by
emulate interference to each SU independently by a”OWiwsigning negative values to the primary Signai, whereags mo
the interfering node to randomly transmit on two differenyositive values are assigned to the noise and interfergmasi
channels of frequency, that |Q,—4MHZ and 4-6MHz. Each A more interesting case is depicted in Fi(a)s(ln)' fo
of these bands of frequency is only sensed by a SU, and thgich a more non-linear decision functions are required to
PU transmit a Signal whose bandwidth covers both bands dgtect the primary Signai piaced between the noise and the
frequency 2-6MHz). In this configuration, both SUs, only onejnterfering signal. Although, few lower and higher values a
of them, or neither of them will be affected by the intel’f&ren mapped around a zero Vaiue, the Sensing performance is not
while both of them are able to detect a busy channel when t§g&erely degraded, and it can be attributed to the shapeof th

PU is present. The transmission/sensing cycle is showngn Fijecision function composed of Gaussian functions.
[3, where the transmitted signal is an orthogonal frequency

division multiplexing (OFDM) waveform, that follows the B. Receiver Operating Characteristics
standard IEEE 802.11a. This waveform is generated with aThe corresponding ROC curves for the described examples
rate of 9 Mbps using BPKS symbols, and up-sampled tge depicted in Fig[ 4(c), and Fif. 5(c) respectively. We
modify the bandwidth of the signal so as to accomplish thﬁ)mpare the results obtained by a KCCA and an energy
described configuration. After sensing several times, a sRitector, for each SU and both SU. For our KCCA detector,
of data{z;1, 2, ...z;n }, cOmposed of the estimated energyhe results at each local SU are obtained after exploitieg th
levels are collected in a central PC acting as a FC. After whigon-linear correlation among the received signal at the iveC a
the canonical weightsy; are calculated and included in theproadcasting the obtained decision functions to each Bkl
statisticT; whose performance is evaluated during an offlin@n the other hand, the performance results for both deteator
process. the FC are obtained by the sum of their statistics as a fusion
rule. The Fig[4(d) shows that the obtained performance of
both detector are quite similar at each SU, whereas a slight
In this section, we describe the results obtained by tlgain is attained by the KCCA detector at the FC, which can
mentioned procedure, and highlight more challenging cadas explained from the fact our proposal exploit information
where the interference is present during the sensing periodl correlation from the other SU during the learning stage.
The following results were obtained fdv/ = 2, N, = 50, In Fig.[5(c}), we observe that the energy detector is clearly
and N = 300. For the KCCA detector, a Gaussian kernebutperformed by the KCCA detector since it is unable to

A. Measurement Procedure

V. EXPERIMENTAL RESULTS
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Fig. 4. Scenario 1: KCCA decision function and PDF for themany, the interfering and noise signal. (a) at SU 1. (b) at Sbdh of them with an
estimated SINRx 0.63 dB, (c) ROC Curves for the KCCA and energy detector.
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Fig. 5. Scenario 2: KCCA decision function and PDF for therany, the interfering and noise signal. (a) at SU 1 with amesttd SINR~ -6.32 dB, (b)
at SU 2 with an estimated SINR -5.12 dB (c) ROC Curves for the KCCA and energy detector.
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