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ABSTRACT

Physical-layer authentication techniques exploit thequai
properties of the wireless medium to enhance traditional
higher-level authentication procedures. We propose toaed

the higher-level authentication overhead by using a state- D"'::-‘ __________ O
of-the-art multi-target tracking technique based on Ganss Y
processes. The proposed technique has the additional-advan Eve

tage that it is capable of automatically learning the dyrtami

of the trusted user’s channel response and the time-freguenFig. 1. Three agents in a multipath environment with multiple
fingerprint of intruders. Numerical simulations show veryscattering surfaces.

low intrusion rates, and an experimental validation using a

wireless test bed with programmable radios demonstrages th, . . T .
e . devised a framework to transmit authentication infornratio
technique’s effectiveness.

_ o _ concurrently by superposing a secret modulation on the wave
Index Terms— wireless communications, physical-layer form [2]. A different approach consists in authenticating t

authentication, gaussian processes, multi-target mgcki wireless transmitter by analyzing its channel response. Fo
instance, Li et al. proposed a change-point detector tactete
1. INTRODUCTION the presence of spoofing signals in [1], and a hypothesis test

based on a realistic channel model was presented in [3].

Wireless communication systems have witnessed an impres- In this paper, we propose a technique based on Gaus-
sive evolution during the past two decades, most signifigant Sian processes (GPs) that solves two issues found in the cur-
in terms of data rate and reliability. Nevertheless, an tra. ~ rent hypothesis-test based methods. First, they typically
still leaves room for considerable improvement is Securityserve as a detector for intruders, and whenever an intruder
The broadcast nature of the wireless channel facilitatéis bois detected they require the transmitter to re-authewtittat
the interception of data, @avesdroppingand intrusions, or self, causing considerable overhead. And, second, the cur-
spoofing Traditional higher-layer security techniques are emfent PHY-layer authentication techniques are based on spe-
ployed to prevent both types of attacks. Specifically, conficific channel models and they require to know all involved
dentiality techniques are employed to avoid eavesdroppingarameters in order to perform correctly. The technique we
while authentication techniques aim to prevent spoofing. ~ Propose is capable of tracking the dynamics of the channel

We follow up on the idea that the very nature of the wire-PY clustering the observations into trajectories, thexefe-
less medium, which may seem vulnerable to attacks at firsucing the need for higher-level authentication when intru
can be turned into an important advantage to complement tr§ions are detected. Furthermore, it is non-parametricen th
ditional security methods [1, 2, 3]. In particular, the typi Sense that it does not make any assumptions on the channel
cal multipath environment in wireless communications guarfesponses except for smoothness, and it is capable of auto-
antees that the response of the medium along any transmfatically learning all parameters including the smootksnes
receive path is location-specific, and characterized byra pa
ticular frequency- and time-selectivity. 2. PROBLEM STATEMENT

We will focus on the problem of authentication, for which
several techniques have appeared in the literature. Yu et dlsing the traditional terminology, we consider three dfet

- ” ed by MIGINN (Soanish Ministry for S agents: Alice, Bob and Eve. These agents represent wireless
ence ; dwﬁ]rno\get‘; n?“ﬁﬁg;re graﬁts TEczol(o-plaslar;is-C()lzljmryS(rA), " transmitters or receivers that are located at differenitipos

CONSOLIDER-INGENIO 2010 CSD2008-00010 (COMONSENS) and @Mid several scatterers, as depicted in Fig. 1. Alice isi& leg
FPU grant AP2009-1105. imate transmitter who wishes to communicate with Bob, and




Eve is a would-be intruder who transmits to Bob with the aimchannel response with the same characteristics as the chan-
of impersonating Alice. nel between Alice and Bob. This may not be possible in
practice, for instance due to limitations on Eve'’s transiois
power. The attack strategy of Eve will consist in transmgti

as many different frames per time unit as possible, emgatin

We assume that Bob measures and stores\timost recent @ high number of different channel responses. For each of

frequency responses of the channel between (a presumed) Aflese frames, Bob estimates a channel response that may be

ice and himself. The channel response atsikth time slot, ~ Written as )

h,,, is stored as @ x 1 vector of samples, each correspond- h, = h("?) + wiFP) (2)

ing to a different frequency in the measurement bandwidth. A EB) : L EB) :

common example of this model would be that of an orthogoy\/herewsl isthe est|mat|pn error ariui(n Jis the channel

nal frequency division multiplexing (OFDM) system where response crafted by Eve, i.e. not the actual response of the
. . . . Eve-Bob channel.

pilot symbols are transmitted ovep different subcarriers.

Bob stores a sliding window a¥ channel responses centered

attimen,i.e.h; Vi € [n— 21, ... n+ ~-1]. Based onthe 3. CHANNEL TRACKING THROUGH OMGP

aforementioned set of channel responses, Bob has to decide

whether the frame received at timds coming from Alice or !N [1] & simple change-point detector was proposed to detect

Eve. Commonly, received frames will be coming from Alice interruptionsin the state of the wireless channel, quaatiis

and, thus, they can be modeled as

2.1. System model

h, = h*P) 4 wiA?) (1) " By, ]|

e||r1' during the transmission of Alice, a spikeip is detected,

it is likely that another device is using the wireless chdnne

with the possible intention of spoofing Alice. At this point

. : . Bob may ask Alice to re-authenticate herself by traditional

tor which accounts for any spurious effect such thermaleois : o )
methods in order to resume the transmission. However, if at

non—Ilneantu_as, etc. We r_e(_:all tha_t entries of samfigsare timen + 1 Alice does not re-authenticate herself, the detector
complex variables containing estimates of both channel am;

plitude and phase. The estimated channel phase is the adgQes not a_IIow to determine who is transmitting. In [3] the
tive combination of phases from two different sources: the a change-point detector from Eq. (3) was extended to a hypoth-

. : esis test for authentication that is capable of incorpoggtie
tual channel phase and an arbitrary oscillator phase. @Ghann .

. : . channel model whenever its parameters are known. Neverthe-
phase will typically change smoothly over time, but the os- . S

) . less, this approach faces the same limitation.
cillator phase can take independent values for eacrhere- : .
S L In order to circumvent this problem, we propose to track

fore, Bob will find it difficult to discriminate between botfi o .

S . ..~ the changes in the channel response rather than to rely only
them and should restrict his attention to channel magngude . :
. . . ' - on the last estimate of the trusted Alice-Bob channel. As a
instead of complex gains. Hereinafter, we will denotehhy

I . . result, when Eve is detected at time instaiitis still possible
the vector containing the amplitudes of the estimated chlann . : S . ) .
L to recognize Alice at time instant+ 1 without Alice having
response coefficients.

. - . to re-authenticate herself, thereby causing less overhead
Given the malicious nature of Eve, she will try to perform y 9

an attack by sending a forged message to Bob. We assure The tracking-based detector takes the following general
that Eve knows the modulation scheme, the frequency/time b — RAB) 4
statistics of the channel between Alice and Bob and the de- Y = [ ol )

tails of the channel estimation and authentication teﬂjfmlq Wherefl%AB) represents the response of the channel between
employed by Bob. Our assumptions are, therefore, consellice and Bob at time:, as estimated by the tracking algo-
vative and provide worst-case scenarios. It is well knowrjthm.

that channel responses decorrelate rapidly in space,ghati |n this work we use the recently-proposed Overlapping
two transmit-receive paths are decorrelated from each dthe \jixture of Gaussian Processes (OMGP) multi-target tragkin

the paths are separated by more than a radio frequency (REjyorithm from [4] to distinguish Alice’s and Eve’s transi
WaVeIength. For that reason, Eve will not be able to know th%ions_ We summarize its main characteristics below.

exact channel response of the path separating Alice and Bob
but she will be able to estimate the propagation environme
time and frequency characteristics.

Taking again a conservative viewpoint, we will assumeThe OMGP model casts trajectories as Gaussian processes,
Eve can potentially forge, by pre-distorting her signaly an which are state-of-the-art Bayesian models for regresanghn

wherehS{“B ) denotes the actual channel response betwe
Alice and Bob, which will be time-variant and frequency-

. AB) . . . .
selective, andvﬁl ) is the unavoidable estimation error vec-

rg.l. Trajectories as Gaussian processes



4 3 3 3 3 3 3 3 resents trajectories. It assumes that there eXistlifferent

| | ‘ | | | | multi-dimensional trajectories, each of which are desttib
by D latent functions{fém)(x)}%ﬁd:l. In our caseD is
the number of subcarriers, ardd is the number of targets,
which is typically2 to represent Alice and Eve, but it may be
higher when more intruders are sought. The OMGP model
assumes that each observation is produced by evaluating one
of these functions at the corresponding input and by adding

Fig. 2. GP regression on the noisy data marked by the refpaussian noise to it. The association between samples and

crosses. The inferred latent function is shown as the biyltent functions is determined by thé x M binary indica-

curve, and the grey area marks 8% confidence interval,  tOf matrixZ: Entry [Z],,,, being non-zero specifies thatth
data point was generated using trajectary Only one non-

zero entry per row is allowed i#.

classification [5, 6]. Given a set d¥ inputs and their cor- All the outputs can be collected in a single mafkix =

responding output) = {x;,y;}}¥,, the Gaussian process [y, ...yp] and all the latent functions of trajectory in a

regression model assumes that the observations can be meghgle matrixF (™ = [fgm) .. .fg”)]. The complete set of

eled as latent functions is denoted 4&(™}. The likelihood of the
y=f(x)+e, ()  OMGP modelis

where f(x) is an unobservable latent function andep- p(Y|{F(™}, Z) = H N([Y]nal[F™]pa, 02) B

resents zero-mean Gaussian noise. In order to perform oo

Bayesian inference a GP prior is placed over the latent func- (6)

tion, chosen as a zero-mean GP with covariance functiomhe posterior distributiop(Z, {F(m>}|X7y) is obtained by
k(x;,x;). The use of a GP prior implies that the prior joint placing priors on the latent variables. Since it cannot maco

distribution of the vectorf(x1), f(x2),.... f(xn)]" is @  puted analytically, the OMGP algorithm uses an efficieni-var
zero-mean multivariate Gaussian with covariance maix ational approximation technique. Details can be found [4].
which has element&;; = k(x;,x;). In our setup, the measured channhbls constitute the

The covariance functioh(x;, x;) specifies the degree of rows of Y, and the rows off") and F(? correspond to
coupling betweeny; andy;, and it encodes the properties of the trye, unobservable channel respodsgést) andh(FP)

the GP such as power level, smoothness, etc. One of the beglspectively. The time instants at which the channels are
known covariance functionsis the squared exponentiattern ostimated are collected X.

It has the form of an unnormalized Gaussiafix;,x;) =

o exp (—|lx; — x;||?/1), and depends on the signal power
o2 and the length-scalewhich controls how fast the correla-
tion between outputs decays as the separation along thisinpThe OMGP algorithm does not require exact information
grows. We will collectively refer to all kernel parametes¥la  about the tracking environment. Rather, it dearn all in-
Many different covariance functions can be plugged into thevolved parameters from the provided data by maximizing the
GP regression framework. For instance, in the experimenigelihood of the OMGP model. An expectation maximiza-
of Section 4 we will see that it may be useful to use a noisetion (EM) algorithm to determine the involved parameters is
like covariance to model Eve’s channel in case she performdetailed in [4].

random attacks, as opposed to Alice’s smooth trajectory.

3.3. Automatic parameter learning

4. EXPERIMENTS
3.2. Data association without combinatorial explosion

. . . 4.1. Simulation
Given a set of observations that represent the positions of a

number of moving targets in a multi-target tracking setting The fading dispersive channel between Alice and Bob can
typically cars or airplanes, data association consistafefi  be characterized by its low-pass equivalent impulse respon
ring which observations correspond to the same target [7]:(t, 7) wherer is the propagation delay artcienotes abso-
While data association is typically performed online, the r lute time. Giverh(t, 7), the power-delay profile (PDP) repre-
sults can be significantly improved by postponing decisionsents the mean power of the multipath component at delay
until enough information is available to exclude ambigsti  P(t,7) = E[|h(t,7)|?]. In our simulations we will consider a
Nevertheless, this causes the number of possible trajestor Rayleigh fading channel with the classic one-sided exponen

to grow exponentially. tial PDP [8]:
The OMGP model allows to avoid such combinatorial ex- 1 T—1
plosions, and to “cluster” observations into groups that re P(t,7) = —exp(———) forr—t>0, (7)

or or
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Fig. 3. Simulated channel responses at different time slots.Fig. 5. Observed channel response coefficients, for Alice
and Eve, and inferred trajectories for Alice, using reaHdo
channel data.

4.2. Experimental validation

Any proposed PHY-layer authentication method requires the
radio equipment to provide higher layers with the estimated
channel amplitudes. In our experiments we have used the
GTAS MIMO test bed to transmit fully compliant 802.11a

i e Talos alarm rato frames from two nodes representing Alice and Eve and esti-
DT R Frrrr  er JUS | —©—intusion rate || mate channel responses at Bob’s receiver end. Measurements

,,,,,,,,,,,,, —

0001 0002 0005 00l 002 003 004 005 were carried out in an indoor environment at a center fre-
quency of 5.6 GHz where Alice and Eve were one meter apart
from each other and five meters apart from Bob. Additional

Fig. 4. Results for the simulated authentication scenarios. details on the test bed and measurement scenario can be found

in [10, 11].
Our measurements show that in spite of the proximity of
Alice and Eve, the spatial correlation between their mattic

where the frequency selectivity of the channel is paramedri  rier channel responses is rather low and should be enough for
by the root mean square (RMS) delay spreadhere chosen discrimination. This validates our space correlation agsu
asor = 1. Similarly, in order to model the time selectivity tion. Furthermore, we observed time and frequency characte
of the channel we use the well-known Jakes model [9] whichistics which are similar to those assumed in Section 4.% thu
allows us to parametrize the time-variability of the chdnnevalidating our simulation model assumptions. As an exam-
by means of a single parametgs denoting the Doppler fre- ple, Figure 5 shows the retrieved trajectories of the pregos
guency. Note that Bob does not know any of these channghethod under real-world channel conditions.
parameters. Estimation errors have been modeled as zero-
mean real Gaussian i.i.d random variables with variance
The time instants on which Alice transmits are not uniformly
spaced but determined by a Markov chain, while Eve is set t
attack at random time instants. An example scenario with th
data to track is shown in Fig. 3.

5. CONCLUSIONS

We have proposed a methodology for physical-layer authenti
Eation that requires less overhead from higher-level authe
tication methods compared to the currently proposed tech-

We apply the OMGP tracking algorithm on these dataniques. Our approach is based on a GP tracking algorithm
For Alice we choose a squared exponential covariance as hdlat has the additional advantage that it is capable of aattom
channel will undergo smooth changes, and the smoothnessilly learning the parameters of the trajectories.
determined automatically by the OMGP algorithm. For Eve  We have presented simulation results that show very low
we choose a noise-like covariance (implying a diagonal colhtrusion rates, and we have performed an experimental val-
variance matrix), in accordance with her attack strategye T idation of our approach using a wireless test bed with pro-
tracking algorithm uses a buffer & = 50 samples to make 9grammable radios.

a decision on a single observation. The false alarm rates and IThe GTAS MIMO test bed is a MIMO experimentation test bed whic

rates of successful intrUSiqns IfOI’ different relative Diepp s openly available to researchers willing to conduct thein PHY-layer
spreadsfpT, can be found in Fig. 4. experiments through an online interface.
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