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Abstract. We address the problem of inverse source identification for par-

abolic equations from the optimal control viewpoint employing measures of
minimal norm as initial data. We adopt the point of view of approximate con-

trollability so that the target is not required to be achieved exactly but only

in an approximate sense. We prove an approximate inversion result and derive
a characterization of the optimal initial measures by means of duality and the

minimization of a suitable quadratic functional on the solutions of the adjoint

system. We prove the sparsity of the optimal initial measures showing that
they are supported in sets of null Lebesgue measure. As a consequence, ap-

proximate controllability can be achieved efficiently by means of controls that
are activated in a finite number of pointwise locations. Moreover, we discuss

the finite element numerical approximation of the control problem providing

a convergence result of the corresponding optimal measures and states as the
discretization parameters tend to zero.

1. Introduction. In this paper we address the issue of the backward resolution of
parabolic equations formulated as a control problem, the control being the initial
datum aiming to steer the solution to a given final value in a given time horizon.

We adopt the point of view of approximate controllability as in [13] where this
problem was formulated and solved for initial data in Lp with 1 < p ≤ ∞. In the
present paper we consider the case p = 1 or, to be more precise, the one in which
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the initial data to be optimized are Borel measures. The range of the semigroup
departing from this class of initial data is dense, since that is the case when p > 1
too.

Here we focus on the characterization of the initial measures of minimal norm
ensuring that the final target is reached in an approximate sense. As we shall see,
this can be done minimizing a suitable quadratic functional on the solutions of the
adjoint system, following the arguments in [10].

Our analysis leads to sparsity results showing that the optimal initial measures
have as support a set of zero Lebesgue measure. This also leads to effective inversion
results within the class of initial data constituted by finite combinations of Dirac
measures.

Our results apply in a broad class of parabolic equations, possibly semilinear
with globally Lipschitz nonlinearities, as in [13]. But we shall focus on the classical
heat equation with constant coefficients

∂y

∂t
−∆y = 0 in Q = Ω× (0, T ),

y = 0 on Σ = Γ× (0, T ),
y(0) = u in Ω,

(1)

where the initial datum u, that plays the role of the control, is assumed to be a
Borel measure, Ω ⊂ Rn is an open connected bounded set and Γ is the boundary of
Ω, that we will assume to be Lipschitz.

We view u as the control that we would like to choose such that the associated
state yu at time T , yu(T ), is in the L2(Ω)-ball B̄ε(yd), where yd represents the
desired final state and ε > 0 the admissible distance to the target.

It is well known that for any ε > 0 it is possible to find u ∈ L2(Ω) such that
yu(T ) ∈ B̄ε(yd). This is a consequence of the fact that the range of the semigroup
generated by the heat equation is dense (see [13]), which is equivalent to the well
known and classical backward uniqueness property for the heat equation, see [24]. In
fact the same holds when the control u has its support in a subset ω of Ω of positive
measure. The interested reader is referred to [14] where this issue is investigated in
a more general frame in order to obtain sharp bounds on the cost of approximate
control.

We are interested on analyzing the structure of the initial data u of minimal
norm. In the L2-setting this can be done by considering the following minimization
problem

min
yu(T )∈B̄ε(yd)

J(u) =
1

2
‖u‖2L2(Ω). (2)

It can be checked that this problem has a unique solution that is given by

ū = −ϕ̄(0),

where ϕ̄ is the unique solution of the adjoint equation
−∂ϕ̄
∂t
−∆ϕ̄ = 0 in Q,

ϕ̄ = 0 on Σ,
ϕ̄(T ) = ḡ in Ω,

for some ḡ ∈ L2(Ω) satisfying∫
Ω

ḡ(x)(y(x)− ȳ(x, T )) dx ≤ 0 ∀y ∈ B̄ε(yd).
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Above, ȳ denotes the state associated to the optimal initial datum ū. In this
way, the obtained initial datum, being the trace at t = 0 of a solution of the adjoint
system in the time interval 0 ≤ t ≤ T , is smooth but non-zero at almost every point
of Ω. This makes these initial data to be of little practical use in applications where
one looks for initial data with small support.

This issue was recently addressed in [23], the goal being to develop efficient
numerical algorithms to compute initial data constituted by a finite combination of
Dirac measures. This was achieved by means of a fast Bregman iterative algorithm
for `1 optimization. In that frame, of course, identifying the initial datum consists
in determining a finite number of points for the support of the measure and the
weight given to each of them.

In the present paper we develop the theory showing that sparse initial data exist
and are characterized by means of a minimization principle over the class of solutions
of the adjoint system. The proof requires two ingredients that are by now well known
in the literature. On one hand, as mentioned above, the backward uniqueness for
parabolic problems and, on the other, analyticity properties of solutions of the heat
equation and, more precisely, the analyticity of solutions in Ω with respect to the
space variable at the final time.

We will develop this program following closely the previous work [10], where the
control was assumed to be a space-time dependent measure, acting as an exterior
source. There it was shown that, by replacing the L2-norm of the control, by its
measure-norm turns out to be an efficient way to obtain sparse optimal controls
with support in small regions.

To be more precise, we shall consider the problem above but by replacing in (2)
the L2-norm of the initial datum u, that plays the role of the control, by its total
measure.

The main difficulty in the problem under consideration is the very strong irre-
versibility of the heat equation. The backward heat equation is ill-posed and, due
to parabolic regularizing effects, the range of the generated semigroup at time t = T
is only constituted by very smooth functions. Thus, of course, it is impossible to
reach exactly any given target in L2(Ω). On the other hand, the range of the semi-
group is dense and accordingly, the target can be approximated at any distance
ε. This ensures the existence of solutions of the optimal control problem above.
Note, however, that this existence result requires the regularizing effect ensuring
that solutions of the heat equation departing from a measure belongs to L2 at the
final time. As we shall see, at the level of the adjoint equation this is reflected by
the fact that the solutions of the adjoint system departing (at time t = T ) from an
L2-datum, belong to the space of continuous functions at the initial time t = 0.

Using this adjoint methodology we shall prove the existence and uniqueness of
the optimal measure.

The second issue we discuss is the sparsity of the obtained optimal initial mea-
sures. As we shall see, these initial measures, by duality, are supported on the set
where the adjoint solution at time t = 0 reaches its L∞-norm that, by the space
analyticity turns out to be a set of null Lebesgue measure.

As proved in [4], a measure in Ω can be efficiently approximated by a combination
of Dirac measures. As a consequence, we deduce that the approximate reachability
can be achieved by activating the initial datum in some finite number of pointwise
locations at the time t = 0. These pointwise locations are all of them placed in a
very small region of Ω. Even more, in the one dimensional case, we prove that the
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optimal measure is a finite combination of Dirac measures, which provides a rigorous
justification of the existence of the objects that are numerically approximated in
[23].

Moreover, we provide a systematic approach to the discretization of the sparse
optimal control problem under consideration with finite elements. To this end we
discretize the state equation with a discontinuous Galerkin method in time, which
is here a variant of the implicit Euler scheme, and using (conforming) linear finite
elements in space. The discretiztaion of the optimal control problem is done in the
spirit of [4]. For the resulting finite dimensional optimization problem we provide a
convergence result for discretization parameters tending to zero, see Theorem 4.10
for details.

Let us briefly comment on some other related papers. Sparse optimal control
problems in measure spaces are analyzed in [11, 26, 7] for elliptic and in [5, 21]
for parabolic equations, where in both last papers also numerical analysis of space-
time discretizations is performed, see also [15, 22] for related works on numerical
analysis of pointwise control. Sparse optimal control problems with controls which
are functions instead of measures are considered, e.g., in [6, 9, 19, 30, 32].

The plan of the paper is as follows. In the next section, we formulate the con-
trol problem in a precise way and, by means of backward uniqueness and standard
regularizing effects for the heat equation (from L2 into C0) we infer that it has a
unique solution. Later, in section §3, we consider the adjoint system and formulate
the dual problem. In Section §4 we present a discrete version of the optimal con-
trol problem under consideration and prove the convergence as the discretization
parameters tend to zero. Some final remarks are given in §5.

2. The control problem: Main results. In this paper, we consider the following
control problem

(P)

{
min J(u) = ‖u‖M(Ω),

(u, yu(T )) ∈M(Ω)× B̄ε(yd),

where yu is the solution of the equation (1) associated to u, and M(Ω) = C0(Ω)∗

denotes the Banach space of real and regular Borel measures in Ω, C0(Ω) being
the space of continuous functions in Ω̄ vanishing on Γ. In this space, the norm is
defined by

‖u‖M(Ω) = |u|(Ω) = sup
z∈C0(Ω), ‖z‖∞≤1

∫
Ω

z du,

with |u| being the total variation measure associated to u; see, for instance, [28,
Chapter 6].

The function yd is fixed in L2(Ω) and ε > 0 is given. To avoid trivial situations,
we assume that ‖yd‖L2(Ω) > ε. The case ‖yd‖L2(Ω) ≤ ε obviously leads to ū = 0 as
the unique solution of the problem (P).

Before proving any property of (P), let us study the state equation (1). To this
end let us first observe that the problem

∂ϕ

∂t
+ ∆ϕ = f in Q

ϕ(x, t) = 0 on Σ
ϕ(x, T ) = 0 in Ω

(3)
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has a unique solution ϕ ∈ L2(0, T ;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)) for every f ∈ L∞(Q).

Moreover, the regularity ϕ ∈ C(Q̄) holds. This continuity property follows from [16,
Theorem 6.8] on general Lipschitz domains, see also [1] and [3, Theorem 5.1] or [27].

This allows to introduce the spaces

Φ =

{
ϕ ∈ L2(0, T ;H1

0 (Ω)) :
∂ϕ

∂t
+ ∆ϕ ∈ L∞(Q)

}
and

ΦT = {ϕ ∈ Φ : ϕ(x, T ) = 0 in Ω} .
Using the space ΦT we define a solution concept for the state equation (1).

Definition 2.1. We say that a function y ∈ L1(Q) is a solution of (1) if the
following identity holds∫

Q

−
(
∂ϕ

∂t
+ ∆ϕ

)
y dxdt =

∫
Ω

ϕ(0) du, ∀ϕ ∈ ΦT . (4)

As a consequence we have the following:

Lemma 2.2. There exists a unique solution y of (1). Moreover, y belongs to the

space Lr(0, T ;W 1,p
0 (Ω)) for all p, r ∈ [1, 2) with (2/r) + (n/p) > n + 1, and the

following estimate holds

‖y‖Lr(0,T ;W 1,p
0 (Ω)) + ‖y(T )‖L2(Ω) ≤ Cr,p‖u‖M(Ω). (5)

Furthermore, y satisfies∫
Ω

ϕ(T )y(T ) dx−
∫
Q

(
∂ϕ

∂t
+ ∆ϕ

)
y dxdt =

∫
Ω

ϕ(0) du, ∀ϕ ∈ Φ. (6)

Proof. For the proof of the first part of the Lemma, the reader is referred to [8,
Theorem 2.2]. We only need to prove the estimate for y(T ) and (6). The identity
(6) is obvious for regular data u ∈ L2(Ω). Then, it is enough to take a sequence

{uk}∞k=1 ⊂ L2(Ω) such that uk
∗
⇀ u in M(Ω), to write the equation for (uk, yk) and

to pass to the limit as k → ∞. In this limit, we only need to pay attention to the
fact that ϕ(0) ∈ C0(Ω) due to the regularizing effect of the heat equation. To prove
the estimate for y(T ) let us define ϕ ∈ L2(0, T ;H1

0 (Ω)) ∩ C([0, T ], L2(Ω)) solution
of 

∂ϕ

∂t
+ ∆ϕ = 0 in Q

ϕ(x, t) = 0 on Σ
ϕ(x, T ) = y(T ) in Ω

Classical results on the gain of integrability and smoothing for the heat equation
imply that

‖ϕ(0)‖C0(Ω) ≤ c‖y(T )‖L2(Ω).

Then, using (6) we get

‖y(T )‖2L2(Ω) =

∫
Ω

ϕ(T )y(T ) dx =

∫
Ω

ϕ(0) du

≤ ‖u‖M(Ω)‖ϕ(0)‖C0(Ω) ≤ C‖u‖M(Ω)‖y(T )‖L2(Ω),

which implies (6).
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Remark 1. Choosing r = 1 in this lemma, we get y ∈ L1(0, T ;W 1,p(Ω)) for all
1 ≤ p < n

n−1 . This implies yt ∈ L1(0, T ;W−1,p(Ω)) and therefore we conclude

y ∈ C([0, T ];W−1,p(Ω)).

The next lemma makes again use of the smoothing property of the heat equations.

Lemma 2.3. Let {uk}∞k=1 ⊂M(Ω) be a sequence converging to u weakly∗ in M(Ω).
If {yk}∞k=1 and y denote the corresponding states, solutions of (1), then the conver-
gence yk(T )→ y(T ) holds strongly in L2(Ω).

Proof. We consider the linear mapping At : M(Ω) → L2(Ω), which maps a control
u ∈ M(Ω) to the solution y(t) of the (1) at time 0 < t ≤ T . By the previous
lemma this mapping is linear and continuous. Moreover we consider an operator
Bt1,t2 : L2(Ω) → L2(Ω) mapping an initial condition z1 ∈ L2(Ω) of the following
equation 

∂z

∂t
−∆z = 0 in Ω× (t1, t2),

z = 0 on Γ× (t1, t2),
z(t1) = z1 in Ω,

(7)

to the solution z(t2) at t = t2 for 0 < t1 < t2 ≤ T . By a standard result we have
z ∈ L2(t1, t2;H1

0 (Ω)) ∩ C([t1, t2], L2(Ω)) and∫ t2

t1

‖∇z(t)‖2L2(Ω) dt ≤ ‖z1‖2L2(Ω). (8)

For a given z1 we consider a sequence {z1,m} ⊂ H1
0 (Ω) with z1,m → z1 in L2(Ω). Let

zm be the solution of (7) with z1,m instead of z1. By standard regularity we have
that zm ∈ H1(t1, t2;L2(Ω))∩C([t1, t2];H1

0 (Ω)). Then we test the weak formulation
for zm with (t− t1)∂zm∂t and obtain

(t− t1)

∥∥∥∥∂zm∂t (t)

∥∥∥∥2

L2(Ω)

+ (t− t1)

∫
Ω

∇zm(t)∇∂zm
∂t

(t) dx = 0.

This results in

(t− t1)

∥∥∥∥∂zm∂t (t)

∥∥∥∥2

L2(Ω)

+
1

2

d

dt

(
(t− t1)‖∇zm(t)‖2

)
=

1

2
‖∇zm(t)‖2.

Integrating in time we get∫ t2

t1

(t− t1)

∥∥∥∥∂zm∂t (t)

∥∥∥∥2

L2(Ω)

dt+
1

2
(t2 − t1)‖∇zm(t2)‖2L2(Ω) =

1

2

∫ t2

t1

‖∇zm(t)‖2 dt.

The last term can be estimated as (8) resulting in

(t2 − t1)‖∇zm(t2)‖2L2(Ω) ≤ ‖z1,m‖2L2(Ω).

By the linearity of (7) we have for all m,m′ ∈ N

(t2 − t1)‖∇ (zm(t2)− zm′(t2)) ‖2L2(Ω) ≤ ‖z1,m − z1,m′‖2L2(Ω)

and therefore {zm(t2)} is a Cauchy sequence in H1
0 (Ω) converging strongly to z(t2).

This implies z(t2) ∈ H1
0 (Ω) and the well-known smoothing estimate of the heat

equation

‖∇z(t2)‖L2(Ω) ≤
1√

t2 − t1
‖z1‖L2(Ω).
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Due to the compact embedding of H1
0 (Ω) into L2(Ω) the operator Bt1,t2 : L2(Ω)→

L2(Ω) is compact. Moreover, there holds

ATu = Bt1,TAt1u

for any 0 < t1 < T . Therefore, the operator AT : M(Ω) → L2(Ω) is also compact.
This implies the statement of the lemma.

Now we prove the existence and uniqueness of solution of (P). Let us observe that
the uniqueness is proved despite that the cost functional J is not strictly convex.

Theorem 2.4. There exists a unique solution ū of the control problem (P). More-
over, if ȳ denotes the state associated to ū, then the identity ‖ȳ(T )− yd‖L2(Ω) = ε
holds.

Proof. First, from the approximate controllability properties of the heat equation,
we know that the set of feasible controls is not empty; see [13].

The existence of a solution can be easily proved by taking a minimizing sequence
and using the compactness the mapping of u ∈M(Ω) 7→ yu(T ) ∈ L2(Ω) established
in Lemma 2.3.

Let us prove the uniqueness. To this end, we first observe that if u ∈ M(Ω),
u 6= 0 and ‖yu(T )− yd‖L2(Ω) < ε, then we can take 0 < λ < 1 such that

‖yu(T )− yd‖L2(Ω) + λ‖yu(T )‖L2(Ω) ≤ ε.
Setting uλ = (1−λ)u, then J(uλ) = (1−λ)J(u) < J(u) and ‖yuλ(T )−yd‖L2(Ω) ≤ ε,
hence u is not a solution of (P). Therefore, to any solution ū of (P) corresponds an
optimal state ȳ such that ȳ(T ) is on the boundary of the ball B̄ε(yd).

Let us assume that u1 and u2 are two solutions of (P). We will prove that u1 = u2.
First we note that the identity yu1(T ) = yu2(T ) holds. Indeed, if yu1(T ) 6= yu2(T ),
then we take u = (u1 + u2)/2. Using the convexity of J , the strict convexity of the
L2(Ω)-norm and the identity

‖yu1(T )− yd‖L2(Ω) = ‖yu2(T )− yd‖L2(Ω) = ε,

we infer

J(u) ≤ 1

2
(J(u1) + J(u2)) = inf (P) and ‖yu(T )− yd‖L2(Ω) < ε,

which is not possible as we proved above. Finally, we take u = u1 − u2 6= 0. For
this control we obtain yu(T ) = yu1(T )− yu2(T ) = 0. Then, for every g ∈ L2(Ω) let
ϕg be the solution of the problem

−∂ϕ
∂t
−∆ϕ = 0 in Q,

ϕ = 0 on Σ,
ϕ(T ) = g in Ω.

Then, since yu is a regular function in [ 1
k , T ]× Ω for every k ≥ 1, we have that∫

Ω

ϕg

(1

k

)
yu

(1

k

)
dx =

∫
Ω

gyu(T ) dx = 0 ∀g ∈ L2(Ω).

Since the space S = {ϕg( 1
k ) : g ∈ L2(Ω)} is dense in L2(Ω) due to the approximate

controllability properties of the heat equation, we conclude that yu( 1
k ) = 0. By

Remark 1, we have that yu ∈ C([0, T ],W−1,p(Ω)) for 1 ≤ p < n
n−1 , and hence

u = yu(0) = lim
k→∞

y

(
1

k

)
= 0,
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which proves that u1 = u2.

The next theorem characterizes the solution ū of (P).

Theorem 2.5. Let ū ∈ M(Ω) such that ȳ(T ) ∈ B̄ε(yd), where ȳ is the state asso-
ciated to ū. Then, ū is the solution of problem (P) if and only if there exist two
elements ḡ ∈ L2(Ω) and ϕ̄ ∈ L2([0, T ], H1

0 (Ω)) ∩ C([0, T ], L2(Ω)) such that∫
Ω

ḡ(x)(y(x)− ȳ(x, T )) dx ≤ 0 ∀y ∈ B̄ε(yd), (9)
∂ϕ̄

∂t
+ ∆ϕ̄ = 0 in Q,

ϕ̄ = 0 on Σ,
ϕ̄(T ) = ḡ in Ω,

(10)

‖ū‖M(Ω) = −
∫

Ω

ϕ̄(x, 0) dū, (11)

‖ϕ̄(0)‖C0(Ω) = 1. (12)

Furthermore, ϕ̄ and ḡ are unique, and there exists a real number λ̄ > 0 such that
ḡ = λ̄(ȳ(T )− yd).

Proof. Let us consider the linear mapping A ∈ L(M(Ω), L2(Ω)), defined by Au =
yu(T ). The continuity of A follows from (5). We formulate (P) in an equivalent
way. To this end we define the functional J : M(Ω) −→ (−∞,+∞] by

J (u) = J(u) + IB̄ε(yd)(Au),

where IB̄ε(yd) denotes the indicator function of the ball B̄ε(yd); which means that

it vanishes in B̄ε(yd) and takes the value +∞ outside. The problem (P) can be
reformulated as the minimization of the convex functional J . Then, ū is a solution
of (P) if and only if 0 ∈ ∂J (ū). Now, we apply the rules of the sub-differential
calculus of convex functions; see, for instance, [12, Chapter 1, §5.3]. In particular,
we can apply the chain rule because according to the proof of Theorem 2.4, there
exists u0 ∈ M(Ω) such that Au0 ∈ Bε(yd), which means that the Slater condition
is fulfilled, consequently

0 ∈ ∂J (ū) ⊂ ∂J(ū) +A∗∂IB̄ε(yd)(ȳ(T )).

This implies that there exists ḡ ∈ ∂IB̄ε(yd)(ȳ(T )) such that −A∗ḡ ∈ ∂J(ū). Relation

(9) is precisely the definition of ḡ ∈ ∂IB̄ε(yd)(ȳ(T )). Now, we take ϕ̄ as the solution

of (10). Then, from (6) we deduce

〈A∗ḡ, u〉 = 〈ḡ, Au〉 =

∫
Ω

ḡ(x)yu(x, T ) dx =

∫
Ω

ϕ̄(x, 0) du ∀u ∈M(Ω).

Combining this identity with the definition of −A∗ḡ ∈ ∂J(ū)

〈−A∗ḡ, u− ū〉+ J(ū) ≤ J(u) ∀u ∈M(Ω),

we obtain∫
Ω

ϕ̄(x, 0) dū−
∫

Ω

ϕ̄(x, 0) du+ ‖ū‖M(Ω) ≤ ‖u‖M(Ω) ∀u ∈M(Ω).

Taking u = 2ū and ū/2, respectively, in the above inequality, we get (11). Therefore,
the above inequality and (11) imply

−
∫

Ω

ϕ̄(x, 0) du ≤ ‖u‖M(Ω) ∀u ∈M(Ω).
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For any point x0 ∈ Ω we select u = ±δx0 in the above inequality, which shows
that ±ϕ̄(x0, 0) ≤ 1. Since x0 is arbitrary in Ω, we get that ‖ϕ̄(0)‖C0(Ω) ≤ 1. This
inequality along with (11) and the fact that ū 6= 0 imply (12).

Finally, we prove the uniqueness of ḡ, the corresponding uniqueness for ϕ̄ being
an immediate consequence. From (9) it follows∫

Ω

ḡ(y − yd) dx ≤
∫

Ω

ḡ(ȳ(T )− yd) dx ∀y ∈ B̄ε(yd),

or equivalently ∫
Ω

ḡy dx ≤
∫

Ω

ḡ(ȳ(T )− yd) dx ∀y ∈ B̄ε(0),

which implies the existence of some positive number λ̄ such that ḡ = λ̄(ȳ(T )− yd).
Observe that ḡ 6= 0 because ‖ϕ̄(0)‖C0(Ω) = 1. Moreover, the last identity implies

that λ̄ is uniquely determined, which concludes the proof.

As a consequence of the previous theorem we get the desired sparsity of the
optimal measure. In the sequel |A| will denote the Lebesgue measure of a measurable
set A ⊂ Ω.

Corollary 1. Let ū be the solution of (P) and consider the Jordan decomposition
of the measure ū: ū = ū+ − ū−. Then, the following inclusions hold

supp(ū+) ⊂ Ω− = {x ∈ Ω : ϕ̄(x, 0) = −1}, (13)

supp(ū−) ⊂ Ω+ = {x ∈ Ω : ϕ̄(x, 0) = +1}. (14)

Furthermore, we have that |Ω+| = |Ω−| = 0. In addition, in dimension n = 1, there
exist finitely many points {xj}mj=1 ⊂ Ω and real numbers {λ̄j}mj=1 such that

ū =

m∑
j=1

λ̄jδxj with λ̄j

{
≤ 0 if ϕ̄(xj , 0) = +1,
≥ 0 if ϕ̄(xj , 0) = −1.

(15)

Proof. Let us denote Ωū+ = supp(ū+) and Ωū− = supp(ū−). From (11) and (12)
we deduce

‖ū‖M(Ω) = |ū|(Ω) =

∫
Ωū+

dū+ +

∫
Ωū−

dū−

≥ −
∫

Ωū+

ϕ̄(x, 0) dū+ +

∫
Ωū−

ϕ̄(x, 0) dū−

= −
∫

Ω

ϕ̄(x, 0) dū = ‖ū‖M(Ω).

Hence, ∫
Ωū+

(1 + ϕ̄(x, 0))dū+ +

∫
Ωū−

(1− ϕ̄(x, 0))dū− = 0,

therefore ∫
Ωū+

(1 + ϕ̄(x, 0))dū+ =

∫
Ωū−

(1− ϕ̄(x, 0))dū− = 0.

These identities imply (13) and (14). On the other hand, because of the properties
of the heat equation, we know that the function x ∈ Ω −→ ϕ̄(x, 0) ∈ R is analytic;
see, for instance, [20]. Hence, the maximum and minimum values of this function
are achieved in a set of points having zero Lebesgue measure, unless it is a constant
function. This is not the case because ϕ̄(x, 0) = 0 for x ∈ Γ and ‖ϕ̄‖C0(Ω) = 1.
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This proves that |Ω+| = |Ω−| = 0. Finally, if n = 1, then the set of points where
a non constant analytic function achieves the extreme values is finite. Using (13)
and (14) this directly implies (15).

3. The adjoint formulation. So far we have proved that the system (1) can be
approximately controlled by using Borel measures with sparse support. To do this
we have followed a direct approach, just looking for the minimum of problem (P).
However, the analysis of the approximate controllability of the heat equation has
traditionally followed a different approach. Indeed, the approximate controllabil-
ity of (1) by using L2 initial controls has been obtained by studying the adjoint
optimization problem

(Pε) min
g∈L2(Ω)

Jε(g) =
1

2

∫
Ω

|ϕg(x, 0)|2 dxdt+ ε‖g‖L2(Ω) −
∫

Ω

ydg dx,

where ϕg is the solution of the adjoint system
∂ϕ

∂t
+ ∆ϕ = 0 in Q,

ϕ = 0 on Σ,
ϕ(T ) = g in Ω.

(16)

This problem has a unique solution in L2(0, T ;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)) for every

element g ∈ L2(Ω). The functional Jε is well defined, continuous and strictly
convex. The coercivity is more delicate to prove but, as pointed out in [13] it is a
consequence of the backward uniqueness property ensuring that ϕ(x, 0) ≡ 0 implies
that g ≡ 0.

In this way, in [13], it was proved that (Pε) has a unique solution ḡ. Then,
the initial datum ū ∈ L2(Ω) of minimum norm, with associated state ȳ, satisfying
that ‖ȳ(T ) − yd‖L2(Ω) ≤ ε is given by ū = ϕ̄(x, 0), where ϕ̄ is the solution of (9)
corresponding to ḡ.

The analysis in [13] covered also the case where the norm of ϕg(x, 0) in L2(Ω)
was replaced by the norm in any other space Lq(Ω) with 1 ≤ q < ∞, thus leading
to optimal initial data in any Lp-setting with 1 < p ≤ ∞.

In the present paper however, we are interested in optimal data in the sense of
measures. The functional above has to be then modified so to replace the L2(Ω)-
norm of ϕg(x, 0) by the L∞-one. We shall do this following the arguments in [10].

The minimization problem in the adjoint system to be considered with that
purpose is the following:

(P∞,ε) min
g∈L2(Ω)

J∞,ε(g) =
1

2
‖ϕg(x, 0)‖2C0(Ω) + ε‖g‖L2(Ω) −

∫
Ω

ydg dx.

Let us analyze this control problem. First of all, it is obvious that J∞,ε is strictly
convex and continuous. Moreover, it is coercive. Indeed, let {gk}∞k=1 ⊂ L2(Ω) such
that ‖gk‖L2(Ω) → +∞. We claim that

lim inf
k→∞

J∞,ε(gk)

‖gk‖L2(Ω)
≥ ε.

To this end, we set g̃k = gk/‖gk‖L2(Ω) and, by taking a subsequence, we can assume

that g̃k ⇀ g weakly in L2(Ω). Denote ϕk = ϕgk and ϕ̃k = ϕg̃k . Then,

J∞,ε(gk)

‖gk‖L2(Ω)
=

1

2
‖gk‖L2(Ω)‖ϕ̃k(x, 0)‖2C0(Ω) + ε−

∫
Ω

ydg̃k dx.
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The following two cases may occur:
1.- lim infk→∞ ‖ϕ̃k(x, 0)‖C0(Ω) > 0. In this case we obtain immediately that

J∞,ε(gk)

‖gk‖L2(Ω)
→∞.

2.- lim infk→∞ ‖ϕ̃k(x, 0)‖C0(Ω) = 0. Now, using the weak∗ convergence ϕ̃k(x, 0) ⇀
ϕg(x, 0) in L∞(Ω), we get by the lower semi-continuity

‖ϕg(x, 0)‖L∞(Ω) ≤ lim inf
k→∞

‖ϕ̃k(x, 0)‖L∞(Ω) = 0.

Hence, ϕg(x, 0) = 0 in Ω. Now, the classical backward uniqueness property of the
heat equation implies that ϕg ≡ 0 in Ω× (0, T ) and consequently g = 0. Therefore,
g̃k ⇀ 0 weakly in L2(Ω) and

∫
Ω
ydg̃k dx→ 0 as well. Finally, we have

lim inf
k→∞

J∞,ε(gk)

‖gk‖L2(Ω)
≥ lim inf

k→∞
[ε−

∫
Ω

ydg̃k dx] = ε,

which concludes the proof.
Let us denote by ḡ∞ the solution of (P∞,ε) and by ϕ̄∞ = ϕḡ∞ the associated state.

Since we have assumed that ‖yd‖L2(Ω) > ε, setting gλ = λyd, it is easy to check
that J∞,ε(gλ) < 0 if λ > 0 is small enough. Consequently, we have that ḡ∞ 6= 0.
To write the optimality conditions satisfied by ḡ∞, we will use the linear operator
A∗ ∈ L(L2(Ω), C0(Ω)), pre-adjoint of the linear continuous operator Au = y(T )
from the space of measures M(Ω) into L2(Ω), and given by A∗g = ϕg(0). Then,
J∞,ε can be expressed in the form

J∞,ε(g) =
1

2
‖A∗g‖2C0(Ω) + ε‖g‖L2(Ω) −

∫
Ω

ydg dx.

Thus, it holds 0 ∈ ∂J∞,ε(ḡ∞), which implies the existence of an element ū∞ ∈
∂‖ · ‖C0(Ω)(ϕ̄∞(0)), where ϕ̄∞ = ϕḡ∞ , such that

0 = ‖ϕ̄∞(0)‖C0(Ω)Aū∞ +
ε

‖ḡ∞‖L2(Ω)
ḡ∞ − yd.

If ȳ∞ denotes the solution of (1) corresponding to ū∞, then Aū∞ = ȳ∞(T ). Then
the above equality can be rewritten

‖ϕ̄∞(0)‖C0(Ω)ȳ∞(T )− yd = − ε

‖ḡ∞‖L2(Ω)
ḡ∞. (17)

On the other hand, ū∞ ∈ ∂‖ · ‖C0(Ω)(ϕ̄∞(0)) implies by definition∫
Ω

(z − ϕ̄∞(0)) dū∞ + ‖ϕ̄∞(0)‖C0(Ω) ≤ ‖z‖C0(Ω) ∀z ∈ C0(Ω).

These inequalities are equivalent to

‖ϕ̄∞(0)‖C0(Ω) =

∫
Ω

ϕ̄∞(0) dū∞ and ‖ū∞‖M(Ω) = 1. (18)

Finally, if we set( ḡ
ϕ̄

)
= − 1

‖ϕ̄∞(0)‖C0(Ω)

( ḡ∞
ϕ̄∞

)
and

( ū
ȳ

)
= ‖ϕ̄∞(0)‖C0(Ω)

( ū∞
ȳ∞

)
,

then we get from (17) and (18) that (ḡ, ϕ̄, ū, ȳ) satisfies (9)-(12), and hence ū is the
solution of (P).

4. Numerical approximation of problem (P).
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4.1. Motivation. In this section, for the sake of simplicity, we assume Ω ⊂ Rn to
be convex and n ≤ 3. The results of this section will probably hold without these
restrictions. But such an extension would require further technical developments.

We consider a family of triangulations {Kh}h>0 of Ω̄, defined in the standard
way. To each element K ∈ Kh we associate two parameters hK and %K , where
hK denotes the diameter of the set K and %K is the diameter of the largest ball
contained in K. The size of the mesh is defined by h = maxK∈Kh hK . We also
assume the standard regularity assumptions on the triangulation:

(i) – There exist two positive constants %K and δK such that hK
%K
≤ %K and h

hK
≤ δK

∀K ∈ Kh and ∀h > 0.
(ii) – Define Ωh = ∪K∈KhK, and let Ωh and Γh denote its interior and its boundary,
respectively. We assume that the vertices of Kh placed on the boundary Γh are
points of Γ.

We also introduce a temporal grid 0 = t0 < t1 < . . . < tNτ = T with τk =
tk− tk−1 and set τ = max1≤k≤Nτ τk. We assume that there exists a constant κ such
that

κ−1 ≤ τk
τk+1

≤ κ,

cf. the corresponding assumption in [25].
We will use the notation σ = (τ, h) and Qσ = Ωh × (0, T ).
To each triangulation Kh we associate the usual space of linear finite elements

Yh =

yh ∈ C0(Ω) : yh =

Nh∑
j=1

yjej , where {yj}Nhj=1 ⊂ R

 ,

where {xj}Nhj=1 are the interior nodes of Kh and {ej}Nhj=1 is the nodal basis formed

by the continuous piecewise linear functions such that ej(xi) = δij for every 1 ≤
i, j ≤ Nh.

Following [5] we define the space of discrete controls by

Uh =

uh ∈M(Ω) : uh =

Nh∑
j=1

ujδxj , where {uj}Nhj=1 ⊂ R


where δxj denotes the Dirac measure centered at the point xj . For every σ we
introduce the discrete state space

Yσ = {yσ ∈ L2(I, Yh) : yσ|Ik∈ Yh, 1 ≤ k ≤ Nτ},

where Ik = (tk−1, tk]. The elements yσ ∈ Yσ can be represented in the form

yσ =

Nτ∑
k=1

yk,hχk,

where χk is the indicator function of Ik and yk,h ∈ Yh. Moreover, by definition of
Yh, we can write

yσ =

Nτ∑
k=1

Nh∑
j=1

ykjχkej .

Thus Uh and Yσ are finite dimensional spaces of dimension Nh and Nτ × Nh,
respectively, and bases are given by {δxj}

Nh
j=1 and {χkej}k,j .
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Next we define the linear operators Λh : M(Ω)→ Uh ⊂M(Ω) and Πh : C0(Ω)→
Yh ⊂ C0(Ω) by

Λhu =

Nh∑
j=1

〈u, ej〉δxj and Πhy =

Nh∑
j=1

y(xj)ej .

The operator Πh is the nodal interpolation operator for Yh. Concerning the operator
Λh we have the following result.

Theorem 4.1 ([4, Theorem 3.1]). The following properties hold.

(i) For every u ∈M(Ω) and every y ∈ C0(Ω) and yh ∈ Yh we have

〈u, yh〉 = 〈Λhu, yh〉, (19)

〈u,Πhy〉 = 〈Λhu, y〉. (20)

(ii) For every u ∈M(Ω) we have

‖Λhu‖M(Ω) ≤ ‖u‖M(Ω), (21)

Λhu
∗
⇀ u in M(Ω) and ‖Λhu‖M(Ω) → ‖u‖M(Ω) as h→ 0. (22)

(iii) There exists a constant C > 0 such that for every u ∈M(Ω) we have

‖u− Λhu‖W−1,p(Ω) ≤ Ch1−n/p′‖u‖M(Ω), 1 < p <
n

n− 1
, (23)

‖u− Λhu‖(W 1,∞
0 (Ω))∗ ≤ Ch‖u‖M(Ω), (24)

with 1/p′ + 1/p = 1.

4.2. Discrete state equation. In this section we approximate the state equation.
We recall that Ik was defined as (tk−1, tk] and consequently yk,h = yσ(tk) = yσ|Ik ,
1 ≤ k ≤ Nτ . To approximate the state equation in time we use a dG(0) discontin-
uous Galerkin method, which can be formulated as an implicit Euler time stepping
scheme. Given a control u ∈M(Ω), for k = 1, . . . , Nτ we set

(
yk,h − yk−1,h

τk
, zh

)
+ a(yk,h, zh) = 0

y0,h = y0h,

∀zh ∈ Yh (25)

where (·, ·) denotes the scalar product in L2(Ω), a is the bilinear form associated to
the operator −∆, i.e.,

a(y, z) =

∫
Ω

∇y∇z dx,

and y0h is the unique element of Yh satisfying∫
Ω

y0hzh dx =

∫
Ω

zh du ∀zh ∈ Yh. (26)

The existence and uniqueness of the solution of (25) is obvious. Let us reformulate
(25) in an equivalent form in terms of yσ ∈ Yσ with yσ|Ik = yk,h. We define the
bilinear form Bσ : Yσ × Yσ −→ R by

Bσ(yσ, zσ) =

Nτ∑
k=2

(yk,h − yk−1,h, zk,h) +

∫ T

0

a(yσ(t), zσ(t)) dt+ (y1,h, z1,h). (27)

Then, it is immediate to check that yσ is the solution of (25) if and only if

Bσ(yσ, zσ) =

∫
Ω

z1,h du ∀zσ ∈ Yσ. (28)
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The following theorem establishes the convergence of these approximations.

Theorem 4.2. Let us assume that Γ is of class C1,1 and let {uσ}σ ⊂ M(Ω) be

a sequence such that uσ
∗
⇀ u in M(Ω). If y is the state associated to u, solution

of (1), and {yσ}σ denote the discrete states associated to {uσ}σ, then yσ ⇀ y in
Lr(Q) for every r ∈ [1, 4

3 ) and yσ(T )→ y(T ) in L∞(Ω).

First, we will prove the boundedness of {(yσ, yσ(T ))}σ in Lr(Q) × L2(Ω). To
do it we need some technical lemmas. We recall that given yh ∈ Yh, its discrete
Laplacian ∆hyh ∈ Yh is defined through the identity

(∆hyh, zh) = −(∇yh,∇zh) ∀zh ∈ Yh; (29)

see, for instance, [31, Chapter 2]. The statement of the next lemma is similar to
the discrete Gagliardo–Nirenberg inequality, see [18, Lemma 3.3].

Lemma 4.3. For every δ ∈ (0, 1
2 ] there exists Cδ > 0 such that

‖yh‖L∞(Ω) ≤ Cδ‖∇yh‖
1
2−δ
L2(Ω)‖∆hyh‖

1
2 +δ

L2(Ω) ∀yh ∈ Yh. (30)

Proof. Let us fix 0 < δ ≤ 1/2 and set pδ = 3
1−δ . Therefore, 3 < pδ ≤ 6 holds.

Then, from the Sobolev embedding W 1,pδ(Ω) ⊂ C(Ω̄) (recall that n ≤ 3) and the
interpolation inequality in Lp spaces we have

‖yh‖L∞(Ω) ≤ cδ‖∇yh‖Lpδ (Ω) ≤ c′δ‖∇yh‖
1
2−δ
L2(Ω)‖∇yh‖

1
2 +δ

L6(Ω). (31)

Now, we consider the Dirichlet problem{
−∆yh = −∆hyh in Ω,

yh = 0 on Γ.

Since Γ is of class C1,1 we know that yh ∈ H2(Ω) ∩ H1
0 (Ω); see [17, Chapter 2].

Moreover, the following identity holds

(∇(yh − yh),∇zh) = 0 ∀zh ∈ Yh.

Hence, yh is the Ritz projection of yh. Using again the regularity of Γ, so to be in
the assumptions of [2, Theorem 8.5.3], we infer

‖∇yh‖L6(Ω) ≤ C‖∇yh‖L6(Ω) ≤ C‖yh‖H2(Ω) ≤ C ′‖∆hyh‖L2(Ω).

Combining this inequality with (31) we deduce (30).

The next lemma provides a discrete analog of the compact embedding of H2(Ω)
into L∞(Ω).

Lemma 4.4. Let {yh}h, yh ∈ Yh, be a sequence for h→ 0 with

‖∆hyh‖L2(Ω) ≤ C.

Then, there exists a subsequence (denoted again by {yh}) with yh → y strongly in
L∞(Ω).

Proof. As in the proof of the previous lemma we consider for each yh ∈ Yh the
corresponding element yh ∈ H2(Ω) ∩H1

0 (Ω) as the solution of{
−∆yh = −∆hyh in Ω,

yh = 0 on Γ.
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As noted above yh is the Ritz projection of yh. There holds

‖yh‖H2(Ω) ≤ c‖∆yh‖L2(Ω) = c‖∆hyh‖L2(Ω) ≤ C.

Due to the compact embedding of H2(Ω) into L∞(Ω), there is a subsequence (de-
noted in the same way) with yh → y strongly in L∞(Ω). For this subsequence we
obtain

‖y − yh‖L∞(Ω) ≤ ‖y − yh‖L∞(Ω) + ‖yh − yh‖L∞(Ω)

≤ ‖y − yh‖L∞(Ω) + ch2−n2 ‖yh‖H2(Ω)

≤ ‖y − yh‖L∞(Ω) + ch2−n2 ‖∆hyh‖L2(Ω).

For h→ 0 within this subsequence we obtain yh → y strongly in L∞(Ω).

In the next lemma we provide a result on discrete smoothing, which is similar
to [18], cf. also [29].

Lemma 4.5. Let g ∈ L2(Ω) and δ ∈ (0, 1
2 ] be given. For every σ we take ϕσ ∈ Yσ

as the unique element of Yσ satisfying

Bσ(zσ, ϕσ) = (g, zNτ ,h) ∀zσ ∈ Yσ. (32)

Then, there exists C ′δ > 0 independent of g such that the following inequalities hold

‖ϕk,h‖L∞(Ω) ≤ C ′δ(T − tk−1)−( 3
4 + δ

2 )‖g‖L2(Ω), (33)

for all 1 ≤ k ≤ Nτ .

Proof. First, we observe that the inequalities

(T − tk−1)‖∆hϕNτ+1−k,h‖L2(Ω) +
√
T − tk−1‖∇ϕNτ+1−k,h‖L2(Ω) ≤ C‖g‖L2(Ω),

(34)
for all 1 ≤ k ≤ Nτ , can be established by repeating the arguments of [25, Theorem
4.5-Inequality (4.14)]. Now, it is enough to combine these inequalities with (30) to
get (33).

Lemma 4.6. Let yσ ∈ Yσ be the solution of (25) (or equivalently (28)), and let δ
and C ′δ be as in Lemma 4.5. Then, the following inequalities hold

‖yk,h‖L2(Ω) ≤ C ′δt
−( 3

4 + δ
2 )

k ‖uσ‖M(Ω) for 1 ≤ k ≤ Nτ (35)

and

‖∆hyσ(T )‖L2(Ω) ≤ CδT−( 7
4 + δ

2 )‖uσ‖M(Ω). (36)

Proof. Obviously it is enough to prove (35) for k = Nτ , hence tk = T . Indeed, for
any other k we can replace the interval [0, T ] for [0, tk] in the above estimates and
proceed in the same way as we do for k = Nτ . Let ϕσ ∈ Yσ be as in Lemma 4.5
with g = yNτ ,h. Taking zσ = yσ in (32), we get with (28) and (33)

‖yNτ ,h‖2L2(Ω) = Bσ(yσ, ϕσ) =

∫
Ω

ϕ1,h duσ

≤‖uσ‖M(Ω)‖ϕ1,h‖L∞(Ω) ≤ C ′δT−( 3
4 + δ

2 )‖uσ‖M(Ω)‖yNτ ,h‖L2(Ω),

which implies (35). To prove (36) we combine (35) for k̃ = [Nτ/2] and again the
estimate

T

2
‖∆hyσ(T )‖L2(Ω) ≤ C‖yk̃,h‖L2(Ω)

from [25, Theorem 4.5-Inequality (4.14)].



16 EDUARDO CASAS AND BORIS VEXLER AND ENRIQUE ZUAZUA

Lemma 4.7. The sequence {yσ}σ of solutions of problems (25) is bounded in Lr(Q)
for every r ∈ [1, 4

3 ).

Proof. Let δ ∈ (0, 1
2 ) arbitrary and take r ∈ [1, 4

3+2δ ). Using (35) we infer

‖yσ‖rLr(Q) =

∫ T

0

‖yσ(t)‖rLr(Ω) dt =

Nτ∑
k=1

τk‖yk,h‖rLr(Ω)

≤

(
Nτ∑
k=1

t
−r( 3

4 + δ
2 )

k τk

)(
C ′δ‖u‖M(Ω)

)r
≤

(
Nτ∑
k=1

∫ tk

tk−1

t−r(
3
4 + δ

2 ) dt

)(
C ′δ‖u‖M(Ω)

)r
=

(∫ T

0

t−r(
3
4 + δ

2 ) dt

)(
C ′δ‖u‖M(Ω)

)r
.

Since r( 3
4 + δ

2 ) < 1, then the above integral is finite and the boundedness of {yσ}σ
in Lr(Q) follows. Finally, for every r < 4

3 we can take δ > 0 sufficiently close to 0

such that r < 4
3+2δ . This concludes the proof.

Proof of Theorem 4.2. Taking δ = 1
2 in (36) we get

‖∆hyσ(T )‖L2(Ω) = ‖∆hyNτ ,h‖L2(Ω) ≤
C ′1/2

T 2
‖uσ‖M(Ω). (37)

Since {uσ}σ is bounded in M(Ω), we deduce with Lemma 4.7, Lemma 4.6 and
Lemma 4.4 the existence of a subsequence, denoted in the same way, such that

yσ ⇀ y in Lr(Q) and yσ(T )→ yT ∈ L∞(Ω) (38)

for some y ∈ Lr(Q) and yT ∈ L∞(Ω). We will prove that y is the solution of
(1) associated to u and yT = y(T ). Therefore, since every convergent subsequence
has the same limit, the whole sequence convergence to this limit. Without loss of
generality we can assume that r > 1. Let ψ ∈ C∞(Ω̄) ∩ C0(Ω) and ξ ∈ C1[0, T ].

Let ψh be the Ritz projection of ψ on Yh, then ψh → ψ in W 1,r′

0 (Ω). Then, we have∫ T

0

(yσ(t), ψh)ξ′(t) dt

=

Nτ∑
k=1

∫ tk

tk−1

(yk,h, ψh)ξ′(t) dt =

Nτ∑
k=1

(yk,h, ψh)(ξ(tk)− ξ(tk−1))

=−
Nτ∑
k=1

(yk,h − yk−1,h, ψh)ξ(tk−1) + (yNτ ,h, ψh)ξ(T )− (y0,h, ψh)ξ(0)

=

Nτ∑
k=1

τka(yk,h, ψh)ξ(tk−1) + (yσ(T ), ψh)ξ(T )−
∫

Ω

ψh duσξ(0)

=

Nτ∑
k=1

τka(yk,h, ψ)ξ(tk−1) + (yσ(T ), ψh)ξ(T )−
∫

Ω

ψh duσξ(0)

=−
Nτ∑
k=1

τk(yk,h,∆ψ)ξ(tk−1) + (yσ(T ), ψh)ξ(T )−
∫

Ω

ψh duσξ(0)



SPARSE INITIAL DATA IDENTIFICATION FOR PARABOLIC PDE 17

=−
∫ T

0

(yσ(t),∆ψ)ξ(t) dt+ (yσ(T ), ψh)ξ(T )−
∫

Ω

ψh duσξ(0)

+

Nτ∑
k=1

∫ tk

tk−1

(yσ(t),∆ψ)(ξ(t)− ξ(tk−1)) dt.

Since r′ > 4, we have that W 1,r′

0 (Ω) ⊂ C0(Ω) and hence ψh → ψ in C0(Ω). More-
over, |ξ(t) − ξ(tk−1)| ≤ τ‖ξ′‖C[0,1] for 1 ≤ k ≤ Nτ , therefore we can pass to the
limit in the above identity and obtain

(yT , ψ)ξ(T )−
∫
Q

y

(
∂(ξψ)

∂t
+ ∆(ξψ)

)
dx dt =

∫
Ω

ψ du ξ(0). (39)

Since the linear combination of functions ξψ are dense in Lr
′
(0, T ;W 2,r′(Ω) ∩

W 1,r′

0 (Ω)) ∩ W 1,r′(Q), Φ is contained in this space, and y ∈ Lr(Q), we deduce
that (4) holds. Hence, y is the solution of (1). Moreover, taking ξ ∈ C1[0, T ]
with ξ(T ) = 1 and ξ(0) = 0, we get from (6) and (39) that (y(T ), ψ) = (yT , ψ)

∀ψ ∈W 2,r′(Ω) ∩W 1,r′

0 (Ω), which implies that y(T ) = yT .

4.3. Discrete control problem. Now, we define the discrete control problem as
follows

(Pσ)

{
min J(u) = ‖u‖M(Ω),

(u, yσ,u(T )) ∈M(Ω)× B̄ε(yd),
where yσ,u ∈ Yσ is the discrete state associated to u, i.e. the solution of (25) or
equivalently (28)

Let us study the existence of solutions for problems (Pσ).

Theorem 4.8. There exists σ0 > 0 such that for every σ = (τ, h), with |σ| =
τ +h ≤ σ0, the discrete problem (Pσ) has at least one solution. Among them, there
exists a unique solution ūσ ∈ Uh. Moreover, any other solution ũσ ∈M(Ω) of (Pσ)
satisfies Λhũσ = ūσ. Finally, the identity ‖ȳσ(T )− yd‖L2(Ω) = ε holds.

Proof. First, we have to prove that the set of controls u ∈M(Ω) for which yσ,u(T ) ∈
B̄ε(yd) is non empty. From the approximate controllability property of the heat
equation, we know that there exists a regular elements u0, for instance u0 ∈
H2

0 (Ω) ⊂ M(Ω) such that its associated state yu0
belongs to the open ball Bε(yd).

Due to the regularity of u0 we have that ‖yu0(T ) − yσ,u0(T )‖L2(Ω) → 0; see [31,
Chapter 9]. Hence, there exists σ0 > 0 such that yσ,u0

∈ Bε(yd) for all |σ| ≤ σ0.
Now, the proof of the existence of a solution ũσ ∈M(Ω) is like in Theorem 2.4.

Given a solution ũσ ∈ M(Ω) of (Pσ), let us define ūσ = Λhũσ ∈ Uh. Then,
(19) implies that the initial states y0,h corresponding to ũσ and ūσ, defined by (26),
are equal. Hence, the identity yσ,ūσ = yσ,ũσ holds. In particular we have that
yσ,ūσ (T ) = yσ,ũσ (T ) ∈ Bε(yd), which proves that ūσ is a feasible control for (Pσ).
Additionally, (21) shows that J(ūσ) ≤ J(ũσ), consequently ūσ is also a solution of
(Pσ).

For any solution ūσ of (Pσ) with the corresponding state ȳσ the identity

‖ȳσ(T )− yd‖L2(Ω) = ε

is proved like in Theorem 2.2.
Let us prove the uniqueness of solutions in Uh. Let ūσ, v̄σ ∈ Uh be two solutions of

(Pσ) with associated discrete states ȳσ and z̄σ, respectively. Arguing as in the proof
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of Theorem 2.4, we obtain that ȳσ(T ) = z̄σ(T ). Now, subtracting the first equations
in (25) satisfied by ȳσ and z̄σ, and computing ȳk−1,h−z̄k−1,h from ȳk,h−z̄k,h, starting
at ȳNτ ,h − z̄Nτ ,h = 0, we conclude that ȳσ − z̄σ = 0. By (26) this results in∫

Ω

ψhd(ūσ − v̄σ) = 0 for all ψh ∈ Yh.

Hence, ūσ − v̄σ = 0 by the structure of Uh.

The next theorem characterizes the solutions of (Pσ).

Theorem 4.9. Let σ0 be as in Theorem 4.8 and assume that |σ| ≤ σ0. Let ūσ ∈
M(Ω) such that ȳσ(T ) ∈ B̄ε(yd), where ȳσ is the state discrete associated to ūσ.
Then, ūσ is the solution of problem (Pσ) if and only if there exist two elements
ḡσ ∈ Yh and ϕ̄σ ∈ Yσ such that∫

Ω

ḡσ(x)(yh(x)− ȳσ(x, T )) dx ≤ 0 ∀yh ∈ B̄ε(yd) ∩ Yh, (40)
For k = Nτ , . . . , 1(
ϕ̄k,h − ϕ̄k+1,h

τk
, zh

)
+ a(zh, ϕ̄k,h) = 0

ϕ̄Nτ+1,h = ḡσ,

∀zh ∈ Yh, (41)

‖ūσ‖M(Ω) = −
∫

Ω

ϕ̄1,h dūσ, (42)

‖ϕ̄1,h‖C0(Ω) = 1. (43)

Furthermore, ϕ̄σ and ḡσ are unique, and there exists a real number λ̄σ > 0 such
that ḡσ = λ̄σ(ȳσ(T )− yd,σ), where yd,σ is the L2(Ω) projection of yd on Yh.

Proof. We proceed as in the proof of Theorem 2.5. To this end, we define the
operator Aσ ∈ L(M(Ω), L2(Ω)) by Aσu = yσ,u(T ) and Jσ(u) = J(u)+IB̄ε(yd)(Aσu).

In the proof of Theorem 4.8 it was established the existence of an element u0 ∈M(Ω)
such that yσ,u0(T ) ∈ Bε(yd). Hence, we can use the chain rule and to deduce that
ūσ is a solution of (Pσ) if and only if there exits g̃σ ∈ ∂IB̄ε(yd)(ȳσ(T )) such that

0 ∈ ∂J(ūσ) +A∗σ g̃σ with A∗σ being the pre-adjoint operator of Aσ. Now, we take ḡσ
as the L2(Ω) projection of g̃σ on Yh and define ϕ̄σ as the solution of (41). Then,
for every u ∈M(Ω) we have

〈A∗σ g̃σ, u〉 = 〈g̃σ, Aσu〉 =

∫
Ω

g̃σyσ,u(T ) dx =

∫
Ω

ḡσyσ,u(T ) dx

=

∫
Ω

ϕ̄σ(T )yσ,u(T ) =

∫
Ω

y0,hϕ̄1,h dx =

∫
Ω

ϕ̄1,h du,

where we have used the fact that (41) is the adjoint state equation of (25), and the
definition of y0,h given by (26). Using that −A∗σ g̃ ∈ ∂J(ūσ) and the above identity
we infer ∫

Ω

ϕ̄1,h du−
∫

Ω

ϕ̄1,h dūσ + ‖ūσ‖M(Ω) ≤ ‖u‖M(Ω) ∀u ∈M(Ω).

As in the proof of Theorem 2.5, (42) and (43) follow from these inequalities. Using
that ḡσ is the projection of g̃σ and g̃σ ∈ ∂IB̄ε(yd)(ȳσ(T )), we obtain∫

Ω

ḡσ(yh − ȳσ(T )) dx =

∫
Ω

g̃σ(yh − ȳσ(T )) dx ≤ 0 ∀yh ∈ B̄ε(yd) ∩ Yh,
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which proves (40). Furthermore, from the last inequality it follows the existence
of λ̄σ > 0 such that g̃σ = λ̄σ(ȳσ(T ) − yd), therefore ḡσ = λ̄σ(ȳσ(T ) − yd,h). The
uniqueness of λ̄σ follows from (43), which implies the uniqueness of ϕ̄σ.

We have the following result analogous to Corollary 1.

Corollary 2. Let ūσ ∈ Uh be the solution of (Pσ) for |σ| ≤ σ0. Then, we have

ūσ =

Nh∑
j=1

λ̄jδxj , where λ̄j

 = 0 if |ϕ̄1,h| < 1,
≤ 0 if ϕ̄1,h = +1,
≥ 0 if ϕ̄1,h = −1.

(44)

This corollary is an immediate consequence of (42), (43), and the definition of
Uh. We finish this section by proving the convergence of (Pσ).

Theorem 4.10. Let {ūσ}|σ|≤σ0
be a sequence formed by solutions of problems (Pσ),

and let {ȳσ}|σ|≤σ0
be the associate discrete states. Then, the following convergence

properties are fulfilled

ūσ
∗
⇀ ū in M(Ω) and lim

σ→0
‖ūσ‖M(Ω) = ‖ū‖M(Ω), (45)

ȳσ ⇀ ȳ in Lr(Q) ∀r ∈ [1,
4

3
) and ȳσ(T )→ ȳ(T ) in L∞(Ω), (46)

where ū is the solution of (P) and ȳ is its associated state.

Proof. Let u0 ∈M(Ω) be the control introduced in the proof of Theorem 4.8. Then,
we know that u0 is an admissible control for the problem (Pσ) for every |σ| ≤ σ0.
Hence, J(ūσ) ≤ J(u0) for all |σ| ≤ σ0, and therefore {ūσ}|σ|≤σ0

is bounded in

M(Ω). Let us take a subsequence, denoted in the same way, such that ūσ
∗
⇀ u in

M(Ω), and let y be the associated continuous state. We will prove that u is the
solution ū of (P) and y = ȳ. From Theorem 4.2 we have that

ȳσ ⇀ y in Lr(Q) ∀r ∈ [1,
4

3
) and ȳσ(T )→ y(T ) in L∞(Ω).

Since ȳσ(T ) ∈ B̄ε(yd) for every |σ| ≤ σ0, we deduce that y(T ) ∈ B̄ε(yd) as well.
Hence, u is an admissible control for problem (P). For every ρ ∈ (0, 1) we set
uρ = ū + ρ(u0 − ū). If we denote by yρ the state associated to uρ and by y0 the
state associated to u0, then we have

‖yρ(T )− yd‖L2(Ω) ≤ (1− ρ)‖ȳ(T )− yd‖L2(Ω) + ρ‖y0(T )− yd‖L2(Ω) < ε.

We fix ρ and consider yρ,σ ∈ Yσ being the discrete solution associated to uρ. By
Theorem 4.2 we have yρ,σ(T ) → yρ(T ) in L∞(Ω). Hence, yρ,σ(T ) ∈ Bε(yd) and
uρ is an admissible control for (Pσ) for every σ sufficiently small. Therefore, using
that ūσ is a solution of (Pσ), that ū is the solution of (P) and u is an admissible
control for (P), we infer

J(ū) ≤ J(u) ≤ lim inf
σ→0

J(ūσ) ≤ lim sup
σ→0

J(ūσ) ≤ J(uρ).

Finally, passing to the limit as ρ→ 0 we conclude

J(ū) ≤ J(u) ≤ lim inf
σ→0

J(ūσ) ≤ lim sup
σ→0

J(ūσ) ≤ J(ū).

This proves that u = ū and consequently y = ȳ. Moreover, the above inequality
implies (45) as well.
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Corollary 3. Under the conditions of Theorem 4.10 there holds

λ̄σ → λ̄, ḡσ → ḡ in L2(Ω), and ϕ̄1,h → ϕ̄(0) in L∞(Ω).

Proof. Due to the fact that λ̄ 6= 0 and λ̄σ 6= 0 we can define

ϕ̂ =
1

λ̄
ϕ̄ and ϕ̂σ =

1

λ̄σ
ϕ̄σ.

Therefore ϕ̂ fulfills the equation
−∂ϕ̂
∂t
−∆ϕ̂ = 0 in Q

ϕ̂(x, t) = 0 on Σ
ϕ̂(x, T ) = ȳ(T )− yd in Ω

and ϕ̂σ fulfills the corresponding discrete equation with the initial condition yσ(T )−
yd,σ. Using the convergence

ȳσ(T )− yd,σ → ȳ(T )− yd in L2(Ω)

and applying Theorem 4.2 to the sequence ϕ̂σ we obtain ϕ̂1,h → ϕ̂(0) in L∞(Ω).
From Theorem 2.5 and Theorem 4.9 we get

λ̄ = −
‖ū‖M(Ω)∫
Ω
ϕ̂(0) dū

and λ̄σ = −
‖ūσ‖M(Ω)∫
Ω
ϕ̂1,h dūσ

and therefore by Theorem 4.10 we obtain λ̄σ → λ̄. The statements

ḡσ → ḡ in L2(Ω), ϕ̄1,h → ϕ̄(0) in L∞(Ω)

follow then directly by the definitions of ḡ, ḡσ, ϕ̂ and ϕ̂σ.

5. Final remarks. In this section, we address two final issues. First, we see that
the control problem (P) is the limit, as p→ 1, of the corresponding control problems
where the measures are replaced by functions of Lp(Ω). In the second part, we
consider the case where the control u is supported in a given small set ω ⊂ Ω with
possibly an empty interior.

5.1. Problem (P) as limit of control problems with functions. Given 1 <
p < +∞, we define the control problem

(Pp)

{
min Jp(u) = 1

p‖u‖Lp(Ω),

(u, yu(T )) ∈ Lp(Ω)× B̄ε(yd).

It is immediate that this problem has a unique solution. Let us check that (P)
is the limit of problems (Pp) as p → 1. First, we observe that the case p = 1 is
not a well posed problem because of the lack of compactness properties of L1(Ω).
Consequently, there is a mathematical reason to consider the space of measures
in the definition of (P). Now, let us denote by up the solution of (Pp) and fix
u∞ ∈ L∞(Ω) such that its associated state y∞, solution of (1) for u = u∞, belongs
to the ball B̄ε(yd). Therefore, u∞ is an admissible control for any problem (Pp).
We consider a sequence up of solutions to (Pp) for p→ 1 and obtain:

‖up‖L1(Ω) ≤ |Ω|1−
1
p ‖up‖Lp(Ω) = p|Ω|1−

1
p Jp(up) ≤ p|Ω|1−

1
p Jp(u∞) ≤ |Ω| ‖u∞‖∞.
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Then, taking a subsequence, denoted in the same way, we have that up
∗
⇀ ũ in

M(Ω). Let us prove that ũ = ū, the solution of (P). First, we observe

J(ū) ≤ J(ũ) ≤ lim inf
p→1

‖up‖L1(Ω) ≤ lim sup
p→1

‖up‖L1(Ω)

≤ lim sup
p→1

p|Ω|1−
1
p Jp(up) ≤ lim sup

p→1
p|Ω|1−

1
p Jp(u∞) = ‖u∞‖L1(Ω).

Since u∞ was taken arbitrarily in L∞(Ω), the above inequalities prove that

J(ū) ≤ J(ũ) ≤ lim inf
p→1

‖up‖L1(Ω) ≤ lim sup
p→1

‖up‖L1(Ω)

≤ inf
{
‖u‖L1(Ω) : u ∈ L∞(Ω), and yu(T ) ∈ B̄ε(yd)

}
.

(47)

Let us prove that the last infimum coincides with J(ū). Of course it is bigger or
equal to J(ū), we establish the opposite inequality. To this end, let us fix again
u∞ ∈ L∞(Ω) such that ‖y∞(T )−yd‖L2(Ω) < ε. Define uρ = (1−ρ)ū+ρu∞ ∈M(Ω)
for every ρ ∈ (0, 1). Then, the state yρ associated with the control uρ satisfies
‖yρ(T ) − yd‖L2(Ω) < ε. Now, we take a sequence {uk}∞k=1 ⊂ C(Ω̄) such that

uk
∗
⇀ uρ in M(Ω) and limk→∞ ‖uk‖L1(Ω) = ‖uρ‖M(Ω). Since yk(T ) → yρ(T )

in L2(Ω) as k → ∞ (see Lemma 2.3), we deduce the existence of kε such that
‖yk(T )− yd‖L2(Ω) < ε for every k ≥ kε. Hence, we get

inf
{
‖u‖L1(Ω) : u ∈ L∞(Ω), and yu(T ) ∈ B̄ε(yd)

}
≤ lim
k→∞

‖uk‖L1(Ω) = ‖uρ‖M(Ω) → ‖ū‖M(Ω) as ρ→ 0.

This along with (47) imply that J(ū) = J(ũ), hence the uniqueness of a solution of
(P) shows that ū = ũ. Moreover, the above inequalities also prove that ‖up‖L1(Ω) →
‖ū‖M(Ω) as p→ 1. Finally, from the uniqueness of the limit ū, we deduce that these
properties of convergence are valid for the whole sequence {up}p>1, not only for a
subsequence.

5.2. Controls supported in little domains ω. Let ω be a relatively closed subset
of Ω with a Lebesgue measure |ω| > 0. Instead of taking M(Ω) as space of controls,
we can consider the controls u ∈M(ω). Then, the control problem is formulated in
the form

(P)

{
min J(u) = ‖u‖M(ω),

(u, yu(T )) ∈M(ω)× B̄ε(yd),
If we denote

C0(ω) = {z ∈ C(ω̄) : z(x) = 0 ∀x ∈ ∂ω ∩ Γ},
then M(ω) = C0(ω)∗. All the previous results remain valid. First we observe, that
for any ε > 0, (P) has feasible controls. Indeed, first we observe that the space
{yu(T ) : u ∈ M(ω)} is dense in L2(Ω). To check this we proceed as usual: if
g ∈ L2(Ω) satisfies that

∫
Ω
gyu(T ) dx = 0 for every u ∈ M(ω), then we prove that

g = 0. To this end, we take ϕg ∈ L2(0, T ;H1
0 (Ω))∩C([0, T ], L2(Ω)) solution of (16).

Then, according to (6) we have∫
ω

ϕg(0) du =

∫
Ω

gyu(T ) dx = 0 ∀u ∈M(ω),

hence ϕg(x, 0) = 0 ∀x ∈ ω. But, x ∈ Ω→ ϕg(x, 0) is analytic and |ω| > 0, therefore
ϕg(x, 0) = 0 ∀x ∈ Ω holds. Finally, the backward uniqueness property of the heat
equation implies that ϕg = 0 in Ω× (0, T ), and consequently g = 0.
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Now, the problem (P∞,ε) defined in §3 should be modified as follows

(P∞,ε) min
g∈L2(Ω)

J∞,ε(g) =
1

2
‖ϕg(x, 0)‖2C0(ω) + ε‖g‖L2(Ω) −

∫
Ω

ydg dx.

The proof of the coercivity of J∞,ε follows the same lines as in §3, and we deduce
that ϕg(x, 0) = 0 for every x ∈ ω. Arguing as above, we get again the identity
g = 0.
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