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Diameter of simplicial complexes, a computational approach

Abstract

The computational complexity of the simplex method, widely used for linear program-
ming, depends on the combinatorial diameter of the edge graph of a polyhedron with n
facets and dimension d. Despite its popularity, little is known about the (combinatorial)
diameter of polytopes, and even for simpler types of complexes. For the case of polytopes,
it was conjectured by Hirsch (1957) that the diameter is smaller than (n − d), but this
was disproved by Francisco Santos (2010). In this thesis, we present two main results.
First, a lower bound on the maximum diameter for two classes of simplicial complexes:
pure simplicial complexes and pseudo-manifolds. Second, a topological improvement of
Santos’ counter example to the Hirsch Conjecture. This one is (slightly) smaller than the
previously known smallest simplicial non-Hirsch sphere.

Keywords: Discrete Geometry, Computational Geometry, Simulated Annealing,
Simplicial Complex, Combinatorial Diameter.

Diámetro de complejos simpliciales, un enfoque computacional

Resumen

La complejidad computacional del método del símplex, ampliamente usado en progra-
mación lineal, depende del diámetro combinatorio del grafo de aristas de un poliedro con
n facetas y dimensión d. Pese a su popularidad, sabemos muy poco sobre el diámetro
(combinatorio) de los politopos, incluso para clases más simples de complejos. Para el
caso de los politopos, Hirsch (1957) conjeturó que el diámetro era menor que n− d, pero
su conjetura fue refutada por Francisco Santos (2010). En esta memoria, presentamos
dos resultados fundamentales. Primero, una cota inferior para el diámetro de dos clases
de complejos simpliciales: complejos simpliciales puros y pseudo-variedades. Segundo,
una mejora topológica del contraejemplo de Santos a la conjetura de Hirsch. Ésta es más
pequeña que la anterior esfera simplical no Hirsch más pequeña que se conocía.

Palabras clave: Geometría discreta, Geometría computacional, Enfriamiento sim-
ulado, Complejo simplicial, Diámetro combinatorio.
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1 Introduction

The problem of finding the combinatorial diameter of simplicial complexes, particularly
polytopal simplicial complexes, arises naturally from the analysis of the simplex method.
In the simplex algorithm, we start from a vertex of a polytope and we move from one
vertex to a neighbour until we reach the “best vertex” of an objective function. Therefore,
a natural question to ask is how long can this path of vertices be in the worst case or,
equivalently, what is the maximum possible diameter of a polytopal simplicial complex,
as a function of its diameter and number of vertices.

For the case of polytopal simplicial complexes, it was conjectured by Hirsch (1957)
that the diameter of a polytope with n facets and dimension d is at most n − d. This
was disproven by Francisco Santos Leal (2010) [17], who found a non-Hirsch polytope
with 86 facets, dimension 43, and diameter 44. His construction, and the smaller ones
subsequently constructed in [15], depend on certain lower dimensional polytopes called
prismatoids. In particular, finding prismatoids satisfying certain property with a small
number of vertices (or more significantly, with small difference “vertices minus dimension”)
will yield smaller counterexamples to the Hirsch Conjecture. It is also important to note
it could still be that the diameter of all polytopes is linear on n−d, even if no polynomial
upper bound is known [12]. It would be desirable to prove or disprove this fact, and find
the linear constant if applicable.

Partially as a means to shed light on the Hirsch question, but also as a natural
mathematical question in itself, it is interesting to study how big can the diameter of
other classes of simplicíal complexes be, and learn from the examples that we may find
in this greater generality. This approach was started by Adler and Dantzig in the early
70s and has been continued, for example, in [14, 2]. See [19] for a recent survey of results.
This is also the approach taken in this work, in which we present two contributions:

• First, we show how to construct pure simplicial complexes of a given dimension d−1
and number of vertices n which have diameters equal (modulo a constant depending
on d) to the trivial upper bound of O(nd−1). We first do this for some particular
complexes that we call corridors (Theorem 4) and then show how to go from any
pure simplicial complex to a pseudo-manifold of the same dimension without signif-
icantly changing neither the diameter nor the number of vertices (Theorem 8 and
Corollary 1). These constructions improve the previously best ones which were of
type Θ(n2d/3) for general complexes, and Θ(n2) (no d in the exponent) for pseudo-
manifolds. Our constructions are algebraic and are based on a sequence produced
by certain polynomials over a (large enough) finite field. They are inspired in the
well-known constructions of linear-feedback shift registers of maximal length. See
the details in Section 3.

• We then introduce the concept of topological prismatoids, which generalize the (ge-
ometric) prismatoids from [17, 15], and we implement a metaheuristic to search for
topological prismatoids with the non-Hirsch property and smaller than the ones
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in [17, 15]. Our program has been able to find topological prismatoids of dimension
5 with 16 vertices and diameter 6. If one of these spheres turns out to be polytopal,
then we would have constructed non-Hirsch polytopes of dimension 11 and with 22
facets, while the current smallest ones have dimension 20 and 40 facets [15]. Our
algorithm combines the ideas of simulated annealing (SA), a common metaheuristic
technique widely used in optimization, with the notion of bistellar flips, elementary
transformations that change a simplicial complex in a local manner preserving its
topology. Geometric bistellar flips are widely used in computational geometry and
polyhedral combinatorics (see for example [18]). The topological version that we
use is very similar to the one used in [3] in the context of triangulated manifold sim-
plification, the main difference being that, there only manifolds without boundary
are used and here, we need a version for manifolds with boundary. See the details
in Section 4.

Even if our example turned out to be nonpolytopal (which could happen because
not all simplicial spheres can be obtained from a polytope), it implies the existence of a
sphere of dimension 10 and with 22 vertices whose diameter is greater than 11. This is an
example of a non-Hirsch sphere (a d−1-sphere with n vertices and diameter greater than
n−d). The existence on non-Hirsch spheres has been known for about 35 years now [14],
but the smallest ones previously known are slightly bigger than ours: dimension 11 and
24 vertices in [14]. Both the sphere in [14] and the one we construct are shellable, a purely
combinatorial property meaning basically that the sphere can be constructed one simplex
at a time in such a way that all the intermediate complexes are balls. Shellability is a
necessary condition for polytopality, but it is not sufficient. In fact, the sphere of [14] was
proved to be non-polytopal in [2]. For the sphere we construct polytopality is unknown.

Let us mention that, although we speak of our sphere as a single example, in fact
the program has given as output 5 prismatoids with the same parameters (dimension 5,
22 vertices, and width 6) and 100 5-dimensional prismatoids of width six and number of
vertices still smaller than the previously known non-Hirsch prismatoids with a number of
vertices ranging from 17 and 22. (But we have checked shellability only for one of them,
since no polynomial time algorithm to check shellability is known).

As a final motivation for (the second part of) our work, we bring here a quote by Gil
Kalai about the role of examples in mathematics [11, p. 769]:

It is not unusual that a single example or a very few shape an entire mathe-
matical discipline. [...] And it seems that overall, we are short of examples.
The methods for coming up with useful examples in mathematics (or coun-
terexamples for commonly believed conjectures) are even less clear than the
methods for proving mathematical statements.
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2 Preliminaries

2.1 Definitions

Definition 1. A simplicial complex is a set S = {s1, . . . , sn} of sets, such that ∀s ∈
S, ∀f ⊂ s, f ∈ S. The complex is pure of dimension d − 1 (PSC) if every maximal
element of S has d elements.

The elements of S are called faces, and some faces have special names:

Facet If |s| = d.

Ridge If |s| = d− 1.

Edge If |s| = 2.

Vertex If |s| = 1.

Empty face If s = ∅.

Also note that the set of faces has a natural partial order, the inclusion. The Hasse
diagram of the simplicial complex is the directed graph representing the inclusion relations
between faces.

Example. The boundary of an octahedron in the three-dimensional space is a pure sim-
plicial complex of dimension 2, that is, d = 3. It has eight facets, twelve ridges (that are
also edges) and six vertices. It is also homeomorphic to the 2-dimenisonal sphere S2.

In general, given a basis for the affine space Rn, e1, . . . , en, the convex hull of {±e1, . . . ,±en},
which is called a crosspolytope, is a PSC with 2n vertices, 2n facets, and homeomorphic
to a (n− 1)-sphere.

Definition 2. Given a (d− 1)-dimensional simplicial complex S and a face f ∈ S:

• The star of f is the set of faces of S that are supersets of f .

• The ustar of f is the union of all faces in the star of f . That is to say, it is the set
of vertices that appear in some face containing f .

• The link of f is the set of faces of S \ f that, joined with f , belong to the complex.
That is, the vertices of the link, joined with f , form the ustar of f .

Note that the ustar of a face f is the set of vertices v such that f ∪ {v} is still in the
complex. We will use this definition to “move up” in the Hasse diagram, and we can
“move down” by removing vertices of the faces.
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Definition 3. A polytope of dimension d is an bounded intersection of affine half-spaces
in Rd. A polytope is simple if every point of it is at most in d of the defining hyperplanes
at the same time. That is, a polytope can be defined by a set of n linear inequalities in
d variables.

The intersection of one of the defining hyperplanes with the polytope (that is, the
points satisfying one equation with equality) is called a facet. In a similar way, the set of
point satisfying with equality two equations are a ridge.

The dual graph of the polytope is a graph with a vertex for each facet and an edge
for each ridge, such that an edge connecting two vertices in the graph corresponds to a
ridge in the intersection of two facets.

Definition 4. Given a d-dimensional simple polytope P defined by n equations, we can
define its dual simplicial complex as the subsets of {1, . . . , n} such that there is an x ∈ Rd

satisfying exactly the corresponding equations with equality. That is, its vertices are the
facets of the polytope, and its facets are the vertices of P .

Observe that the dual simplicial complex of a polytope P is the face complex of
proper faces of the poytope dual to P . For example, the dual complex of a cube is the
boundary complex of an octahedron.

Definition 5. The dual graph of a pure simplicial complex S is a graph having the facets
of S as vertices where two facets are adjacent if their intersection is a ridge. The dual
diameter of S is the diameter of its dual graph.

We define also HC(n, d) as the maximum dual diameter a simplicial complex with n
vertices and dimension d− 1 can have in a particular class C of simplicial complexes.

Definition 6. A prismatoid is a polytope Q with two parallel facets Q+ and Q−, that we
call the bases, containing all the vertices. We call a prismatoid simplicial if all faces except
perhaps Q+ and Q− are simplices. Observe that the faces of a prismatoid of dimension d,
excluding the two bases, form a simplicial complex of dimension d−1 and homeomorphic
to the product of Sd−2 with a segment. We call this complex the prismatoid complex of
Q.

Definition 7. The width of a prismatoid is the distance in the dual graph from one base
to the other, or, to be more in agreement with our definitions above, it is two plus the
minimum distance butween a facet adjacent to a base and a facet adjacent to the other
base.

Theorem 1 (Strong d-step theorem for prismatoids[17]). If Q is a d-prismatoid with
width l and n vertices, there is another n − d-prismatoid Q′ with 2n − 2d vertices and
width at least l + n− 2d.

In particular, if l > d then the polytope dual to Q′ violates the Hirsch Conjecture.
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Theorem 2 (Matschke-Santos-Weibel’ improved counterexample [15]). There is a pris-
matoid with 28 vertices, dimension 5 and width 6. That is, there is a non-hirsch polytope
with dimension 23 and 46 vertices.

Remark. The best example in [15] has actually 25 and not 28 vertices. But in our
computations in section 4 we take the one with 28 vertices as the initial state for the
simulated annealing, because it has much more symmetry and is thus easier to input.
Part of our goal was in fact to see whether we could go from the 28 example to one
smaller than 25, in order to compare our methods with the half-computational ones used
in [15].

One of our main results in this project is a simplification of the Matschke-Santos-
Weibel example, but in a topological sense. We now define the main object we are working
with:

Definition 8. A ((d − 1)-dimensional) topological prismatoid is a (d − 1)-dimensional
pure simplicial complex homeomorphic to Sd−2 × [0, 1] (that is, it is homeomorphic to a
cylinder), and such that every face with all its vertices in the same boundary component
is fully contained in the boundary. Put differently, the induced subcomplex on each
boundary component coincides with the boundary component itself. (Observe that these
boundary components are, by definition, (d− 2)-spheres).

2.2 Previous best bounds on the diameter of simplicial complexes

For many important classes of simplicial complexes it is open whether HC(n, d) is poly-
nomial or not. For example, no manifolds are known in which the diameter grows more
than linearly, but no polynomial upper bound is known even in the much smaller class of
simplicial spheres. Our first main result is precisely an improvement on the best known
lower bound of two classes of simplicial complexes: pure simplicial complexes (defined in
the previous section) and pseudomanifolds:

Definition 9. A pseudo-manifold is a pure simplicial complex in which every ridge be-
longs to exactly two facets.

For the class PSC of all pure (connected) simplicial complexes, it was known that:

Theorem 3 (Santos [19, Corollary 2.12]).

Ω
(n
d

) 2d
3 ≤ HPSC(n, d) ≤ 1

d− 1

(
n

d− 1

)
' nd−1

d!
.

Here the upper bound is obtained by counting the number of ridges in the complex,
and it is the same for pseudo manifolds.

For the case of pseudo-manifolds, the best known lower bound was quadratic. The
following table sums the previously known best lower bounds.
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Upper bound Lower bound
PSC O(nd−1) Ω(n2d/3)

(Santos, 2013)
P. Mani-
folds

O(nd−1) Ω(n2)
(Todd, 1974)

Spheres 2d−3n
(Larman 1970)

1.08(n− d)
(Walkup-Mani 1980)

Simplicial
Polytopes

2d−3n
(Larman 1970)

1.05(n− d)
(Matschke-Santos-
Weibel 2015)

3 The maximum diameter of pure simplicial complexes
and pseudo-manifolds

This section is based in our preprint [5]

3.1 pure simplicial complexes

Our bound for the pure simplicial complex case is as follows:

Theorem 4. For every d ∈ N there are infinitely many n ∈ N such that:

HPSC(n, d) ≥ nd−1

(d+ 2)d−1
− 3.

Observe that this matches the upper bound in Theorem 3, modulo a factor in
Θ(d3/2e−d), since d! ' e−ddd

√
2πd.

Remark. Our proof of Theorem 4 uses an arithmetic construction valid only when the
number n of vertices is of the form q(d + 2) for a sufficiently large prime power q. But
every interval [m, 2m] contains an n of that form, because there is a power of 2 between
m/(d+2) and m/(2(d+2))). Hence, the theorem is also valid “for every d and sufficiently
large n”, modulo an extra factor of 2d−1 in the denominator.

Our construction uses the following well-known result that can be found, for example,
in [13, Theorem 33.16]:

Theorem 5. Let p(x) = xd + a1x
d−1 + · · · + ad be a primitive polynomial of degree d

over the field Fq with q elements, for some d ∈ N and some prime power q. Consider the
sequence (un)n∈N defined by the linear recurrence

un+d + a1un+d−1 + · · ·+ adun = 0,

6



starting with any non-zero vector (u1, . . . , ud) ∈ Fdq. Then, (un)n∈N has period qd − 1. In
particular, its intervals of length d cover all of Fdq \ {(0, . . . , 0)}. That is:{

(ui, . . . , ui+d−1) : i ∈ {1, . . . , qd − 1}
}

= Fdq \ {(0, . . . , 0)}.

Remember that a primitive polynomial of degree d is the minimal polynomial of a
primitive element in the degree d extension Fqd of Fd. The number of monic primitive
polynomials of degree d over Fq equals φ(qd − 1)/d, since Fqd has φ(qd − 1) primitive
elements, and each primitive polynomial is the minimal polynomial of d of them. In our
construction we will need the coefficients of p(x) to be all different from zero. Primitive
polynomials with this property do not exist for all q, but they exist when q is sufficiently
large with respect to d, which is enough for our purposes:

Lemma 1. For every fixed d ∈ N and every sufficiently large prime power q, there is a
primitive polynomial of degree d over Fq with all coefficients different form zero.

Proof. This follows from the fact that the number of primitive monic polynomials of
degree d is greater than the number of monic polynomials of degree d with at least one
zero coefficient, for q large.

Indeed, the latter is qd − (q − 1)d ≤ dqd−1. The former equals φ(qd − 1)/d, which is
greater than (qd− 1)1−ε/d, for every 0 < ε < 1 and sufficiently large q. Letting ε = 1

d2
we

get:
φ(qd − 1)

d
>

(qd − 1)1−
1
d2

d
>

(qd/2)1−
1
d2

d
=
q(d

2−1)/d

21− 1
d2 d

>
qd−

1
d

2d
> dqd−1.

With this we can now show our first construction proving Theorem 4.

Theorem 6. Suppose that p(x) ∈ Fq[x] is a primitive polynomial of degree d − 1 with
no zero coefficients. Then, there is a pure simplicial complex C of dimension d− 1, with
n = (d+ 2)q vertices and at least nd−1

(d+2)d−1 − 1 facets whose dual graph is a cycle.

Proof. Our set of vertices is V = Fq × [d + 2]. That is, we have as vertices the elements
of Fq but each comes in d+ 2 different “colors”. In the sequence (ui)i∈N of Theorem 5 we
color its terms cyclically. That is, call

vi = (ui, i mod (d+ 2)).

Let C be the simplicial complex consisting of the intervals of length d in the sequence
(vi)i∈N. That is, we let:

Fi = {vi, . . . , vi+d−1}, C =
{
Fi : i ∈ {1, . . . , lcm(qd−1 − 1, d+ 2)}

}
.
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Observe that the sequence {Fi}i∈N is periodic of period lcm{qd−1− 1, d+ 2} ≥ qd−1− 1 =
nd−1

(d+2)d−1 − 1. Also, by construction, G(C) contains a Hamiltonian cycle. We claim that,
in fact, G(C) equals that cycle.

For this, observe that ridges in C are of two types: some are of the form {vi, . . . , vi+d−2}
and some are of the form {vi, . . . , vj, vj+2, . . . , vi+d−1}. We will study the facets that these
types of ridges may belong to.

For a ridge R = {vi, . . . , vi+d−2} to be contained in a facet F we need the color of the
vertex in F \R to be either i− 1 or i+ d− 1 (modulo d+ 2).

Once we have the color c of the new vertex v = (u, c) ∈ F \R, the recurrence relation
(and the fact that the first and last coefficients of p are non-zero) gives us only one choice
for u. Thus, R is only contained in the two contiguous facets Fi−1 and Fi.

The same argument applies to a ridge {vi, . . . , vj, vj+2, . . . , vi+d−1}. Now the color of
the new vertex must be j + 1 mod d+ 2 and the recurrence relation (and the condition
ai! = 0∀i = 1 . . . d− 1) implies the vertex to be precisely vj+1.

Proof of Theorem 4. Delete a facet in the complex C of Theorem 6.

A complex whose dual graph is a path, such as the one in this proof, is called a corridor
in [19]. It is a general fact that the maximum diameter HPSC(n, d) is always attained at
a corridor ([19, Corollary 2.7]). That is to say, HPSC(n, d) equals the maximum length of
an induced path in the Johnson graph Jn,d: the dual graph of the complete complex of
dimension d − 1 with n vertices. Induced paths in graphs are sometimes called snakes.
In this language Theorem 4 can be restated as:

Theorem 7. There is a constant c > 0 such that for every fixed d and sufficiently large
n the Johnson graph Jn,d contains snakes passing through a fraction c−d of its vertices.

A stronger statement is known for the graph of a d-dimensional hypercube: it contains
snakes passing through a positive, independent of d, fraction of the vertices [1].

3.2 Pseudo-manifolds

Theorem 8. For every strongly connected pure (d − 1)-dimensional simplicial complex
(that is, a PSC with connected dual graph) with n vertices and diameter δ there is a
(d− 1)-dimensional pseudo-manifold without boundary with 2n vertices and diameter at
least δ + 2.

Let C be the simplicial complex in the statement and V its vertex set. By [19,
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Corollary 2.7] there is no loss of generality in assuming that C is a corridor. That is, its
dual graph is a path, so its facets come with a natural order F0. . . . , Fδ.

We now construct a simplicial complex C ′ in the vertex set V ′ = V × {1, 2}. For a
vertex v ∈ V we denote v1 and v2 the two copies of it in V ′, and refer to the superscripts
as “colors”. Let ai and bi be the unique vertices in Fi \ Fi+1 and Fi \ Fi−1, respectively.
(For F0 and Fδ we choose a0 and bδ arbitrarily, but different from b0 and aδ). We define
C ′ as the complex containing, for each Fi, the 2d−1 colored versions of it in which ai and
bi have the same color. The diameter of C ′ is at least the same as that of C. Let us see
that C ′ is almost a pseudo-manifold:

• If a ridge R in C ′ is obtained from a colored version of Fi by removing a vertex
v different from ai or bi, then the only other facet containing R is the copy of Fi
in which the color of v is changed to the opposite one. This is so because the
“uncolored” version of R is a ridge of only the facet Fi of C, by assumption.

• If a ridge R in C ′ is obtained from a colored version of Fi (i < δ) by removing ai
then the only other facet containing R is obtained by adding to it the vertex bi+1

with the same color as ai+1 has in R.

• Similarly, if a ridge R in C ′ is obtained from a colored version of Fi (i > 0) by
removing bi then the only other facet containing R is obtained by adding to it the
vertex ai−1 with the same color as bi−1 has in R.

That is, the only ridges of C ′ that do not satisfy the pseudo-manifold property are the
2d−1 colored versions of R1 := F0 \ {b0} and the 2d−1 colored versions of R2 := Fδ \ {aδ},
which form two (d − 2)-spheres, (each with the combinatorics of a cross-polytope, the
generalization of the octahedron). Choose a vertex a in R1 and a vertex b ∈ R2, different
from one another (which can be done since R1 6= R2). Consider the complex C ′′ obtained
from C ′ adding to it all the colored versions of R1 \a joined to {a1, a2} and all the colored
versions of R2 \ b joined to {b1, b2}. The effect of this is glueing two (d − 1)-balls with
boundary the two (d− 2)-spheres we wanted to get rid off, so that C ′′ is now a pseudo-
manifold. (Observe that the new ridges introduced in C ′′ all contain either {a1, a2} or
{b1, b2} so they were not already in C ′).

Remark. In some contexts it may be useful to apply Theorem 8 to closed corridors,
that is, pure complexes whose dual graph is a cycle. The construction in the proof works
exactly the same except now C ′ is already a pseudo-manifold, with no need to glue two
additional balls to it as we did in the final step of the proof.

Putting together Theorems 4 and 8 we get the main result in this section:

Corollary 1. For every d ∈ N there are infinitely many n ∈ N such that:

HPM(n, d) ≥ nd−1

(d+ 2)d−1
− 3,

where PM denotes the class of all pseudo-manifolds.
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Our construction also works for a particularization of pseudo-manifolds, called duoids [20].
A duoid is a pseudomanifold with no induced crosspolytopes. For duoids, the previous
lower bound was quadratic in n.

4 Computational search for non-Hirsch topological pris-
matoids

The purpose of this second part is to find a non-Hirsch topological prismatoid by start-
ing with the Matschke-Santos-Weibel prismatoid with 28 vertices and doing operations
preserving its width while reducing its number of vertices.

We will use the metaheuristic method of simulated annealing modifying the initial
example vie topological bistellar flips.

4.1 Bistellar flips

Bistellar flips are basic operation we perform in our complexes to transform them into
hopefully simpler ones. The initial definition of a (topological) flip is as follows, first
introduced in [16] and then used in [3] for sphere simplification:

Definition 10 (Bistellar flips in manifolds [3, 16]). In a pure simplicial complex C homeo-
morphic to a manifold (without boundary), a bistellar flip is a transformation of C defined
by a pair (f, l) where f ∈ C and l /∈ C is a minimal nonface of C (every subset of l is
a face but l is not), and link(f) = ∂(l) (∂(l) here represents the topological boundary,
which for a face l coincides with the simplicial complex of proper faces of l). The changes
produced on the facets of C are:

• Every face of C containing f is removed.

• Every subset of f ∪ l containing l but not containing f is inserted as a new face.

Observe that the definition implies f + l = d+ 1, since f ∪ l \ {v} is a facet in C for
every v ∈ l.

In a prismatoid, which is a manifold with boundary, we want to allow also boundary
flips, so we are interested in flips of two types:

Interior flips These have exactly the definition above, except we need to require the
new face l to be introduced to contain vertices of both bases of the prismatoid.
Without this condition the flip introduces a face in the interior of our complex but
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with all vertices in the same boundary component, contradicting the requirement
that the subcomplex induced by the vertices in each boundary component equals
that boundary component.

Boundary flips The boundary of a prismatoid (or of any manifold with boundary) is
itself a manifold without boundary. We want to allow for the flips in one of the
boundary components to be considered flips in the prismatoid, but this only makes
sense if all facets to be removed by the flip contain one and the same vertex v in
the other boundary component. If this happens we can modify the prismatoid by
performing a cone over a flip in the boundary. Observe that in this case |f |+ |l| = d
instead of d+ 1, both f and l are contained in the same base. The vertex v in the
other base is called the apex of the flip.

The following definition considers together these two types of flips:

Definition 11. A bistellar flip in a topological prismatoid C is a triple (f, l, v) such that
f is a face, l is a minimal nonface, and either:

• |f | + |l| = d + 1 and v = ∅, in which case l is required to have vertices from both
bases and link(f) = ∂(l).

• |f |+ |l| = d and v is a vertex, in which case f and l are required to be contained in
the base opposite to v and link(f) = ∂(l)∗v. Here ∗ denotes the operation of join of
two simplicial complexes, but in the case where v is a single vertex link(f) = ∂(l)∗v
is just a cone over ∂(l).

In both cases, performing a flip makes the following changes:

• Every face containing f is removed.

• Every subset of the f ∪ l ∪ v containing l but not f is added as a face.

As a side remark, if C is a geometric simplicial complex and some additional geometric
conditions on l are satisfied both cases of our flips are special cases of the usual geometric
bistellar flips used in computational geometry and polyhedral combinatorics [18].

Only a boundary flip can modify the boundary. That means that only boundary flips
can add or remove vertices, and only boundary flips can add new faces to the boundary.

One remark that is important for the implementation is that from the support of a
flip (the set f ∪ l ∪ v of vertices involved in the flip), we can determine if the flip is a
boundary or an interior flip and recover the sets f , l and v:
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• In a boundary flip, the support has a single vertex (v) in one of the components,
and d in the other one, while in an interior flip it has at least two vertices in each:
l has a vertex from each component by definition, and f has at least another from
each base because the condition link(f) = ∂(l), with |f |+ |l| = d+ 1, implies that
f is an interior face.

• In both cases, the set f ∪ v equals the intersection of all facets of C contained in
f ∪ l ∪ v. This allows us to recover f , and hence l, once we know v by the provious
point.

Then, given a possible support u with d + 1 vertices (d vertices if we want to allow
flips that introduce a new vertex, that is flips in which l is a single vertex and f a
single boundary ridge) , we can check if it corresponds to a flip preserving the prismatoid
definition:

1. First, u has to be the ustar of a ridge.

2. ustar(f) must have d+ 1 vertices (d vertices if we are adding a new one).

3. An interior flip can not add new faces to the boundary. That is, the bases must
preserve their topology as spheres.

4. The corresponding l is not a face of C.

Note that these conditions are necessary and sufficient for a flip to be valid in our
context.

4.2 Simulated annealing

Simulated annealing is a very common metaheuristic for optimization problems, used
when we have a search space and a “neighbourhood relation” between two feasible so-
lutions. It has been used successfully in combinatorial topology to simplify simplicial
complexes while preserving a condition (typically their homeomorphism type) [3]. It is
also used in conjunction with other strategies to tackle the problem of sphere recogni-
tion [10].

The idea of simulated annealing is that we perform a random walk through the neigh-
borhood graph of our feasibility space, but favouring moves that improve the objective
function over moves that do not. There is a parameter, the temperature, regulating the
probability assigned to each move as a function of how much it improves or worsens.
At higher temperatures, the move selection is more random, and when the system cools
down it converges to accepting only improving moves.
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Then, areas of the graph with smaller values of the objective function will be more
likely. As the temperature cools down, the random walk will focus on these areas, and
make optimizations with more detail.

Simulated annealing requires some tweakings and adjustments for each particular
problem:

• An appropiate objective function.

• A cooling schedule.

• A definition of the graph.

The first point requires a detailed analysis and is covered in the next subsection.

There is a lot of research on cooling schedules for each problem. It is known that SA
converges to the global optimum for a particular cooling schedule [8], but it is too slow
for any practical application. Since the best schedule depends on the problem, several
adaptative schedules have been proposed too [9]. However, the most common approach
is to define a geometric cooling schedule, of the form Tt = t0 ∗ est, where t0 (initial
temperature), s (cooling speed) and the number of iterations are chosen by hand. Since
we are very fast at flipping the simplicial complex, we have chosen a slow schedule with
a high number of iterations.

In our particular problem, the third point is already covered, every prismatoid is a
state, and two prismatoids are neighbours if there is a flip connecting them. We just need
to get random flips with uniform probability.

Note that uniform probability between the neighbours is very important, since SA
works by defining custom probabilities for each flip. Modifying the “a priori” probability
could make the search biased in unexpected ways.

4.3 The objective function

We initially had two independent goals with this project:

• Finding prismatoids of given dimension d and diameter d+ 1.

• Finding prismatoids of dimension 5 starting with Matschke-Santos-Weibel’s exam-
ple, and reduce the number of vertices.

The first case is called Plan_Z in the source files, and it uses the number of minimal
paths from base to base as objective function, starting from a crosspolytope.
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The second case is far more interesting. We add a restriction of preserving the witdh
after each flip, but we need an objective function that helps us removing vertices. Note
that to remove a vertex we require to have a flip of type (1, d), that is, a vertex whith
|f | = 1. Then, the objective function to minimize is the number of vertices, plus a
smaller function to push the algorithm in the right direction. Some heuristics we have
implemented for the latter are:

A Number of facets.

B Geometric mean of the sizes of the ustars.

C Arithmetic mean of the sizes of the three vertices with the smallest ustars.

D Number of faces.

E Generalized mean for (relatively) large negative k (k = −3) of the sizes of the ustars.

The common idea in (most of) these functions is to make the algorithm to focus on
the vertices that are easier to remove, that is, reducing the ustar of the vertex with the
smallest ustar is a priority. Using just the minimum is not the best option since it will
make the algorithm less sensible to reducing the ustars of other vertices that are not
minimum.

We have obtained our best results with the last one. That is because the generalized
mean with a negative parameter is heavily influenced by the smallest elements of the
sample.

4.4 Data structures

Since we want to work with topological prismatoids, a type of simplicial complexes, we
need a proper data structure with decent performance. It should have these operations:

• Construction from the list of facets.

• Check if a set of vertices is a face.

• Iterate through the maximal subfaces of a face.

• Iterate through the minimal superfaces of a face.

• Perform a flip.

• Compute the width of the prismatoid.

• Get a valid random flip (with uniform probability).
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A natural way of implementing this data structure would be to have the whole Hasse
diagram as a graph. That is, every face is a “node” and has a list of which nodes are
subsets and which are supersets. It is also required to have some form of indexing to get
which subsets of V are actually facets.

This approach has the potential disadvantage of storing every face. Some other data
structures are discussed in [4].

Since we need to check for membership to the complex (see 10), and our complexes
are small, we will take this approach, with some tweaking to reduce its memory load
while improving its performance.

Taking a face as a set, iteration through maximal subsets is the same as iterating
through the set, and remove a vertex each time. The hard part is to iterate through
minimal supersets. Here is where the idea of the ustar is useful. If a face f has ustar u,
every superfacet of f is of the form f ∪ {v} where v ∈ u \ f . Therefore, having the ustar
of every face stored, it is very easy to iterate through supersets too. Thus, we implement
the simplicial complex as a dictionary of pairs (face,ustar), indexed by the face.

A flip is implemented simply by removing the old faces and inserting the new inserted
faces

There is no need to store the dual graph, because it is implicit in the complex. The
neighbours of a face can be computed from the ustar of the corresponding ridge, even if
the ridge is a boundary ridge. However, we do store, for each facet, the distance to the
first base, and the number of paths achieving that distance. The reason is that we don’t
want to iterate through all the facets when performing a flip, we just want to update the
values that have changed.

Therefore, when we perform the flip, the new facets are inserted into a queue, and
the distances are updated by cascading through the prismatoid.

Finally, it is very important to have an unbiased generation of random flips. We
imitate to some extent the techinque used in polymake [7]. In polymake, there is a
set of pairs (f, l), called “options” satisfying some conditions for flipability, in particular
conditions 1 and 2 of subsection 4.1. The flips are categorized by dimension of f . Since
every flip has the ustar of a ridge as support, we planned to simplify this by using ridges
instead of the pairs (f, l). However, several ridges may have the same ustar (making them
correspond to the same potential flip). This makes this idea biased and some flips more
likely than others.

To avoid this bias, we store in options the support instead of the ridge that has that
support as its ustar.

This is very convenient, as it also makes it very easy to spot vertex-adding flips (which
are represented by having a support of d vertices). And it is also very easy to update,
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because in the “fl-model”, after every flip, some potential flips may change their f and l
while having the same support. And, since there is a bijection between a particular set
of ustar of ridges and the set of flips (we have defined this bijection with the construction
of (f, l, v)), it is easy to choose a random flip we just need to choose a random ustar and
filter non-valid ones. So our approach is more stable, requires less changes to the data
structure and it is a bit cleaner.

4.5 Implementation details

Along the course of the project we have developed several versions of the simulated
annealing algorithm.

1. One written in pure C used bitmask techniques with a pool of faces, for fast ad-
dressing and modification. This limited the maximum number of facets, making it
impossible to use it for high dimension. We did not implement boundary flips, and
we used it to try to find non-Hirsch prismatoids starting with a nonHirsch one (in
fact a cross-polytope, the dual of a hypercube).

2. A second one written in C++98, using the open-source project polymake [7] as
a library. After severe problems with polymake’s implementation of the graph
data structure, we decided to implement our own simplicial complex structure from
scratch.

3. Finally, we developed a version in C++11, using bitmask techniques from the first
version and the versatility of C++ templates. This version can make boundary
flips with great speed and has a correct implementation of everything needed for a
simulated annealing strategy. As it is common for SA, it may require some tweaking
to get good solutions.

I will focus on the last one, which can be found at my github [6]. Basically, it has
three source files:

annealing.cpp The main file, implements the simulated annealing strategy.

prismatoid.hpp Is the header file for the prismatoid class, and includes some useful
macros and functions for working with bitmasks.

prismatoid.cpp Implements the simplicial complex. It is conveniently partitioned as
follows:

1. Constructors and functions to read and write prismatoids.

2. Functions dealing with choosing and executing flips.
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3. Functions dealing with the dual graph, objective function and feasibility of the
prismatoid.

4. Error handling.

The class prismatoid has some interesting attributes:

• map<mask,mask> SC represent the set of faces of the simplicial complex as a c++
map. Its first argument is the bitmask representing the face, and the second one is
the union of all the faces in its star. Using this information, we can iterate through
its subsets and supersets, easily traversing the complex in logarithmic time.

• map<mask,il> dists has, for every facet, its distance to the first base, and the
number of shortest paths from the base to that facet.

• map<mask,int> options is the set of ustars of ridges. There is a bijection between
the set of possible flips and options, as explained previously. The second argument
is for reference counting, it represents how many ridges have this ustar. It speeds
up the execution of a flip.

The most relevant source files can be found also as an appendix. There are some
smaller scripts for polymake, verification and file manipulation, written in perl, c++ and
python that are not included here.

4.6 Experimental results

Using our approach, we have found 105 non-Hirsch topological prismatoids improving the
best (geometrical) non-Hirsch prismatoid previously known [15], which had 25 vertices. 5
of them have 16 vertices, (the minimum we have been able to get). Here is one of those.
Vertices 0, 1, 2, 3, 4, 5, 6, 7 are in one base and vertices a, b, c, d, e, f, g, h in the other one.
The list of facets is arranged by “layers”, meaning by this the number of vertices in one
and the other base:
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(1,2,3,4,g) (6,1,3,g,h) (0,7,1,g,f) (0,7,g,h,a) (2,3,h,a,f) (2,a,b,c,f)
(2,5,3,4,g) (0,5,4,b,c) (0,2,5,g,f) (0,2,g,h,a) (0,2,h,b,f) (4,h,c,e,f)
(0,7,3,4,b) (0,3,4,b,c) (6,1,3,g,f) (6,3,g,h,a) (0,5,h,b,f) (5,b,c,e,f)
(7,6,3,4,b) (0,7,1,g,d) (2,5,3,g,f) (2,3,g,h,a) (7,3,h,c,f) (7,g,c,d,f)
(6,1,3,4,b) (0,1,3,g,d) (0,1,4,g,f) (0,7,h,a,c) (3,4,h,c,f) (7,h,c,d,f)
(0,5,3,4,d) (0,2,3,g,d) (0,5,4,g,f) (0,2,h,a,c) (0,7,a,c,f) (7,g,a,c,f)
(0,1,2,3,g) (0,7,1,h,d) (1,3,4,g,f) (0,2,h,b,c) (0,2,a,c,f) (2,h,a,b,c)
(0,1,2,4,g) (0,2,5,h,d) (5,3,4,g,f) (0,5,h,b,c) (0,2,b,c,f) (2,h,a,b,f)
(0,2,5,4,g) (0,1,3,h,d) (7,6,1,h,f) (0,7,g,h,d) (0,3,b,c,f) (5,h,b,c,e)
(0,2,5,3,d) (2,5,3,h,d) (0,2,5,h,f) (6,1,g,h,d) (5,4,b,c,f) (5,h,b,e,f)
(0,7,1,4,b) (0,5,4,h,d) (7,6,3,h,f) (0,2,g,h,d) (3,4,b,c,f) (6,g,h,a,f)
(0,7,1,3,e) (0,3,4,h,d) (2,5,3,h,f) (1,3,g,h,d) (7,1,g,d,f) (7,g,h,a,c)
(7,6,1,4,b) (5,3,4,h,d) (5,3,4,h,f) (2,3,g,h,d) (6,1,g,d,f) (6,g,h,d,f)
(7,6,1,3,e) (0,7,1,h,e) (0,7,1,b,f) (0,7,h,c,e) (7,1,h,d,f) (7,g,h,c,d)

(7,6,1,h,e) (7,6,1,b,f) (0,5,h,c,e) (6,1,h,d,f)
(7,6,3,h,e) (0,7,3,b,f) (7,3,h,c,e) (5,4,h,e,f)
(0,1,3,h,e) (7,6,3,b,f) (3,4,h,c,e) (5,4,c,e,f)
(6,1,3,h,e) (6,1,3,b,f) (0,7,g,a,f)
(0,5,4,h,e) (0,1,4,b,f) (0,2,g,a,f)
(0,3,4,h,e) (0,5,4,b,f) (6,3,g,a,f)
(0,7,3,c,e) (1,3,4,b,f) (2,3,g,a,f)
(0,5,4,c,e) (0,7,3,c,f) (6,3,h,a,f)
(0,3,4,c,e)

Checking whether this prismatoid is polytopal or not seems out of reach computa-
tionally, at least within the scope of this master’s thesis. (We mention ideas on how to
try to do it in the conclusions section). But we have done two partial checks.

• We have checked that the two subcomplexes in the bases of the prismatoid are
indeed 3-dimensional polytopal spheres, as they should if the whole thing is poly-
topal.

• We have checked that the complex obtained by filling-in a triangulation of each of
the bases is a shellable 4-sphere.

Shellability of a complex is a necessary condition for polytopality, and has interesting
topological implications.

Definition 12. A pure simplicial complex of dimension d − 1 is shellable if there is an
ordering of the facets such that the intersection of each facet with the complex consisting
of the previous ones is pure (d− 2)-dimensional (that is, a union of ridges).

Checking shellability is belived to be NP-complete, and general purpose methods
(including the one implemented in polymake) failed to do it for this example. But a
semiautomatized method based on first ordering the facets by layers and distance to the
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initial base, and then iteratively swapping facets that violated the shelling definition with
later ones, succeeded. We believe this to be because our initial ordering was sufficiently
close to a shelling. It is however interesting to note that no shelling order is compatible
with the layers, because the union of the first three layers is not a ball, while every initial
segment in a shelling of a sphere is a ball.

5 Conclusions

We have obtained simplified prismatoids preserving a property (non d-step, that is, its
width is greater than d), using a common technique. 5 of them achieve the minimum,
16 vertices. We are interested in finding if these topological prismatoids correspond to
a polytope. If one of these prismatoids is polytopal, according to Theorem 1, there is a
non-Hirsch polytope in dimension 11 with 22 vertices.

Thus, an interesting idea for the future is to check if our prismatoids are polytopal.
There is some research on the topic, and a necessary condition for polytopability is
shellability. It is possible (but not trivial) to check the shellability of our prismatoids
using their “layer” structure as a guide.

Another possibility to get a polytopal prismatoid is to repeat our procedure with ge-
ometric flips. That is, instead of only using topological information, we could keep track
of the coordinates of each vertex and allow only flips that are realizable geometrically.
Originally we did not consider this because of its computational complexity. But since
topological flips are achieved in 150ms and (in the topological case) it is easy to im-
prove the starting prismatoid, with the information we have now (a reasonable objective
function and cooling schedule) it looks like a promising idea.

We could also repeat our simulated annealing strategy, starting from our smallest
prismatoids, and trying to improve heuristics for polytopability while preseving the num-
ber of vertices.

If polytopal, these smaller examples of non d-step prismatoids could shed some light
on the subject of the combinatorial diameter of polytopes. Studying them could help us
understand the properties of combinatorial diameter, maybe even giving us information
about the polynomial Hirsch conjecture.
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A Source code.

Here is the source code for reference. An updated version can be found at my github [6].

A.1 annealing.cpp

1 #include "prismatoid.hpp"
2 #include <fstream>
3 #include <functional>
4 #include <iomanip>
5 #include <cmath>
6
7 double schedule(int k) {
8 // "a ojo"-selected annealing schedule
9 double t0=1000.0;

10 return t0*pow(0.99997, k);
11 /*
12 return 1e-10;
13
14 double t0=500.0;
15 return t0/log(k+2);
16 /**/
17 }
18
19 int main() {
20 unsigned seed=chrono::system_clock::now().time_since_epoch().count();
21 rng generator(seed);
22 uniform_real_distribution<double> dist(0.0,1.0);
23 auto dice=bind(dist,generator);
24 double totaltime=0.0; int totalflips=0;
25
26 flip fl; double record=28;
27
28 for(int experiment=1; experiment>=1; experiment++) {
29 int maxk=500000;
30 double cost, oldCost, avgCost=0.0, bestCost=1e30, numPrisms=0.0;
31
32 #ifndef PLAN_Z
33 ifstream file("./28prismatoid"); prismatoid p(file); file.close();
34 #else
35 //prismatoid p(9);
36 ifstream file("./outputs1/sol83"); prismatoid p(file); file.close();
37 #endif
38
39 for(int k=0; k<maxk; k++) {
40 oldCost=p.cost();
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41 double t=schedule(k);
42
43 numPrisms++; avgCost+=oldCost; bestCost=min(bestCost,oldCost);
44 if(((k-1)%1000)==0) {
45
46 cout<<"Experiment "<<experiment
47 <<" ("<<setw(4)<<100*double(k-1)/maxk<<"%): "
48 <<setw(5)<<" temp= "<<t<<": "
49 << oldCost <<" "<<avgCost/numPrisms<<" "<<bestCost
50 <<" flip time: "<<totaltime/totalflips/1000.0<<"us."<<endl;
51 cout<<" vertices:" <<countBits(p.base1|p.base2)
52 <<" diameter:"<<p.distBase2.first<<endl;
53 totaltime=0.0; totalflips=0;
54 numPrisms=0.0; bestCost=1e30; avgCost=0.0;
55 }
56
57 auto start=chrono::steady_clock::now();
58 while(true) {
59 fl=p.execFlip(generator);
60 cost=p.cost();
61
62 swap(fl.f, fl.l);
63
64 if(!p.feasible()) {
65 p.execFlip(fl);
66 assert(p.cost()==oldCost);
67 }
68 else break;
69 }
70 auto end=chrono::steady_clock::now();
71
72 totaltime+=chrono::duration<double,nano>(end-start).count();
73 totalflips++;
74
75 double delta=cost-oldCost;
76
77 if(delta>0.0 && dice()>exp(-delta/t)) {
78 p.execFlip(fl);
79 assert(oldCost==p.cost());
80 }
81
82 t=schedule(k);
83 }
84
85 ofstream index("./outputs/index", ofstream::app);
86 index<<"Experiment "<<experiment
87 <<" ("<< oldCost
88 <<") Vertices: "<<countBits(p.base1|p.base2)
89 <<" Diameter: "<<p.distBase2.first<<endl;
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90 index.close();
91
92 ofstream sol("./outputs/sol"+to_string(experiment));
93 p.write(sol);
94 sol.close();
95 }
96
97 return 0;
98 }

A.2 prismatoid.hpp

1 #ifndef PRISMATOID
2 #define PRISMATOID // Decaf ninja style. Bit ninjustu but with class.
3 // My humble interpretation of what SimplicialComplex.hpp
4 #include <map> // should be.
5 #include <vector> //
6 #include <algorithm> // Author: Francisco "Paco" Criado
7 #include <iostream> //
8 #include <fstream> // I think my coding style is evolving into something
9 #include <iomanip> // more readable after this.

10 #include <queue> // Brief reminder: A simplex has dim vertices.
11 #include <ctime>
12 #include <chrono>
13 #include <random>
14 #include <cstdlib>
15 #include <set>
16 #include <string>
17 #include <bitset>
18 #include <cassert>
19 #include <cmath>
20
21 #define N 14
22 #define LAYER2 ((1<<N)-1)
23 #define LAYER1 (((1<<N)-1)<<N)
24
25 //PLAN_A is minimizing the facets
26 //PLAN_B is minimizing the geometric mean of card(ustar(v))
27 // (Actually it just uses the product)
28 //PLAN_C is minimizing the ustar of the smallest vertex
29 //PLAN_D minimizes the number of faces
30 //PLAN_E is generalized mean (k=3)
31 //PLAN_Z should be starting with crosspolytope
32
33 //define DEBUG
34 #define PLAN_E
35
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36 using namespace std;
37
38 typedef unsigned int mask;
39 typedef pair<int, long long unsigned> il;
40 typedef vector<int> vi;
41 typedef default_random_engine rng;
42
43 class flip { public: // f: face to remove
44 mask f,l,v; // l: maximal face to add
45 }; // v: apex of the cone (frontier flip)
46 class prismatoid { public:
47 //////////////////////////////////////////////////////////////////////////////
48 // Public stuff (that should be private)
49 //////////////////////////////////////////////////////////////////////////////
50
51 mask base1, base2; // The actual vertices in each base.
52 int dim; // A facet has dim vertices
53 int numFacets; // Number of facets.
54 bool changeBases=true; // Can we add/remove vertices?
55
56 map<mask,mask> SC; // Face and ustar of face
57 map<mask, il> dists; // Pair <distance, width> of each facet
58 il distBase2; // (distance,width) for base2
59 set<mask> adyBase2; // The set of the ridges adyacent to base2
60
61 map<mask,int> options; // Set of ustars of ridges. That’s it.
62 // Frontier flips have dim vertices.
63 // The int represents reference counting.
64
65 //////////////////////////////////////////////////////////////////////////////
66 // Public methods
67 //////////////////////////////////////////////////////////////////////////////
68
69 // S1: Constructors and IO
70 prismatoid(int _dim); // Crosspolytope
71 prismatoid(istream& input); // Reads prismatoid from file
72 void write(ostream& output); // Writes prismatoid to file
73
74 // S2: Flippin’ magic
75 flip execFlip(rng& gen); // These two update everything.
76 void execFlip(flip fl); // The first choses flip at random.
77
78 // S3: Costs and graph stuff
79 double cost(); // Cost of this prismatoid (various options).
80 bool feasible(); // Do we want this prismatoid?
81 pair<vi,vi> statsForSantos(); // f-vector and layers
82
83 // S4: Dont panic
84 bool everythingIsOK(); // Is everything OK?
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85
86 private:
87 //////////////////////////////////////////////////////////////////////////////
88 // Private stuff
89 //////////////////////////////////////////////////////////////////////////////
90
91 void cascadeFacets(); // Completes the construction from the facets
92
93 void initOptions(); // Inits the options list
94 void initGraph(); // Inits graph and dists
95 void updateDists(queue<mask>& q);// Updates dists by cascading
96
97 flip findFlip(rng& gen); // Finds a flip or crashes tryin’
98 bool checkFlip(mask u, flip& fl);// Checks the validity of u as option,
99 }; // returns the flip fl (by reference)

100
101 ////////////////////////////////////////////////////////////////////////////////
102 // S0: Ancient bit-jutsu techniques
103 ////////////////////////////////////////////////////////////////////////////////
104 inline uint countBits(mask i) {
105 i= i-((i>>1)&0x55555555); i= (i&0x33333333)+((i>>2)&0x33333333);
106 return (((i+(i>>4))&0x0F0F0F0F)*0x01010101) >> 24;
107 }
108
109 // for (mask x=firstElement(f); x!=0; x=nextElement(f,x))
110 inline mask firstElement(mask f) {return f&-f;}
111 inline void nextElement(mask f, mask& x) {x= ((x|~f)+x)&f;}
112
113 // mask x=0; do stuff while(x=nextSubset(f,x), x!=0)
114 inline void nextSubset(mask f, mask& x) {x= ((x|~f)+1)&f;}
115
116 inline void printMask(mask f) {
117 for(int i=0; i<2*N; i++) if(((1<<i)&f)!=0) cout<<i<<" "; cout<<endl;
118 }
119 inline mask readMask() {
120 string str; getline(cin, str); mask res=0;
121 for(int i=0; i<str.size(); i++) res=2*res+((str[i]==’1’)?1:0);
122 return res;
123 }
124
125 inline bool in(mask a, mask b) {return !(a&(~b));}
126
127 #endif

A.3 prismatoid.cpp

1 #include "prismatoid.hpp"
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2
3 ////////////////////////////////////////////////////////////////////////////////
4 // S1: Constructors and IO
5 ////////////////////////////////////////////////////////////////////////////////
6
7 // Assumes that in SC we have only facets of dim dim. Builds everything else.
8 void prismatoid::cascadeFacets() {
9 queue<mask> q; base1=base2=0; numFacets=0;

10
11 for(auto& it: SC) q.push(it.first),
12 base1|= LAYER1 & it.first,
13 base2|= LAYER2 & it.first,
14 numFacets++;
15
16 while(!q.empty()) {
17 mask f=q.front(); q.pop();
18 for(mask x=firstElement(f); x!=0; nextElement(f,x)) {
19 SC[f^x]|=f; q.push(f^x);
20 } }
21
22 initOptions(); initGraph();
23 #ifdef DEBUG
24 assert(everythingIsOK());
25 #endif
26
27 cout<<"built"<<endl;
28 }
29
30 // Crosspolytope constructor
31 prismatoid::prismatoid(int _dim) {
32 dim=_dim; SC=map<uint,uint>(); mask f; base2=(1<<dim)-1; base1=base2<<N;
33
34 for(uint i=1; i<base2; i++) f=(i|((i<<N)^base1)), SC[f]=f;
35 cascadeFacets();
36 }
37
38 // Constructor reading from file. The format is:
39 // -first line: dim, number of facets
40 // -next lines: each line is a new facet.
41 // The vertices 0..N-1 are in base2 and N..2N-1 in base1 (N=10).
42 prismatoid::prismatoid(istream& input) {
43 SC=map<mask,mask>();
44
45 input>>dim>>numFacets;
46
47 for(int i=0; i<numFacets; i++) { //readFacet?
48 mask f=0, aux; for(int j=0; j<dim; j++) input>>aux, f|=(1<<aux);
49 SC[f]=f;
50 }
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51 cascadeFacets();
52 }
53
54 // Write prismatoid to file in the same format.
55 void prismatoid::write(ostream& output) {
56 output<<dim<<" "<<numFacets<<endl;
57 for(auto& it: SC) if(countBits(it.first)==dim) {
58 for(int i=0; i<2*N; ++i) if((it.first&(1<<i))!=0) output<<i<<" ";
59
60 output<<endl;
61 }
62 }
63
64 ////////////////////////////////////////////////////////////////////////////////
65 // S2: Flippin’ magic.
66 ////////////////////////////////////////////////////////////////////////////////
67
68 // Inits the option set.
69 void prismatoid::initOptions() {
70 options=map<mask,int>();
71 for(auto &it:SC) if(countBits(it.first)==dim-1) options[it.second]++;
72 }
73
74 // Finds a move or crashes tryin’.
75 flip prismatoid::findFlip(rng& gen) {
76 flip fl;
77
78 uniform_int_distribution<int> dis(0, options.size()-1);
79 auto origin = options.begin(); advance(origin, dis(gen));
80
81 for(auto it= origin; it!= options.end(); ++it)
82 if(checkFlip(it->first, fl)) return fl;
83 for(auto it=options.begin(); it!=origin; ++it)
84 if(checkFlip(it->first, fl)) return fl;
85
86 assert(false); return fl;
87 }
88
89 #ifdef DEBUG
90 int numflips=0;
91 #endif
92 // Makes the flip (f,l,v).
93 void prismatoid::execFlip(flip fl) {
94 queue<mask> q; const mask f=fl.f, l=fl.l, v=fl.v, u=f|l|v;
95 // Note that the star (within the support) for a new face is:
96 // -If it has exactly one 0 in f, the support without that zero
97 // -If it has more than one 0 in f, u
98
99 #ifdef DEBUG
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100 assert(everythingIsOK());
101 #endif
102 mask x=0; do {
103
104 // The forbidden facet
105 if(x==(f|l)) continue;
106
107 // The supersets of f are disappearing faces.
108 if(in(f,x)) {
109 if(countBits(x)==dim) dists.erase(x),--numFacets;
110 if(countBits(x)==dim-1) {
111 if(in(x,base2)) adyBase2.erase(x);
112 if(--options[SC[x]]==0) options.erase(SC[x]);
113 }
114 SC.erase(x);
115 }
116
117 // The supersets of l are appearing faces.
118 else if(in(l,x)) {
119 SC[x]= (countBits(f&~x)==1)? ((f&x)|l|v): u;
120 if(countBits(x)==dim) q.push(x),++numFacets;
121 if(countBits(x)==dim-1) {
122 if(in(x,base2)) adyBase2.insert(x);
123 ++options[SC[x]];
124 } }
125
126 // Stuff that remain the same.
127 else {
128 if(countBits(x)==dim-1) if(--options[SC[x]]==0) options.erase(SC[x]);
129 SC[x]&=~u; SC[x]|= ((countBits(f&~x)==1)? ((f&x)|l|v): u);
130 if(countBits(x)==dim-1) ++options[SC[x]];
131 }
132
133 } while(nextSubset(u,x), x!=u);
134
135 base1=SC[0]&LAYER1; base2=SC[0]&LAYER2; updateDists(q);
136
137 #ifdef DEBUG
138 if(!everythingIsOK()) {
139 cout<<"Panic Attack at flip "<<numflips<<endl;
140 printMask(f);
141 printMask(l);
142 printMask(v);
143 assert(false);
144 }
145 numflips++;
146 #endif
147 }
148
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149 // Makes a random move. Returns its (f,l,v).
150 flip prismatoid::execFlip(rng& gen) {
151 flip fl=findFlip(gen); execFlip(fl); return fl;
152 }
153
154 // Allow a flip with support u if:
155 // - It is the ustar of a ridge (assumed by pertenence to options)
156 // - There’s room to add a new vertex (when required).
157 // - It does not add faces to the frontier (unless it is a frontier flip)
158 // - It does not change the set of vertices (under changeBases==false)
159 // - The ustar of f has exactly dim+1 vertices
160 // - The corresponding l is not in the complex.
161 // Returns the flip by reference.
162 bool prismatoid::checkFlip(mask u, flip& fl) {
163 mask f,l,v;
164
165 if(countBits(u)==dim) { // Add a vertex to the support when required.
166 mask newv, LAYER;
167
168 if (countBits(u&LAYER2)==1) newv= firstElement(LAYER1 &~base1);
169 else if(countBits(u&LAYER1)==1) newv= firstElement(LAYER2 &~base2);
170 else cerr<<"Error 841: Not enough cheese in buffer."<<endl;
171
172 if(newv==0) return false; u|=newv;
173 }
174
175 f=u;
176 for(mask x=firstElement(u); x!=0; nextElement(u,x))
177 if(SC.find(u^x)!=SC.end()) f&=u^x;
178 l=u^f;
179
180 if (countBits(u&base1)==1) v=(u&base1), f^=v;
181 else if (countBits(u&base2)==1) v=(u&base2), f^=v;
182 else v=0;
183
184 // Interior flips should not add new frontier faces.
185 if(v==0 && (in(l,base1) || in(l,base2))) return false;
186
187 // Am I adding/removing a vertex?
188 //if(!changeBases && (countBits(l)==1 || countBits(f)==1)) return false;
189
190 // Correct size of the support
191 if(v==0 && countBits(SC[f])!=dim+1) return false;
192 if(v!=0 && countBits(SC[f])!=dim) return false;
193
194 // l must not be in SC.
195 if(SC.find(l)!=SC.end()) return false;
196
197 fl.f=f; fl.l=l; fl.v=v; return true;
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198 }
199
200 ////////////////////////////////////////////////////////////////////////////////
201 // S3: Costs and graph stuff
202 ////////////////////////////////////////////////////////////////////////////////
203
204 // Inits graph and dists
205 void prismatoid::initGraph() {
206 adyBase2=set<mask>(); queue<mask> q;
207
208 for(auto &it:SC) {
209 if(countBits(it.first)==dim-1) {
210 if ((LAYER1 & it.first)==0) adyBase2.insert(it.first);
211 else if((LAYER2 & it.first)==0) q.push(it.second);
212 } }
213 dists=map<mask,il>(); updateDists(q);
214 }
215
216
217 // Stuff for the computation of the diameter and width.
218 inline void relaxPair(il& me, il& other) {
219 if(other.first+1<me.first) me.first = other.first+1,
220 me.second= other.second;
221 else if(other.first+1==me.first) me.second+=other.second;
222 }
223 void prismatoid::updateDists(queue<mask>& q) {
224
225 while(!q.empty()) {
226 mask f=q.front(), f2; q.pop();
227
228 if(countBits(base1&f)==dim-1) {
229 if(dists[f]==il(1,1)) continue;
230 dists[f]=il(1,1);
231
232 for(mask x= firstElement(f); x!=0; nextElement(f,x))
233 if(SC.find(f^x)!=SC.end())
234 if(countBits(f2=SC[f^x]^x)==dim) q.push(f2);
235 }
236 else {
237 // if(dists[f]==ii(0,0)) dists[f]=ii(201,0); // needed?
238 il aux(200,0);
239 for(mask x= firstElement(f); x!=0; nextElement(f,x))
240 if(SC.find(f^x)!=SC.end())
241 if(countBits(f2=SC[f^x]^x)==dim && dists.find(f2)!=dists.end())
242 relaxPair(aux, dists[f2]);
243
244 if(aux!=dists[f]) {
245 dists[f]=aux;
246 for(mask x=firstElement(f); x!=0; nextElement(f,x))
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247 if(SC.find(f^x)!=SC.end())
248 if(countBits(f2=SC[f^x]^x)==dim) q.push(f2);
249 } } }
250
251 il aux(200,0);
252 for(auto &it: adyBase2) relaxPair(aux, dists[SC[it]]);
253 assert(aux.first!=1); distBase2=aux;
254 }
255
256 // Number of vertices, distance and width
257 double prismatoid::cost() {
258 #ifdef PLAN_A
259 return double(numFacets);
260 #endif
261 #ifdef PLAN_B
262 mask vertices=base1|base2;
263 double avg=0.0;
264 for(mask x=firstElement(vertices); x!=0; nextElement(vertices,x))
265 avg+=log(countBits(SC[x]));
266 avg/=double(countBits(vertices));
267
268 return exp(avg);
269 #endif
270 #ifdef PLAN_C
271 mask vertices=base1|base2;
272 vector<double> ustars;
273
274 for(mask x=firstElement(vertices); x!=0; nextElement(vertices,x))
275 ustars.push_back((double)countBits(SC[x]));
276 sort(ustars.begin(),ustars.end());
277 return ustars[0]+ustars[1]+ustars[2]+ustars[3];
278 #endif
279 #ifdef PLAN_D
280 return SC.size();
281 #endif
282 #ifdef PLAN_E
283 mask vertices=base1|base2;
284 double avg=0.0, k=-3.0;
285 for(mask x=firstElement(vertices); x!=0; nextElement(vertices,x))
286 avg+=pow(countBits(SC[x])-dim,k)/double(countBits(vertices));
287
288 return countBits(vertices)*600 + (pow(avg,1/k)+dim);
289 #endif
290 #ifdef PLAN_Z
291 return (distBase2.first>dim)?-1e10:distBase2.second;
292 #endif
293 }
294 bool prismatoid::feasible() {
295 #ifndef PLAN_Z
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296 return distBase2.first>dim;
297 #else
298 return true;
299 #endif
300 }
301
302 // f-vector and layers.
303 pair<vi, vi> prismatoid::statsForSantos() {
304 vi fvector(dim+1), layers(dim+2);
305 for(auto &it: SC) fvector[countBits(it.first)]++;
306 for(auto &it: dists) layers[it.second.second]++;
307
308 return make_pair(fvector, layers);
309 }
310
311 ////////////////////////////////////////////////////////////////////////////////
312 // S4: Don’t panic. Please don’t panic.
313 ////////////////////////////////////////////////////////////////////////////////
314
315 // Can I panic now?
316 #ifdef DEBUG
317 bool prismatoid::everythingIsOK() {
318
319 // 1: is SC a simplicial complex?
320 //*
321 for(auto& it: SC)
322 for(mask x=firstElement(it.first); x!=0; nextElement(it.first,x))
323 if(SC.find(it.first&~x)==SC.end()||!in(it.second,SC[it.first&~x])) {
324 cout<<"I find your lack of queso annoying"<<endl;
325 cout<<"face and ustar"<<endl;
326 printMask(it.first);
327 printMask(it.second);
328 cout<<"son and ustar"<<endl;
329 printMask(it.first&~x);
330 printMask(SC[it.first&~x]);
331 return false;
332 }
333 /**/
334
335 // 1.5: Pure simplicial complex
336 //*
337 for(auto &it: SC)
338 if(it.first==it.second && countBits(it.first)!=dim) {
339 cout<<"sssh, no tears. Only "<<numflips<<" dreams now"<<endl;
340 return false;
341 }
342 /**/
343
344 // 2: Every ridge must be internal xor in a base.
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345 //*
346 for(auto& it: SC)
347 if(countBits(it.first)==dim-1)
348 if((countBits(it.second)==dim+1) ==
349 (in(it.first,base1) || in(it.first,base2))) {
350 cout<<"Non-specified excuse at "<<numflips<<"! *flips table*"<<endl;
351 printMask(it.first);
352 printMask(it.second);
353 return false;
354 }
355 /**/
356
357 // 3: adybase2 is in fact adybase2
358 // 4: options is options
359 //*
360 map<mask, int> otherOptions; set<mask> otherAdyBase2;
361 for(auto& it: SC)
362 if(countBits(it.first)==dim-1) {
363 otherOptions[it.second]++;
364 if(in(it.first, base2)) otherAdyBase2.insert(it.first);
365 }
366 if(options!=otherOptions) {
367 cout<<"Number of cows backflipping: "<<numflips<<endl;
368 return false;
369 }
370 if(adyBase2!=otherAdyBase2) {
371 cout<<numflips<<" people thinking in piranhas right now"<<endl;
372 return false;
373 }
374 for(auto& it: adyBase2){
375 assert(SC.find(it)!=SC.end());
376 if(dists.find(SC[it])==dists.end()) {
377 cout<<numflips<<" likes in Facebook"<<endl;
378 printMask(it);
379 printMask(SC[it]);
380 assert(SC.find(SC[it])!=SC.end());
381 }
382 }
383 /**/
384
385 // 5: dists
386 //*
387 for(auto& it:SC)
388 if(countBits(it.first)==dim) {
389 mask f=it.first, f2; il aux(200,0);
390
391 if(dists.find(f)==dists.end()) {
392 cout<<numflips<<" weird errors yet to be invented"<<endl;
393 return false;
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394 }
395
396 if(countBits(f&base1)==dim-1) {
397 if(dists[f]==il(1,1)) continue;
398 else {
399 cout<<numflips<<" bottles standing at the wall"<<endl;
400 return false;
401 }
402 }
403
404 for(mask x= firstElement(f); x!=0; nextElement(f,x))
405 if(SC.find(f^x)!=SC.end())
406 if(countBits(f2=SC[f^x]^x)==dim && dists.find(f2)!=dists.end())
407 relaxPair(aux, dists[f2]);
408
409 if(aux!=dists[f]) {
410 cout<<"Please reset the Universe "<<numflips<<" times."<<endl;
411 return false;
412 }
413 }
414 il aux(200,0);
415 for(auto &it: adyBase2) relaxPair(aux, dists[SC[it]]);
416 if (aux!=distBase2) {
417 cout<<numflips<<" heroes saving the day"<<endl;
418 return false;
419 }
420
421 /**/
422 return true;
423 }
424 #endif
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