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ABSTRACT

We derive the generalized likelihood ratio test (GLRT) for
detecting cyclostationarity in scalar-valued time series. The
main idea behind our approach is Gladyshev’s relationship,
which states that when the scalar-valued cyclostationary sig-
nal is blocked at the known cycle period it produces a vector-
valued wide-sense stationary (WSS) process. This result
amounts to saying that the covariance matrix of the vector
obtained by stacking all observations of the time series is
block-Toeplitz if the signal is cyclostationary, and Toeplitz
if the signal is wide-sense stationary. The derivation of the
GLRT requires the maximum likelihood estimates of Toeplitz
and block-Toeplitz matrices. This can be managed asymp-
totically (for large number of samples) exploiting Szegö’s
theorem and its generalization for vector-valued processes.
Simulation results show the good performance of the pro-
posed GLRT.

Index Terms— Cyclostationarity, generalized likelihood
ratio test (GLRT), hypothesis test, maximum likelihood (ML)
estimation, Toeplitz matrices.

1. INTRODUCTION

A zero-mean discrete-time random process u[n] is called
(wide-sense) cyclostationary (or periodically correlated) if
there exists a positive integer L such that its covariance func-
tion satisfies E[u[n]u∗[n−m]] = E[u[n + L]u∗[n + L−m]].1

Cyclostationary processes model periodic phenomena occur-
ring in science and technology, including communications,
finance, acoustics, oceanography, climatology, mechanics,
medicine, and biology (see [1, 2] and references therein). In
particular, cyclostationary signal analysis has received re-
newed interest in Cognitive Radio (CR) applications [3, 4].
In interweave cognitive radios, secondary users are allowed
to opportunistically access the channel when the licensed

1In this paper, we only consider second-order statistics in the definition
of cyclostationarity.

(primary) users are not present. Since digitally modulated
communication signals are cyclostationary [5], this property
can be exploited to detect the presence of primary users [6–8].

In this paper, we address the following hypothesis testing
problem:

H1 : u[n] is cyclostationary with period L,
H0 : u[n] is wide-sense stationary, (1)

where the cycle period L is assumed known. This problem is
of wide interest, not just in the context of CR. Hence, many re-
searchers have considered it since the original work by Gard-
ner [9] and Hurd [10] on cyclostationary processes (see the
bibliographies by [1, 2]). Several noteworthy detectors of cy-
clostationarity have been published. In [11, 12] the authors
proposed a detector exploiting the correlation that exists be-
tween a cyclostationary signal and a copy of itself shifted by
the cycle frequency, which does not fully exploit the temporal
structure of the process. A detector that partially exploits the
temporal correlation and is capable of detecting cyclostation-
arity of any order is proposed in [13]. The main idea behind
this detector is that the estimated cyclic correlation function
must have nonzero mean when there is a cyclostationary sig-
nal present, and zero mean otherwise. This detector requires
some a priori knowledge about the true cyclic correlation in
order to select the best lags for the test statistic, which may
not be available in many problems. On the other hand, an
advantage of this detector is that it can be easily extended
to vector-valued processes [6]. Finally, yet another detector
is proposed in [14]. The approach followed there is simi-
lar to our approach. The key difference is that the authors
of [14] propose a likelihood ratio test, i.e., the authors assume
a priori knowledge of all relevant parameter values under both
hypotheses, whereas we derive a generalized likelihood ratio
test. That is, while [14] needs to know the second-order sta-
tistical properties of the signal to be detected, we replace the
covariance functions with their maximum likelihood (ML) es-
timates.



2. PROBLEM FORMULATION

Following an idea by Gladyshev [15], when H1 holds we
can convert the scalar-valued cyclostationary time series u[n]
into an equivalent vector-valued wide-sense stationary (WSS)
time series

x[n] =
[
u[(n−1)L+1] · · · u[nL−1] u[nL]

]T ∈ CL,

with matrix-valued covariance function Q[m] = E[x[n]xH [n−
m]] ∈CL×L. We now stack N of these vectors, x[0], . . . ,x[N−
1], into the composite vector

y =
[
xT [0] xT [1] · · · xT [N−1]

]T ∈ CNL.

Since x[n] is WSS, it is easy to show that the covariance ma-
trix of y under H1 is

R1 =


Q[0] Q[−1] . . . Q[−N +1]
Q[1] Q[0] . . . Q[−N +2]

...
...

. . .
...

Q[N−1] Q[N−2] . . . Q[0]

 ,
which is a block-Toeplitz matrix with block size L. On the
other hand, under H0, u[n] is already WSS, and we may ex-
press y simply as

y =
[
u[0] u[1] · · · u[NL−1]

]T
,

whose covariance matrix is Toeplitz:

R0 =


r[0] r[−1] . . . r[−NL+1]
r[1] r[0] . . . r[−NL+2]

...
...

. . .
...

r[NL−1] r[NL−2] . . . r[0]

 ,
where r[m] = E[u[n]u∗[n−m]] is the correlation function of
u[n] under H0.

Now, assuming Gaussianity, the test in (1) may be recast
as the following test for the covariance structure of y:

H1 : y∼ CN (0,R1),
H0 : y∼ CN (0,R0).

(2)

We are therefore testing a Toeplitz covariance matrix against
a block-Toeplitz covariance matrix with known block size.

3. DERIVATION OF THE GLRT

We do not assume any knowledge about the true correlation
function of u[n] and, therefore, our goal in this section is to
derive a generalized likelihood ratio test (GLRT) for solving
(2). In a GLRT, the unknown quantities are replaced by their
ML estimates under their respective hypotheses, based on M

realizations y0, . . . ,yM−1 of the vector y. The GLRT is given
by

G =

max
R0

p(y0, . . . ,yM−1;R0)

max
R1

p(y0, . . . ,yM−1;R1)
, (3)

where the maximization must be carried out over the sets of
Toeplitz and block-Toeplitz matrices under H0 and H1, re-
spectively. The likelihood is

p(y0, . . . ,yM−1;Ri) =

1
πLNM[det(Ri)]M

exp
{
−Mtr

(
R−1

i R̂
)}

, (4)

with the sample covariance matrix

R̂ =
1
M

M−1

∑
k=0

ykyH
k .

3.1. ML estimates under H1

It is well known that there is no closed-form solution for the
ML estimate of Toeplitz, or block-Toeplitz, matrices [16].
Hence, as in [17] and [18], we propose to maximize the
asymptotic log-likelihood (for large N) in the frequency do-
main. Let us first present the following theorem, which
justifies this approach.

Theorem 1 As N → ∞, the asymptotic log-likelihood con-
verges in the mean square error sense to the log-likelihood:

lim
N→∞

E
[∣∣∣∣ 1

N
log p(y0, . . . ,yM−1;R1)

− log p
(

y0, . . . ,yM−1;S1(e jθ;N)
)∣∣∣∣2
]
= 0,

where the asymptotic log-likelihood is given by

log p
(

y0, . . . ,yM−1;S1(e jθ;N)
)
=−LNM logπ

−NM
∫

π

−π

logdet
(

S1(e jθ;N)
) dθ

2π

−NM
∫

π

−π

tr
(

S−1
1 (e jθ;N)Ŝ(e jθ;M,N)

) dθ

2π
, (5)

with S1(e jθ;N) =F (Q[m]) being the Fourier transform of the
matrix-valued covariance sequence {Q[m]}N−1

m=0, that is, the
power spectral density matrix. The sample power spectral
density matrix is

Ŝ(e jθ;M,N) =
1
M

M−1

∑
k=0

xk(e jθ;N)xH
k (e

jθ;N)

and xk(e jθ;N) = (1/
√

N)∑
N−1
n=0 xk[n]e− jθn.

Proof: See [17].



Based on Theorem 1, we can maximize the asymptotic
log-likelihood, given by (5), instead of the likelihood, given
by (4). Since the power spectral density matrix S1(e jθ;N)
has no further special structure beyond being positive definite,
and the vector-valued time series does not have any particular
temporal structure, its ML estimate is given by Ŝ1(e jθ;N) =
Ŝ(e jθ;M,N). This yields the (asymptotic) compressed log-
likelihood

log p
(

y0, . . . ,yM−1; Ŝ1(e jθ;N)
)
=−LNM (logπ+1)

−NM
∫

π

−π

logdet
(

Ŝ(e jθ;M,N)
) dθ

2π
. (6)

3.2. ML estimates under H0

We can also use the idea of the asymptotic log-likelihood
under H0, that is, for Toeplitz matrices rather than block-
Toeplitz matrices. This result is known as Whittle’s likeli-
hood [19, 20], and can be seen as a particular case of (5).
Concretely, the asymptotic log-likelihood is given by

log p
(

y0, . . . ,yM−1;S0(e jθ;N)
)
=−LNM logπ

−LNM
∫

π

−π

log
(

S0(e jθ;N)
) dθ

2π

−LNM
∫

π

−π

Ŝ(e jθ;M,N)

S0(e jθ;N)

dθ

2π
, (7)

where S0(e jθ;N) = F (r[m]) is the Fourier transform of the
covariance sequence {r[m]}N−1

m=0, the sample power spectral
density is

Ŝ(e jθ;M,N) =
1
M

M−1

∑
k=0
|uk(e jθ;N)|2, (8)

and

uk(e jθ;N) =
1√
LN

LN−1

∑
n=0

uk[n]e− jθn. (9)

Again, since the scalar-valued time series under H0 does not
have any particular temporal structure, it is easy to prove that
the ML estimate of S0(e jθ;N) is Ŝ0(e jθ;N) = Ŝ(e jθ;M,N),
which yields the compressed log-likelihood

log p
(

y0, . . . ,yM−1; Ŝ0(e jθ;N)
)
=−LNM (logπ+1)

−LNM
∫

π

−π

log
(

Ŝ(e jθ;M,N)
) dθ

2π
. (10)

3.3. Asymptotic GLRT

Based on the asymptotic log-likelihoods, the log-GLRT may
be approximated as

logG ≈ log p
(

y0, . . . ,yM−1; Ŝ0(e jθ;N)
)

− log p
(

y0, . . . ,yM−1; Ŝ1(e jθ;N)
)
,

which converges to the log-GLRT as N→ ∞. Now, inserting
(6) and (10) into the above expression, the asymptotic log-
GLRT becomes2

logG ≈
∫

π

−π

logdet
(

Ŝ(e jθ;M,N)
) dθ

2π

−L
∫

π

−π

log
(

Ŝ(e jθ;M,N)
) dθ

2π
.

For finite N, this is an approximation of the GLRT. The ad-
vantage of this detector compared to other cyclostationarity
detectors is that it naturally captures the information at all cy-
cle frequencies.

4. NUMERICAL RESULTS

In this section we evaluate the performance of our detector
and compare it with the detectors proposed in [11] and [13].
We consider the following scenario, which commonly ap-
pears in Cognitive Radio:

H1 : u[n] = (h∗ s)[n]+w[n],
H0 : u[n] = w[n],

where w[n] is additive Gaussian noise, which is wide-sense
stationary with zero-mean, s[n] is a communication signal
and h[n] is the channel impulse response. In particular, the
noise has an arbitrary PSD generated by a moving average
(MA) process of order 19 (at the sampling rate), the channel is
Rayleigh with 10 taps (at the symbol rate) and flat power de-
lay profile, and the transmitted signal is QPSK with rectangu-
lar shaping and a symbol rate of 300 bauds/second. Moreover,
the sampling frequency is 1.2 kHz, yielding 4 samples per
symbol, which coincides with the cycle period, that is, L = 4.
In our simulations we considered N = 100 and M = 20, so that
the total number of available samples is 100 · 20 · 4 = 8000.
The coefficients of both, the channel and the MA noise model,
were randomly generated in each Monte Carlo simulation,
following a Gaussian distribution.

For comparison we selected the detectors proposed in [11]
and [13]. For both detectors we need to select which lag(s)
of the cyclic correlation function to consider. Choosing the
best lag(s) optimizes performance, but generally this requires
some a priori knowledge about the true cyclic correlation
function, which is generally not available. For the detec-
tor [13], we thus simply considered the estimated cyclic
correlation function at lags 0,1,2 and 3. The cyclic power
spectral density was estimated using a Kaiser window of
length 2049. The detector [11] only takes into account a
single lag. Simply choosing lag 0 would provide poor perfor-
mance for this shaping, so we decided to choose the lag that
maximizes the cyclic correlation function (keeping in mind
that this is unrealistic in practice).

2We omit all additive and multiplicative constants that do not depend on
the data.
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Fig. 1: ROC curve for an experiment with L = 4 and M = 20
snapshots of length N = 100.

We obtained the receiver operating characteristic (ROC)
curves of the three detectors for a signal-to-noise ratio (SNR)
of −10 dB. The results, depicted in Fig. 1, show that our
detector outperforms [11] and [13], even though the data is
non-Gaussian. It can also be seen that detector [13] performs
better than [11] for this example because the former consid-
ers the cyclic correlation function at multiple lags. Figure 2
shows the probability of missed detection vs. SNR, where
similar conclusions can be drawn.

5. CONCLUSIONS

We have derived a detector of cyclostationarity using the re-
lationship between a scalar-valued cyclostationary time se-
ries and a vector-valued wide-sense stationary time series.
This detector is a generalized likelihood ratio test (GLRT),
for which the ML estimates of a block-Toeplitz and Toeplitz
matrices have to be obtained. Since there are no closed-form
expressions for these ML estimates, we derived an asymp-
totic GLRT in the frequency domain. The main advantage
of the proposed detector compared to the state-of-the-art is
that it naturally exploits the information contained in all cycle
frequencies. Simulation results have shown the good perfor-
mance of the proposed approach.
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