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Abstract—We derive an estimator of the cycle period of
a univariate cyclostationary process based on an information-
theoretic criterion. Transforming the univariate cyclostationary
process into a vector-valued wide-sense stationary process allows
us to obtain the structure of the covariance matrix, which is
block-Toeplitz, and its block size depends on the unknown cycle
period. Therefore, we sweep the block size and obtain the ML
estimate of the covariance matrix, required for the information-
theoretic criterion. Since there are no closed-form ML estimates
of block-Toeplitz matrices, we asymptotically approximate them
as block-circulant. Finally, some numerical examples show the
good performance of the proposed estimator.

I. INTRODUCTION

Cyclostationary (CS) processes [1], [2] are commonly
encountered in science and engineering since they can be used
to model periodic phenomena in climatology, meteorology,
astronomy, economics, medicine, mechanics and communica-
tions, among others. A process is said to be CS if its statistical
properties vary periodically. Since we will be considering zero-
mean processes and second-order cyclostationarity, only the
covariance function is assumed to be periodic in its global
time variable.

Most techniques that exploit cyclostationarity assume that
the cycle period is known a priori. For instance, this is a
typical assumption for detectors of cyclostationarity [3]–[6],
beamforming [7] and many other applications (see [2] and
references therein). In practice, however, the cycle period must
usually be estimated from the measurements.

Some estimators of the cycle period have been proposed
in the past. The authors in [8] obtained the estimate from the
Loève spectrum [9]. The estimator is based on a result in
[10], which states that the support of a discrete CS process
in the dual-frequency domain is composed by a finite number
of parallel lines, which are separated by the cycle frequency.
Hence, this estimator obtains the cycle period by estimating
this separation. The authors in [11] proposed an estimator
based on a measure, named variability. Basically, this tech-
nique obtains the value of the variability for different cycle
periods and selects the period that maximizes it. However, the
variability-based estimator does not work with the so-called ill
cyclostationary signals, which includes many practically rele-
vant signals, such as a communications signal with rectangular
shaping. Finally, another estimator based on the CS detector in
[4] was proposed in [11]. This estimator computes the detector
statistic of [4] for different cycle periods and picks the best one.
This principle of searching a detector statistic over candidate

values of the cycle period may also be used with other detector
statistics such as that of [5], [6].

All these techniques provide ad-hoc CS period estimators
suited for specific scenarios, but they are not based on sounded
estimation approaches such as maximum likelihood (ML),
maximum a posteriori probability or minimum mean square
error, etc. To fill this gap, in this work, we obtain the ML
estimator for the cycle period of a CS process. The main tool
we use is the relationship between the scalar-valued CS process
and a vector-valued wide-sense stationary (WSS) process,
obtained by vectorizing the CS time-series with a vector length
given by the cycle period [10]. Since the cycle period is
unknown, we must sweep the block size (vector length) to
find the optimal value. Asymptotically, this seemingly complex
search is actually a simple search in the frequency domain.

Assuming Gaussianity and for a given block-size, we must
obtain the ML estimate of the covariance matrix, which is
block-Toeplitz. Since there are no closed-form solutions for
the ML estimate of Toeplitz matrices [12], we asymptotically
approximate it as block-circulant. It was shown in [13] that
this likelihood converges in mean square to the likelihood
with the block-Toeplitz matrix. With the ML estimate of
the block-circulant matrix for a fixed block size, we must
sweep the block size to find the ML estimate of the cycle
period. However, as the value of the investigated cycle period
increases, the number of parameters to estimate also increases,
thus yielding a larger likelihood. It is therefore necessary to
add a penalty term. Following [14], we propose to use an
information theoretic criterion to penalize large values of the
cycle period. Specifically, we used the minimum description
length criterion [15], which provides us a better estimate
than the ML approach, and, as we will see, this estimator
outperforms previously proposed estimators.

II. PROBLEM FORMULATION

We would like to estimate the cycle period, P , of the
cyclostationary (CS) time series u[n]. We assume that u[n] is a
scalar-valued and zero-mean process, and the cyclostationarity
is exhibited in the covariance function, i.e.,

ruu[n,m] = E[u[n]u∗[n−m]] = ruu[n+ P,m],

where the period P is an unknown natural number. Moreover,
we also assume that P ≥ 2, since the case P = 1 corresponds
to wide-sense stationarity.



To derive an estimator based on an information-theoretic
criterion we first need the ML estimator. In this section,
following our previous work in [3], we formulate the problem
in a way that makes this possible. We assume that u[n] is
proper complex Gaussian with zero mean.

We first assume that the cycle period is known. Thus, let
us arrange u[n] in blocks of size P , yielding the vector-valued
time series

x[n] = [u[nP ] · · · u[(n+ 1)P − 1]]
T ∈ CP ,

which is WSS [10]. We have therefore transformed a scalar-
valued CS process into a vector-valued WSS process. We can
now stack N realizations of x[n] into the vector

y =
[
xT [0] xT [1] · · · xT [N − 1]

]T ∈ CNP ,

which is a stack of NP samples of u[n], i.e.,

y = [u[0] u[1] · · · u[NP − 1]]
T
.

The former expression simplifies the derivation of the covari-
ance matrix of y, which is [3], [13]

R =


Q[0] Q[−1] . . . Q[−N + 1]
Q[1] Q[0] . . . Q[−N + 2]

...
...

. . .
...

Q[N − 1] Q[N − 2] . . . Q[0]

 ,
where Q[m] = E[x[n]xH [n − m]] ∈ CP×P is the matrix-
valued WSS covariance function of x[n]. The covariance
matrix R ∈ CNP×NP is a block-Toeplitz covariance matrix
with block-size P . The observations are distributed as

p(y;R) =
1

πNP det(R)
exp

{
−yHR−1y

}
.

III. DERIVATION OF THE ESTIMATOR

In this section we derive an estimator for the cycle period P
based on an information theoretic criterion. First, we obtain the
ML estimator and show that it cannot be directly applied since
a larger P implies more degrees of freedom, and, therefore, a
larger likelihood. Hence, we penalize the likelihood following
an information theoretic approach, similar to that in [14].

A. Maximum Likelihood Estimator

To obtain the ML estimator we proceed as follows: For a
fixed P we obtain the ML estimate of the covariance matrix
R. Then, we sweep P and select the value that maximizes
the (compressed) likelihood. Assuming M independent and
identically distributed realizations of y, {ym}M−1m=0 , the log-
likelihood of the observations is given by

log p(y0, . . . ,yM−1;R) = −NPM log π

−M log det(R)−M tr
(
R−1R̂

)
, (1)

where the sample covariance matrix is

R̂ =
1

M

M−1∑
m=0

ymyHm.

We first obtain the ML estimate of R for a fixed P . That
is, we need to obtain the ML estimator of a block-Toeplitz

covariance matrix with block size P . However, it was shown in
[12] that there is no closed-form solution for the ML estimate
of Toeplitz matrices. We must therefore follow a different
approach, which is based on the following theorem.

Theorem 1: As the number of samples N tends to infinity,
the log-likelihood in (1) converges in the mean square sense
to a log-likelihood with a particular block-circulant covariance
matrix, i.e.,

lim
N→∞

E

[∣∣∣∣ 1N log p (y0, . . . ,yM−1;R)

− log p (y0, . . . ,yM−1;C)

∣∣∣∣2
]
= 0,

where C ∈ CNP×NP is the block-circulant covariance matrix
obtained as

C = (FN ⊗ IP )V (FN ⊗ IP )
H
. (2)

Here, FN is the Fourier matrix with elements given by
[FN ]lm = e−j2πlm/N/

√
N , and V is a block-diagonal matrix,

whose kth block is given by the discrete Fourier transform
(DFT) of the covariance sequence

Vk =

N−1∑
n=0

Q[n]e−jθkn ∈ CP×P , (3)

where θk = 2πk/N , with k = 0, . . . , N − 1.

Proof: The proof is very similar to that in [13].

Taking Theorem 1 into account, we may transform the
observations as z = (FN ⊗ IP )

H
y, which is simply the stack

of N frequencies of the discrete Fourier transform of x[n].
Thus, the random vector z is asymptotically distributed as
a proper complex Gaussian with zero mean and covariance
matrix V. The covariance matrix is block-diagonal, and it is
therefore relatively easy to estimate. In the following lemma,
we present the ML estimator.

Lemma 1: The ML estimate of V is given by

V̂ = diagP (Ŝ),

where diagP (Ŝ) is the operator that builds a block-diagonal
matrix with block sizes P from the blocks on the diagonal of
Ŝ, which is the sample covariance matrix of the observations
zm, i.e.,

Ŝ =
1

M

M−1∑
m=0

zmzHm = (FN ⊗ IP )
H
R̂ (FN ⊗ IP ) .

Proof: See [16].

Based on the previous lemma, the asymptotic compressed
likelihood is

log p(z0, . . . , zM−1;P ) = −NPM(log π + 1)

−M
N−1∑
k=0

log det(Ŝk), (4)
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Fig. 1: Compressed likelihood and MDL

where Ŝk denotes the kth P × P block on the diagonal of Ŝ.
Moreover, the (asymptotic) ML estimator of P is given by the
value of P that maximizes (4). That is,

P̂ = argmax
P=1,...,Pmax

log p(z0, . . . , zM−1;P ), (5)

where Pmax is the maximum period that is checked.

We now show why the ML estimator does not directly solve
this problem. Consider an example with P = 5, N = 128 and
M = 25. As we may see in Figure 1a, there are clear peaks
at the cycle period and its multiples (5, 10, 15, . . .). However,
there is also increasing trend with P , which precludes the use
of the maximum as the estimator of the period. This trend may
be explained as follows: Keeping the size of the covariance
matrix fixed, which we denote by T , a larger P leaves a smaller
N , since T = NP . Therefore, the covariance matrix has more
structure as P increases. As we will see later, the degrees of
freedom vary between T and T 2, for P = 1, N = T and
N = 1, P = T , respectively. Here, N = 1 is the extreme
case, where the covariance matrix is no longer a block-Toeplitz
(or block-circulant) matrix, but just a positive definite matrix.
Hence, a penalty term is necessary.

B. Minimum Description Length

We propose to use the minimum description length (MDL)
criterion [15] to overcome the overfitting problem. Other
criteria, such as the Akaike information criterion [17], could
also be applied.

The MDL criterion for our problem is given by

MDL(P ) = − log p(z0, . . . , zM−1;P ) +
1

2
ν logM, (6)

where ν is the number of degrees of freedom of the model,
which depends on P . We now count the number of degrees of
freedom. One may be tempted to count the number of degrees
of freedom of a block-Toeplitz covariance matrix. However, we
are actually estimating the unknown parameters of a block-
circulant matrix, that is, the elements in the block-diagonal
matrix V. For a given P , the matrix V is composed by N
blocks of dimension P × P . Moreover, since V is Hermitian
without further structure, each block is also Hermitian without
further structure. Thus, the number of degrees of freedom of
each block is

P + 2
P (P − 1)

2
= P 2,

where the first P comes from the P real elements in the main
diagonal of the kth block, and the second term is two times
the number of complex elements above the main diagonal.
Thus, since there are N blocks, the total number of degrees of
freedom is ν = NP 2. Plugging ν and (4) into (6), the MDL
criterion becomes

MDL(P ) = NPM(log π + 1)

+M

N−1∑
k=0

log det(Ŝk) +
1

2
NP 2 logM, (7)

and the MDL-based estimator is

P̂ = argmin
P=1,...,Pmax

MDL(P ). (8)

Figure 1b shows the MDL criterion for the experiment pre-
sented in the previous subsection. In this figure, we can observe
that the period that minimizes the criterion is P̂ = 5.

IV. NUMERICAL SIMULATIONS

In this section we evaluate the performance of the proposed
estimator, and compare it with that of previous detectors.
Specifically, we consider the following model for the CS
process

u[n] = (h ∗ s)[n] + w[n],

where h[n] is a Rayleigh channel with 10 taps (at the symbol
rate) and a flat power delay profile, w[n] is an additive
Gaussian noise, generated by a moving average model of
order 19 (at the sampling frequency). The transmitted signal
s[n] is QPSK with rectangular shaping. Moreover, the symbol
rate is 600 Ksymbols/second and the sampling frequency is
2.4 MHz, which yields a cycle period P = 4. Finally, M = 10
realizations and N = 64, which results in 4 · 10 · 64 = 2560
samples available at the estimator.

We have chosen the following cycle period estimators for
comparison. The first one, presented in [8], is based on the
Loève spectrum [9]. Basically, it uses a smoothed periodogram
to estimate the Loève spectrum, which is normalized by the
estimated power spectral density. Then, the magnitude squared
of the normalized spectrum, or coherence, is integrated along
lines parallel to the stationary manifold, and the fundamental
cycle frequency is the one that maximizes this measure. In
particular, we estimate the smoothed periodogram with a
length 2048 FFT and a smoothing window of length 256. The
second competitor is based on the detector of cyclostationarity
presented in [4]. Basically, it obtains the statistic for different
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Dandawaté-Giannakis
Hurd-Gerr

Fig. 2: Probability of missed detection vs. SNR for an exper-
iment with P = 4, M = 10 snapshots and N = 64

cycle periods, and selects the period with the largest value
of the statistic. In our implementation, we use the first four
lags of the cyclic covariance to build the detector in [4], and
a Kaiser window of length 257 to estimate the cyclic power
spectral density.

Figure 2 shows the probability of missed detection vs. the
signal-to-noise ratio (SNR) for the proposed estimator and the
two competitors. As can be seen, the proposed estimator yields
the best results for moderate and high SNRs. It is also worth
noticing that the estimator based on the detector in [4] does not
improve with the SNR. To shed some light on this observation
we plot 1000 realizations of the statistic used in [4] against
P for SNR = 10 dB, and its mean (as the thick line). As
can be seen the value corresponding to P = 2 also presents
high values. This phenomenon is due to the fact that P = 2
captures the cyclostationarity exhibited in the second harmonic
of the fundamental cycle frequency. For some realizations the
statistic corresponding to P = 2 may be larger than for P = 4,
and that explains why the performance of the estimator does
not improve with the SNR.

Two final comments are in order. First, the approach based
on the detector [4] provides very good performance for cycle
periods that are prime numbers, since the aforementioned
effect does not occur for such values. Second, the signal in
our example is an “ill-CS” signal1 according to the definition
given in [11]. This prevents a comparison with the variability
technique [11].

V. CONCLUSIONS

We have obtained the ML estimator for the period of a
CS process. The first ingredient to obtain the ML estimator is
the relationship between the scalar-valued CS process and a
vector-valued wide-sense stationary (WSS) process, obtained
by arranging the CS process in blocks of size given by the
cycle period. The resulting WSS process has a block-Toeplitz

1A ill-CS signal is a CS signal with all the diagonal elements of Q[m]
equal.
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Fig. 3: Dandawaté-Giannakis statistic for different values of P

covariance matrix, for which there is no closed-form ML
estimate. We thus asymptotically approximate it by a block-
circulant matrix, for which we may obtain a closed-form
estimate. The ML estimate of the covariance matrix assumes
that the cycle period is known. Since this is not true, we must
therefore sweep its value and select the value that maximizes
the compressed likelihood as the ML estimator. However, we
showed that the ML estimator is not a valid estimator, since
the larger the cycle period is, the more degrees of freedom
there are, and the likelihood obviously becomes larger. To
solve this issue, we penalized large values of the cycle period
using the MDL criterion. Finally, simulations showed the good
performance of the proposed estimator.
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