
1

Contention-based Nonminimal Adaptive

Routing in High-radix Networks
Pablo Fuentes, Enrique Vallejo, Marina Garcı́a, Ramón Beivide

University of Cantabria, Spain

{pablo.fuentes, enrique.vallejo, marina.garcia, ramon.beivide}@unican.es

Germán Rodrı́guez, Cyriel Minkenberg

IBM Zurich Research Laboratory, Switzerland,

{rod,sil}@zurich.ibm.com

Mateo Valero Barcelona Supercomputing Center, Spain,

mateo@bsc.es

This is an earlier accepted version; a final version of this work can be found in the proceedings of the 2015 IEEE International

Parallel and Distributed Processing Symposium (IPDPS) under DOI 10.1109/IPDPS.2015.78. Abstract can be read here.

Copyright belongs to IEEE.

Abstract—Adaptive routing is an efficient congestion

avoidance mechanism for modern Datacenter and HPC

networks. Congestion detection traditionally relies on the

occupancy of the router queues. However, this approach

can hinder performance due to coarse-grain measurements

with small buffers, and potential routing oscillations with

large buffers.

We introduce an alternative mechanism, labelled

Contention-Based Adaptive Routing. Our mechanism

adapts routing based on an estimation of “network con-

tention”, the simultaneity of traffic flows contending for a

network port. Our system employs a set of counters which

track the demand for each output port. This exploits path

diversity thanks to earlier detection of adversarial traffic

patterns, and decouples buffer size and queue occupancy

from contention detection.

We evaluate our mechanism in a Dragonfly network. Our

evaluations show this mechanism achieves optimal latency

under uniform traffic and similar to best previous routing

mechanisms under adversarial patterns, with immediate

adaptation to traffic pattern changes.

I. INTRODUCTION

High-radix routers [1] can be exploited in HPC and

Datacenter networks. Such systems typically employ

interconnection topologies with large path diversity to

increase both the available bandwidth between pairs of

routers and fault tolerance. Some examples are the folded

Clos, the concentrated torus, the Flattened Butterfly [2],

[3], or the Dragonfly [4] (used in Cray Cascade [5] and

IBM Power 775 [6]).

By selecting one of the different paths to a given

destination, adaptive routing exploits the available path

diversity and avoids congested areas of the network.

Minimal adaptive routing selects one of the different

minimal paths with the same cost to the destination,

http://ieeexplore.ieee.org/document/7161500/?arnumber=7161500

2

which can be exploited to avoid congestion and increase

performance. Meshes, torus or folded-Clos networks

often exploit minimal routing, [7], [8], [9], [10]. By

contrast, nonminimal adaptive routing selects between

one or more minimal paths and one or more longer

nonminimal paths. The selection of a nonminimal path

makes sense to increase bandwidth between endpoints

and, especially, to avoid hotspots in the minimal path.

Flattened-butterflies or Dragonflies are networks that

require nonminimal adaptive routing, due to the low

path diversity and congestion issues when using minimal

paths.

An adequate selection between one path or another is

instrumental in obtaining the maximum network perfor-

mance. Under minimal adaptive routing such selection

can simply rely on the availability of output ports. By

contrast, the selection of a nonminimal path is a critical

decision because it implies a longer path for the traffic

and a higher use of the network resources. We denote

as misrouting trigger the mechanism employed to select

between one preferred, minimal path, and another one

(typically, nonminimal) in adaptive routing. The misrout-

ing trigger employed in previous works has been based

on an estimation of the network congestion, derived from

the occupancy of the router buffers. Different variants

of such mechanisms are used or have been proposed

in Cray Cascade[5], UGAL [11], OFAR [12] and many

other works.

Despite their wide adoption, congestion estimations

based on buffer occupancy have fundamental short-

comings which limit their effectiveness: dependency on

the buffer size, uncertainty, slow response and traffic

oscillations. Section II will analyze these shortcomings

in detail. In general, it is interesting to observe that when

adaptive routing is used to prevent performance losses,

congestion detection is not the reason that should trigger

an alternative path selection, but rather the consequence

of previous suboptimal decisions.

This paper introduces an alternative mechanism to

handle routing adaptivity in interconnection networks.

Rather than relying on congestion indicators such as

buffer occupancy, this paper explores the use of a

network contention metric to trigger adaptive routing.

Network contention has been explored before in different

contexts, such as minimal adaptive routing in NoCs [13],

[14] or wireless networks [15], but never in HPC and

Datacenter networks with nonminimal routing. Specif-

ically, we introduce the idea of contention counters, a

simple mechanism to estimate the contention of each

output port. This permits an early detection of adverse

network situations before they show up as fully popu-

lated buffers and performance degradation.

Three variants of the general idea have been applied to

Dragonfly networks. A Dragonfly is composed of groups

of high-radix routers. The few inter- and intra- group

links can easily saturate under adverse traffic. A routing

mechanism based on contention counters can divert traf-

fic from contended ports to alternative nonminimal ports

with less contention, relying only on local information

in each router. Routers quickly adapt to traffic changes,

regardless of their buffer size, and they are not prone to

routing oscillations.

Specifically, the main contributions of this paper are:

• We identify the shortcomings of using credits to

trigger misrouting: when buffers are small, the

uncertainty and granularity of the credit values do

not allow for a proper decision; when they are large,

the routing is slow in adapting to transient situations

and prone to oscillations.

• We introduce a novel misrouting trigger, contention

counters, which relies on a measure of port con-

tention rather than the buffer occupancy, effectively

3

decoupling the size of the buffers from the routing

decisions.

• We propose three different adaptive routing imple-

mentations based on the idea of contention counters,

two of them relying on local information and one

specifically for Dragonfly networks which imple-

ments Explicit Contention Notification, ECtN.

• We evaluate the proposals by simulation in the

context of Dragonfly networks. Results show that

the use of contention counters provides a very fast

response to traffic changes and allows for small

buffers that would otherwise impede taking proper

adaptive routing decisions.

The remainder of this paper is organized as follows.

Section II analyzes the main shortcomings of congestion-

based adaptive routing in HPC and Datacenter networks.

Section III introduces the general idea of contention-

based adaptive routing, and three detailed implementa-

tions based on contention counters. Section IV details

the simulation infrastructure, including a review of the

Dragonfly topology, and Section V presents the simu-

lation results. Finally, Section VI presents a discussion

about the results, Section VII introduces the related work

in the field and Section VIII concludes the paper.

II. LIMITATIONS OF CONGESTION DETECTION AND

MISROUTING TRIGGER BASED ON BUFFER

OCCUPANCY

Traditional congestion detection mechanisms rely on

the occupancy of a neighbor input buffer, or the credits

remaining in the corresponding local output port, to

detect congestion and eventually trigger misrouting. In

this Section we analyze the limitations of such approach.

data

ACKs
data

credits

b)

0
A B

credits
0

A B

a)

Uncertainty

Uncertainty

Fig. 1: Uncertainty in the use of credits. With small

buffers, the continuous transmission in a) is indistin-

guishable from a full queue b), because all packets

and credits are in-flight.

A. Granularity of the congestion detection

The size of the router buffers and the packet or flit size,

along with the credit management mechanism determine

the granularity at which the queue occupancy level can

be measured. With wormhole switching the packet size

is a multiple of the flit size, with a minimum resolution

of one flit. As an example, the PERCS interconnect

[6] employs 128-byte flits, which limits the minimum

resolution. Virtual Cut-through switching with fixed-

size packets exhibiting coarser granularity, or routers

with small buffers, can compromise the effectiveness of

the detection mechanism. For example, some Infiniband

switches only admit 4 packets per input buffer, [16].

B. Uncertainty when using output credits

In a credit-based flow control mechanism the sender

knows the buffer size of the receiver. A credit count

approximates the remaining buffer space in the neighbor

router. When a packet is sent, the credit count is decre-

mented, and when an ACK packet is received (because

the neighbor forwarded one packet from its input buffer)

the credit count is correspondingly incremented. The

bandwidth-delay product determines the minimum buffer

for reliable continuous transmission.

The estimation of the remaining buffer space in the

4

neighbor node from the credit count contains an inherent

uncertainty due to the data packets and ACK messages

which are in-flight on the link. Figure 1 depicts the

corner case in which the buffers of two consecutive

routers A and B have almost the minimum capacity

dictated by the link round-trip time (RTT). In both cases

the credit count in the output port is 0. In case a)

there is no network congestion, and router B forwards

all packets as soon as they arrive. However, because

of the packets and credits that are in flight, the credit

counter in the output port of router A is zero. In case b)

the buffer in router B is full because of congestion, so

obviously the output credit count in the first router must

be zero. The key point is that a null credit count cannot

distinguish between the fluid case a) and the congested

case b) because the sender is not aware of the packets

and credits in-flight. This means that to support credit-

based misrouting triggering, the buffer size should be

significantly larger than the limit dictated by the RTT.

Tracking the rate at which credits are returned could

mitigate this problem, at a cost of higher implementation

complexity, but would still be affected in the event of

changes in the traffic pattern.

C. Response time on traffic changes and slow-lane traffic

Occupancy-based congestion detection mechanisms

require, obviously, a high occupancy in the buffers of

the current path before selecting an alternative route.

However, when the traffic pattern changes to an adversar-

ial case which generates network hotspots, a significant

amount of time is required to fill the buffers in the

current path before a router changes to an alternative

path. Additionally, the traffic in the congested path is

condemned to suffer a high latency before reaching its

destination. This problem exacerbates with large buffers.

The problem is illustrated in Figure 2. After a traffic

A B

threshold

P1

P2

P3

P4

P9 minimal
path

P5 non
min

imal

path
s

P7

nonminimalpaths

A B

threshold

P1

P2

P3

P4

P6

P8

P9 minimal
path

P5 non
min

ima
l

path
s

P7

nonminimalpaths

P6

P8

b)

a)

Fig. 2: Response time on traffic changes and slow-

lane traffic. In a) the traffic pattern changes and multi-

ple input ports compete for the same minimal output,

which has low occupancy. When this queue gets full

enough in b), the traffic is diverted nonminimally, but

all the queues are full and will take a long time to

drain.

pattern change, the traffic from input ports P1 − P4

in router A should go minimally via output port P9,

but might select a nonminimal path using output ports

P5−P8, as depicted in case a). Since multiple input ports

in router A compete for the same output, nonminimal

routing is preferable in this situation. However, before

the input queue in router B reaches a significant popu-

lation count, all the input queues in router A compete

for the same minimal output and will send data through

it. When the credits of output P9 reach the required

threshold, depicted in b), the traffic can be diverted

nonminimally, but in this moment the input queues of

router A will typically be quite populated. In addition

to the problem of the high latency required to detect

an adversarial traffic situation, packets in the minimal

path will also experience a high latency during the queue

drain. This is an unavoidable overhead since some traffic

needs to go on the slow, congested path, in order for the

5

routers to detect congestion.

D. Oscillations of routing

Occupancy-based congestion detection is prone to os-

cillations between different paths (for example, minimal

and nonminimal) due to the existence of a feedback loop.

When the minimal path becomes congested, traffic is

diverted to non-minimal routes. Then, the buffers in the

minimal path drain their packets, so traffic is moved

again to the minimal path, generating a cycle. Such

oscillations are especially important when the routing

decision is not taken using local information, but rather

relies on Explicit Congestion Notification (ECN) mes-

sages. An example of such problem will be presented in

Section V-C with Piggybacking routing in Dragonflies.

III. CONTENTION-BASED MISROUTING TRIGGER

In this Section we first introduce the general idea

behind contention-based adaptive routing, and then three

specific mechanisms for high-radix routers. Two of these

mechanisms are topology-agnostic, while the third one

has been designed for a Dragonfly network. In this

Section we assume that each packet has one “preferred”

minimal path, and determine the condition to select

an alternative nonminimal path. Which specific path is

selected among the possible options depends on the

topology employed; our implementation in the Dragonfly

network will be presented in Section IV-A and its appli-

cation to alternative topologies is discussed in Section

VI-D.

A. General idea

The idea behind the contention-based misrouting trig-

ger is to decide the path to follow based on the con-

tention level of each port, estimated from flows in the

input queues that would proceed minimally through each

P1

P2

P3

P4

P5

P6

P2

P2

P3

P5

P2

P2

Threshold
th=30

4

1

0

0

1

Fig. 3: Base contention-detection mechanism. Con-

tention detected in port P2 since its counter exceeds

the threshold th.

output port. When many packets want to go on a given

output, such output suffers from contention. In such

case, packets will be diverted to alternative paths using

non-minimal routing, without requiring the queues to be

full. Hence, the mechanism decouples the buffer capacity

from the misrouting trigger mechanism.

From this general idea, multiple variations of this

scheme can be conceived. In this paper, we have consid-

ered two basic implementations that rely on local infor-

mation. Additionally, we introduce a third mechanism,

ECtN, which distributes contention information among

the routers in the network, increasing the statistical

significance of the counters.

B. Base

This Base mechanism employs one counter per output

port, denoted contention counter, as depicted in Figure

3. When the header of a packet reaches its input buffer

head, the routing mechanism determines its minimal

output path and increases the corresponding contention

counter. Alternative (nonminimal) routing is triggered

only when the contention counter in the minimal path

of the packet exceeds a given threshold th.

This contention counter remains increased until the

packet is completely forwarded, even though the packet

6

might be transmitted through a different output port.

Thus, counters are decremented only when a packet tail

is removed from the input buffer. We do not increase the

counters when a packet enters an input buffer because,

depending on the buffer size, this might allow for a

single flow from one input port to trigger misrouting.

Similarly, we do not decrement the counter when a

packet header starts to be forwarded. Since different

ports receive packet headers in different cycles, decre-

menting contention upon header forwarding would lead

counter values to be excessively low to provide statistical

significance.

This Base mechanism works for high-radix routers,

because there are multiple input ports which contribute

to contention detection, giving statistical significance to

the counters. Note that, when multiple virtual channels

are used per port, each of them can concurrently incre-

ment the corresponding counter, although they can not

concurrently advance to the crossbar.

C. Hybrid

Hybrid considers the contention counters and the

buffer occupancy to take into account both the contention

and congestion levels. In this implementation, there is

one threshold for contention counters and another one for

the output credits. Traffic is routed nonminimally when

any of the two individual thresholds is exceeded. Both of

them can be higher for the same final accuracy, avoiding

the problems of excessive misrouting that can arise with

a too low misrouting threshold.

D. Explicit Contention Notification (ECtN)

Explicit Congestion Notification (ECN) mechanisms

send control messages to alert other routers (or the

traffic sources) of a congestion situation. Analogously,

the idea of Explicit Contention Notification (ECtN) is to

distribute contention information among several routers

in the network, so they have more information to make

an accurate routing decision.

We have applied ECtN to the Dragonfly network

introduced in Section I and detailed later in Section IV-A.

Every router maintains two arrays of global contention

counters, denoted partial and combined, as seen in

Figure 4. Each of them has one counter per global link

of the group; if there is only one link between pairs of

groups, there will be as many counters as remote groups.

The counters in the partial array are updated from the

router input queues. When a packet is injected into a

group and its destination is a remote group, the router

increases the corresponding counter in its partial array.

This occurs with local traffic at the head of injection

queues, or with remote traffic being received through a

global input port. As in Base, the partial array is only

decremented when the packet leaves the input queue

(note that it is not possible to decrement it when it leaves

the group using local information).

The combined array is calculated by adding the coun-

ters of all the partial arrays. Periodically, the routers

broadcast their partial arrays. Upon reception of a partial

array update, routers update their combined arrays, as

depicted in Figure 4. With this mechanism, routers have

contention information for all the global ports in the

group. When traffic is injected to a group and the cor-

responding combined counter exceeds a given threshold,

the packet will be misrouted.

Additionally, the router also maintains one local

counter per output port as in Base or Hybrid. They pro-

vide contention information for its own output queues,

local links included, and allow for in-transit hop-by-hop

routing decisions.

7

combined counters

Partial counters

A

B

C D

E

Fig. 4: Combination of partial counters in router A in

ECtN.

IV. EVALUATION METHODOLOGY

In this Section we present the environment used to

evaluate the proposals. We first present a brief overview

of the Dragonfly and the implemented routing mech-

anisms. Next, we detail our simulation tool and the

parameters employed.

A. Dragonfly topology and implemented routing mecha-

nisms

Dragonfly networks [4] are highly scalable high-radix

direct networks with a good cost-performance ratio and

relatively short paths. They are considered as a promising

topology to build Exascale supercomputers [17]. They

are two-level hierarchical networks, where a group of

routers at the first level form a virtual high-radix router.

These groups of routers connect on a second-level in-

terconnection pattern. We focus on Canonical Dragon-

flies [18] with complete graphs in both topological levels

such as in PERCS [6], but our results could be similarly

applied to alternative connectivity patterns.

Such network can be defined with three parame-

ters [4]: p, the number of nodes connected to each router,

a, the number of routers in each first level group, and

h, the number of global links that each router uses to

connect to routers in other groups.

Dragonflies are prone to network congestion under

adversarial traffic patterns, both in local (intra-group,

[19], [12]) and global (inter-group, [4], [6]) links. We

denote ADV+i the adversarial pattern in which all nodes

in a group send their traffic to the group i positions

away. This can saturate the global link, as in ADV+1.

The case of ADV+h exhibits an additional pathological

case of saturation in the local links. The traffic pattern

determines performance of each routing.

Minimal (MIN) routing sends traffic hierarchically to

the destination, first to the destination group (using up

to one local and one global link, lg), then minimally

to the destination router using one local link, l. This is

appropriate for uniform traffic (UN), but suffers under

adversarial traffic.

Valiant (VAL) [20] sends traffic nonminimally, first to

a random intermediate router (lgl-), then minimally to the

destination (-lgl). This increases path diversity at the cost

of longer paths. Sending traffic to an intermediate group

avoids saturated global links in the minimal path, and we

denote it as global misrouting. The two local hops in the

intermediate group (l-l), can be seen as local misrouting,

and avoid the pathological congestion in ADV+h when

a single hop is used [12].

Minimal and Valiant are oblivious. Adaptive routing

mechanisms apply misrouting depending on the network

conditions. We implement two adaptive mechanisms

based on congestion detection: PB, considered the best

source-routing adaptive mechanism, and OLM, the best

in-transit adaptive routing.

In PiggyBacking (PB, [21]) each router marks its

global links as saturated or not based on their credit

count, and shares this data with the routers in its group,

in a form of ECN. PB employs source routing: Valiant

is applied when the minimal global link is marked as

saturated, or when the occupancy of the minimal path

8

in the source router is too congested compared to the

Valiant path. Otherwise, Minimal is used.

Opportunistic Local Misrouting (OLM, [22]) applies

in-transit local and global misrouting: global misrouting

can be selected at injection or after a first hop, as in

PAR, [21], based on the credits of the current router.

Nonminimal global link selection is random, according

to the MM+L policy defined in [23]. Local misrouting

can be used in the intermediate or destination groups

to avoid saturated local links. Both cases compare the

credits of the different ports, triggering misrouting when

the occupancy in the nonminimal output is below a

percentage of the minimal output. Both PB and OLM

employ relative misrouting thresholds, rather than the

simplified fixed threshold used in the explanation of

Section II-C.

For contention-based adaptive routing, we implement

the three models from Section III. They are adapted for

in-transit adaptive routing in the Dragonfly as follows.

We implement the same misrouting policy and deadlock

avoidance mechanisms as OLM. The routing decision

for a packet is taken when it reaches the head of an

input queue. In Base, when the contention counter in

its minimal path exceeds the fixed misrouting threshold,

a nonminimal path is selected randomly among all the

available ports with a contention counter under the

threshold. In Hybrid, even if contention counters do

not impose misrouting, traffic can be diverted based

on the credits of the minimal and nonminimal paths;

in this case the nonminimal path is selected randomly

based on the same occupancy comparison as in OLM.

Finally, in ECtN global misrouting can be selected at

injection depending on the combined counters; in this

case, the nonminimal path is selected randomly among

those global links in the current router with a combined

counter under the threshold. For subsequent hops, the

Parameter Value

Router size 31 ports (h=8 global, p=8 injection, 15 local)

Router latency 5 cycles

Frequency speedup 2×

Group size 16 routers, 128 computing nodes

System size 129 groups, 16,512 computing nodes

Global link arrangement Palmtree [18]

Link latency 10 (local), 100 (global) cycles

Virtual 2 (global ports), 3 (local and injection ports),

Channels 4 (local ports, VAL & PB to avoid deadlock)

Switching Virtual Cut-Through

Buffer size 32 (output buffer, local input buffer per VC),

(phits) 256 (global input buffer per VC)

Packet size 8 phits

Congestion thresholds 50% (OLM), 35% (Hybrid), T = 3 (PB)

Contention thresholds 6 (Base, ECtN), 7 (Hybrid),

10 (ECtN, combined counters)

partial update 100 cycles (ECtN)

TABLE I: Simulation parameters.

original counters from Base are used.

B. Simulation infrastructure

We employ the FOGSim network simulator [24] to

model input-output-buffered routers with several virtual

channels to avoid deadlock and mitigate Head-of-Line

blocking. Unfortunately, it is unaffordable to implement

a detailed model of a tiled high-radix router [1] in a

simulation of this scale, so we use a simple model of a

router with a 5-cycle pipeline. We employ a separable

batch allocator, with 2× frequency speedup (internal

or crossbar speedup) to avoid performance limitations

due to Head-of-Line Blocking and suboptimal arbitra-

tion. Unless otherwise noted, the simulation parameters

employed are detailed in Table I.

We model latencies of 10 and 100 cycles for both

data and ACK packets in local and global links. These

values are the same as in [21], which correspond to

average wire length of 2 and 20 meters with a router

9

frequency of 1 GHz. With a phit size of 10 bytes,

this leads to a transmission speed of 10 GB/s. 8-phit

packets comprise 80 bytes, enough for a 64-byte payload

as in [5]. Higher latencies would increase the buffer

requirements and the uncertainty of congestion-based

adaptive routing mechanisms, which favours contention

counters.

We employ synthetic traffic to evaluate performance.

Each source node generates packets according to a

Bernoulli process, with a controllable injection proba-

bility in phits/(node·cycle). We use the uniform (UN)

and adversarial (ADV+1 and ADV+8) traffic patterns

described before.

We model steady-state and transient experiments. In

both cases, we first warm-up the network for a sufficient

time. For steady-state experiments, we then simulate

15.000 cycles of execution during which several million

packets are delivered, measuring their average latency

and throughput. For transient traffic, after warm-up with

a given traffic pattern, we change it to a different

pattern, measuring the evolution of the latency and the

percentage of globally misrouted packets. 10 simulations

are averaged to obtain the figures in the paper.

V. PERFORMANCE RESULTS

A. Steady state

Figure 5 shows the latency and throughput obtained

under steady state experiments. Figure 5a (upper graph)

portrays the latency under uniform random traffic (UN).

In this case, the oblivious MIN routing mechanism sets

the lower limit in latency, because it never misroutes

traffic. Both adaptive mechanisms based on credits, PB

and OLM, obtain higher latency, since they occasionally

send traffic nonminimally based on their measured buffer

occupancy. By contrast, Base and ECtN match perfectly

the optimal latency of MIN before congestion, which

arguably is the most frequent region of operation of the

network. Hybrid can send traffic nonminimally based on

the credit count, which occasionally happens under low

loads, and its latency is between MIN and OLM.

By contrast, throughput shown in Figure 5a (lower

graph) exhibits a different behaviour. OLM improves the

throughput of MIN since it employs more VCs and,

under heavy congestion, it sends some traffic nonmin-

imally to exploit all available outputs. Such behaviour

had been already observed in [22]. The throughput of

Base and ECtN is close to the achieved by OLM,

because they detect network contention faster than OLM

does for network congestion, thus increasing the level

of misrouting attempted. This behavior can be slightly

improved by using a higher misrouting threshold, but at a

cost of obtaining poorer performance under adversarial

traffic patterns, as discussed in Section VI-A. Hybrid

employs a threshold th = 7, and its throughput peaks

for the studied mechanisms, thanks to the combination

of network congestion and contention information.

Figure 5b depicts the response under adversarial traf-

fic. ADV+1 traffic requires global misrouting, and VAL

is the reference since it always misroutes packets. PB

achieves slightly worse results, specially due to the local

misrouting in the intermediate group, which is unneces-

sary for this traffic. The adaptive OLM obtains better

latency and throughput than VAL, since it avoids local

misrouting and it sends part of its traffic minimally when

possible. The throughput of the Base, Hybrid and ECtN

contention counters mechanisms is identical to OLM,

reaching the Valiant limit of 0.5 phits/(node·cycle). Their

latency, by contrast, shows a particular behaviour, with

three different zones. Under very low loads (0.01) their

latency is relatively low, because traffic is sent on the

minimal path which is not congested. With low loads

(around 0.05-0.10) the latency using contention counters

10

 130

 140

 150

 160

 170

 180

 190

 200

 210

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Offered load (phits/(node*cycle))

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ep
te

d
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

(a) UN.

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0 0.1 0.2 0.3 0.4 0.5

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load (phits/(node*cycle))

(b) ADV+1.

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0 0.1 0.2 0.3 0.4 0.5

MIN/VAL
PB

OLM
Base

Hybrid
ECtN

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load (phits/(node*cycle))

MIN/VAL
PB

OLM
Base

Hybrid
ECtN

(c) ADV+h.

Fig. 5: Latency and throughput under uniform (UN) and adversarial traffic (ADV+1).

is slightly higher than OLM. With these traffic loads,

there are not enough packets in the input queues to

increase the contention counters and provide an accurate

estimation of contention, leading to minimal routing

of traffic. This leads to packets accumulating in the

head of the queues, until the counter eventually reaches

the fixed threshold and traffic is diverted nonminimally.

Interestingly, for these loads the latency only increases

on the few cycles required for the accumulation of

traffic that triggers misrouting. Finally, under loads up

to 0.5, the latency obtained with the contention counter

mechanisms is competitive with OLM. ECtN obtains the

best performance, better than OLM, since the distribution

of contention information among all the routers in the

group increases the statistical significance of the mea-

surement, allowing for misrouting at injection whenever

it is required. Hybrid closely follows OLM, whereas

Base obtains higher latency with traffic loads under 0.3.

Figure 5c shows the result under ADV+8 traffic, which

requires local misrouting in the intermediate group. The

 120

 140

 160

 180

 200

 220

 240

 260

0 % 20 % 40 % 60 % 80 % 100 %

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Percentage of UN traffic (0% represents ADV+1)

PB
OLM
Base

Hybrid
ECtN

Fig. 6: Latency with mixed traffic patters. Load = 35%,

divided among ADV+1 (left) and UN (right).

response is similar to ADV+1, with the only exception

of ECtN being slightly outperformed by OLM for traffic

loads between 0.1 and 0.3. Contrary to ADV+1, this traf-

fic requires local misrouting in the intermediate group,

so the latency of VAL and PB (which misroute traffic to

an intermediate node in our implementation, not to the

intermediate group) is more competitive than in ADV+1.

11

Finally, Figure 6 represents the average latency ob-

tained when the traffic pattern is a combination of

ADV+1 and UN in different rates, with a load of 35%.

Even in intermediate cases in which the traffic pattern

is not clearly shaped, contention counters are competi-

tive with OLM. Notably, ECtN clearly outperforms the

reference OLM.

B. Transient traffic

Figure 7 displays the response of the adaptive mecha-

nisms with small buffer sizes of 32 and 256 phits. After

a warmup with UN traffic with load 20%, in time t = 0

the traffic pattern changes to ADV+1. Other transitions

are omitted for space limitations, but the response is

similar. Figure 7a shows the latency evolution. The

congestion-based adaptive mechanisms, OLM and PB,

show a transient period of around 100 cycles while

routing is adapting to the new traffic. By contrast, Base

and Hybrid react almost immediately, with a response

time of around 10 cycles. Finally, ECtN follows Base for

the first 100 cycles, because the traffic changed exactly

when the partial counters were being distributed (with

the values from the previous traffic UN) and it relies on

the local counters. At time t = 100 the updated partial

counters corresponding to ADV+1 are distributed, so

each router is aware of the adversarial traffic. From

this moment routers misroute traffic directly from the

injection queues, preventing local hops in the source

group and decreasing latency and local links usage.

Figure 7b shows the amount of misrouted packets,

which follows the same trend as latency in Figure 7a. It is

notable that the amount of misrouted packets when using

counters is very close to 0% or 100% when the routing

stabilizes; this is further discussed in Section VI-C.

Figure 8 displays the response time as traffic changes

from UN to ADV+1 when buffers are 256/2048 phits

 150

 200

 250

 300

 350

 400

-50 0 50 100 150 200 250

A
ve

ra
ge

 la
te

nc
y

cycle

ECtN
Hybrid

Base
OLM

PB

(a) Latency.

0 %

20 %

40 %

60 %

80 %

100 %

-50 0 50 100 150 200 250

P
er

ce
nt

 o
f m

is
ro

ut
ed

 p
ac

ke
ts

cycle

ECtN
Hybrid

Base
OLM

PB

(b) Percentage of misrouted packets.

Fig. 7: Evolution of latency and misrouting when traf-

fic changes from UN to ADV+1 with load 20%, with

small buffers.

for input local/global ports (instead of the 32/256 used

in Figure 7a). Output buffers maintain their previous

size. As discussed in Section II-C, the use of large

buffers delays the detection of traffic changes and the

adaptation to new traffic patterns. The response time of

the two credit-based mechanisms, PB and OLM, is much

larger than in Figure 7a : around 1000 cycles for OLM

and 500 for PB. By contrast, the mechanisms based on

contention present the same response time. Additionally,

in order to obtain these results we had to tune the OLM

misrouting threshold after modifying the buffer sizes,

which is unnecessary when using contention-counters.

C. Oscillations of routing

Routing mechanisms that react to congestion are prone

to oscillations, because the routing control variable (con-

gestion status) depends on the routing decisions. When

congestion status is received via ECN from a remote

router, this effect is amplified because the control loop

12

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200 1400 1600

A
ve

ra
ge

 la
te

nc
y

cycle

ECtN
Hybrid

Base
OLM

PB

Fig. 8: Evolution of latency when traffic changes from

UN to ADV+1 with load 20%, with buffers of 256 phits

per VC in local ports and 2048 phits per VC in global

ports.

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000 1200 1400 1600

A
ve

ra
ge

 la
te

nc
y

cycle

PB
ECtN

Fig. 9: Evolution of latency when traffic changes from

UN to ADV+1, with small buffers and load 20%.

is longer. PiggyBacking implements such an adaptive

routing policy, with the source routing decision taken

from the “saturation” information received from the

neighbour routers in the group. Figure 9 shows the

latency transient response to the change from UN to

ADV+1 traffic in a larger timescale than Figure 7. The

response of PB presents oscillations, around every 500

cycles. These oscillations get progressively smaller as the

queue occupancy converges, but they never completely

disappear.

By contrast, in ECtN the routing depends on the

traffic contention, which is independent of the routing

decision, so there is no forwarding loop. The response,

after convergence, is completely flat. The 100 cycle

delay caused by the period of distribution of the partial

counters was discussed in Section V-B, and possible

mechanisms to reduce this delay will be considered in

Section VI-B.

VI. DISCUSSION

A. Misrouting threshold selection

Section V employed a misrouting threshold of th = 6.

As with other adaptive routing mechanisms, threshold

selection imposes a tradeoff between performance un-

der uniform and adversarial traffic patterns. Figure 10

shows the latency and throughput obtained with different

threshold values. As expected, higher threshold values

provide better response under uniform traffic, and lower

values improve adversarial traffic.

Low threshold values penalize UN traffic, as observed

in Figure 10a. The threshold should be high enough to

prevent false triggers under saturation so misrouting does

not appear frequently. A simple analysis can be done

assuming locally-random traffic and the number of VCs

and ports in the router. Under saturation it is safe to

assume that all input VCs will have at least one packet

that will increase the value of a given counter. Thus,

the average value of the contention counters will equal

the average number of VCs in the input ports. In our

case, with the values in Table I, the average is 2.74. A

threshold doubling this value (th ≥ 6) makes misrouting

unfrequent enough so performance does not decrease.

High threshold values penalize ADV traffic, as ob-

served in Figure 10b. In this case, the packets in all

the p injection ports in a router target minimally the

same destination, typically, a local link to other neighbor

router with a direct global link to the destination group.

In such case, the threshold must ensure that misrouting

is applied at injection, what requires th ≤ p. In practice

there is more traffic in local and global input ports, so

there is not an abrupt change in performance as the

13

 150

 200

 250

 300

 350

 400

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

th=3
th=4
th=5
th=6
th=7
MIN

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ep
te

d
lo

a
d

(p
hi

ts
/(

no
de

*c
yc

le
))

Offered load (phits/(node*cycle))

th=3
th=4
th=5
th=6
th=7
MIN

(a) UN.

 250

 300

 350

 400

 450

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

th=6
th=7
th=8
th=9

th=10
th=11
th=12

VAL

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load (phits/(node*cycle))

th=6
th=7
th=8
th=9

th=10
th=11
th=12

VAL

(b) ADV+1.

Fig. 10: Sensitivity of Base to the misrouting thresh-

old.

threshold increases, but the previous estimation appears

reasonable.

Within the valid range (6 ≤ th ≤ 8 in the example),

the lowest threshold should be selected to favor low

latency under adversarial traffic, leading to th = 6.

A similar study was applied to select the combined

threshold th = 10 in ECtN. Interestingly, larger routers

(such as the 48-port Aries [5] or the 56-port Torrent

[25]) enlarge the range of threshold values that do

not compromise neither adversarial traffic latency nor

uniform traffic throughput.

B. Complexity of the implementation

The complexity of the Base and Hybrid mechanisms

is very low: several parallel counters [26] need to be

updated and compared for every packet being sent,

similar to the ordinary routing actions. Additionally, the

update of contention counters does not need to be in the

critical path, since a slight delay does not significantly

harm performance. By contrast, the cost of ECtN can be

significant. ECtN requires two additional sets of counters

(partial and combined) plus the required memory to hold

the partial values received from other routers. In terms

of traffic, we have assumed in our simulations that the

full partial counters are spread every 100 cycles, without

simulating the corresponding overhead. Partial arrays

contain 128 counters (for the 128 global links per group)

and each of them requires 4 bits, which are enough to

saturate the misrouting threshold 10 ≤ 24. With the 10-

byte phits considered in Section IV-B, this would require

around 6 phits, or a 6% overhead.

Alternative mechanisms can be used to reduce the

traffic load of ECtN. The simplest case would be to

send only nonempty values. In such case, a 7-bit iden-

tifier needs to be included to identify the corresponding

counter among the 128, making 7 + 4 = 11 bits per

counter. Up to 40 counters can be active at a time

(since we consider 8 global ports with 2 VCs and 8

injection ports with 3 VCs), so the overall data of

this alternative would be similar to sending the full

partial array. However, two simple improvements can

be applied in this case: a) incremental updates, which

build on the last sent version of the partial array, and

b) asynchronous updates, which increase the ordinary

dissemination period, but can send the counters which

are detected to change abruptly.

C. Use of the minimal paths under adversarial traffic

The implemented models employ a fixed misrouting

threshold. Under heavy adversarial traffic load, this can

lead to all of the traffic being diverted nonminimally

because the contention counters are high. Meanwhile,

the minimal path might remain completely empty. In a

real system this would typically not happen because not

all traffic can be sent adaptively (e.g. in Cascade [5]

minimal routing is used for packets that need to preserve

in-order delivery). Alternatively, a statistical misrouting

trigger can be considered. When the corresponding con-

14

tention counter exceeds a threshold, the probability of

routing nonminimally grows with the counter value, but

the minimal path is still used in a certain proportion. We

have not explored this model in this paper.

D. Alternative topologies

In this work we have evaluated contention counters

with Dragonfly networks based on complete graphs

in the local and global topologies. Such network is

amenable, since there is only one minimal path which

identifies the contention counter to use for misrouting

trigger. A similar case occurs with Flattened-Butterflies

using Dimension Order Routing.

However, many network topologies have multiple

minimal paths and multiple non-minimal paths, such as

Dragonfly networks with parallel links between groups,

Folded-Clos or Torus. In a different context, it has been

shown how contention information can be used to select

between multiple minimal paths [13]. The application

of contention counters to select between the multiple

minimal or nonminimal paths is very dependent on the

characteristics of each particular topology, and out of the

scope of the current paper.

VII. RELATED WORK

The design of large-radix routers has been studied

in multiple works, such as [1], [27], [28]. Large-radix

routers allow for interconnection networks which scale

to large number of nodes and they are assumed to

optimally exploit the available pin bandwidth of current

chips. Some examples of topologies based on large-

radix routers are folded-Clos, Flattened Butterfly [2] or

Dragonfly [4] networks.

Valiant routing [20] avoids network hotspots by send-

ing all packets minimally to a random intermediate

router, and then minimally to destination. The impact of

using an intermediate group in the Dragonfly, instead of

an intermediate router, was evaluated in [29]. Different

variants of nonminimal adaptive routing have been pro-

posed for multiple network topologies, such as folded-

Clos [9], Flattened Butterflies [2], [3] or Dragonflies

[4], [21], [12]. The problem of oscillations of adaptive

routing has been known for a long time, [30], [31]. In

all of these cases, the misrouting trigger relies on a

congestion detection scheme based on buffer occupancy.

Congestion detection mechanisms in WAN and lossy

networks have been typically indirect, based on colli-

sions, packet drops or jitter. Random Early Detection

(RED [32]) mechanisms analyze the buffer occupancy

to determine the congestion status. When routers detect

congestion, the sources can be notified indirectly (i.e.,

by dropping packets) or explicitly (ECN: Explicit Con-

gestion Notification). ECN is used in many technologies,

such as the FECN and BECN messages in Frame Relay,

the EFCI bit in ATM cells, the ECN bits in IP [33],

the Quantized Congestion Notification in Datacenter

Ethernet (802.1Qau) [34] or the congestion control in

Infiniband [35].

Most congestion-control implementations react by

throttling injection, [36], [37]. For example, focusing

on HPC and Datacenter networks, the Datacenter TCP

protocol [38] uses the IP ECN bits to restrict the trans-

mission window of the sources, relying on an estimation

of the amount of congestion. There exist alternative

mechanisms that use adaptive routing to circumvent

congested network areas. Such routing was proposed

for lossless Datacenter Ethernet networks in [39], while

Piggybacking and Credit Round-Trip Time (PB and CRT,

[21]) behave as ECN mechanisms to support adaptive

source routing in Dragonfly networks. Alternative mech-

anisms to cope with congestion such as RECN [40] alle-

viate the impact of congestion by using separate buffers

15

for congested traffic, but require additional hardware in

the router logic.

Contention indicators have been employed to drive

routing in alternative contexts. Elwhishi et al. intro-

duce their use in the context of shared-medium mo-

bile wireless networks [15]. In the context of mesh-

based networks-on-chip, Regional Congestion Aware-

ness (RCA) [13] explores the use of contention in-

formation for minimal adaptive routing. It shows that

contention information can be effectively employed to

select between different minimal paths. RCA relies on

the evolution of crossbar demand (i.e. allocator requests)

for the output ports, whereas our contention counters

track the minimal output port of each packet, regardless

of its actual followed path. Although they could be

similar under uniform traffic, their behaviour could differ

with adversarial traffic: crossbar demand could oscillate

between alternative paths, whereas contention counters

not. In the same context, Chang et al. [14] consider the

rate of change in the buffer levels to predict congestion,

what avoids uncertainty issues with small buffers. In the

context of interconnection networks, Dynamic Routing

Control [41] detects hotspots in Omega networks with

oblivious routing by counting the packets in each input

queue with the same destination, and prioritizes traffic

not targeting the hotspot, without adapting routing.

VIII. CONCLUSIONS

This paper has introduced the idea of Contention-

based adaptive routing which mitigates the main short-

comings of congestion-based adaptive routing. Our pro-

posal is independent of the buffer size, does not suffer

from oscillations in routing, and has fast adaptation to

changes in the traffic pattern. This idea can be imple-

mented in high-radix routers relying on a low-cost set of

contention counters. We have modelled the mechanism

for large-scale Dragonfly networks.

Our Base mechanism obtains optimal latency under

uniform traffic, competitive throughput when compared

to the best state-of-the-art adaptive routing mechanisms,

and immediate adaptation to traffic changes.

Two alternative variations have been studied. First,

a Hybrid version which combines contention and con-

gestion information improves throughput, but provides

worse latency under uniform traffic. Second, the ECtN

version which disseminates contention information. This

mechanism provides the best latency (or close to) in all

scenarios and can be applied to low-radix routers, but

entails a higher implementation cost, both in area and

communication requirements.

ACKNOWLEDGMENT

This work has been supported by the Spanish Ministry

of Education, FPU grant FPU13/00337, the Spanish

Science and Technology Commission (CICYT) under

contracts TIN2012-34557 and TIN2013-46957-C2-2-P,

the European Union FP7 under Agreement ICT-288777

(Mont-Blanc) and ERC-321253 (RoMoL), the European

HiPEAC Network of Excellence, and the JSA no. 2013-

119 as part of the IBM/BSC Technology Center for

Supercomputing agreement.

REFERENCES

[1] J. Kim, W. Dally, B. Towles, and A. Gupta, “Microarchitecture of

a high-radix router,” in ACM SIGARCH Computer Architecture

News, vol. 33, no. 2. IEEE Computer Society, 2005, pp. 420–

431.

[2] J. Kim, W. J. Dally, and D. Abts, “Flattened Butterfly: a cost-

efficient topology for high-radix networks,” in ISCA: Intl. Sym-

posium on Computer architecture, 2007, pp. 126–137.

[3] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.

Schreiber, “HyperX: topology, routing, and packaging of efficient

large-scale networks,” in SC ’09: Conf. on High Performance

Computing Networking, Storage and Analysis, 2009, pp. 41:1–

41:11.

16

[4] J. Kim, W. Dally, S. Scott, and D. Abts, “Technology-driven,

highly-scalable dragonfly topology,” in ISCA’08: 35th Interna-

tional Symposium on Computer Architecture. IEEE Computer

Society, 2008, pp. 77–88.

[5] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alver-

son, T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray

Cascade: a scalable HPC system based on a dragonfly network,”

in SC: Intl Conf on High Performance Computing, Networking,

Storage and Analysis, 2012, pp. 103:1–103:9.

[6] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Dre-

rup, T. Hoefler, J. Joyner, J. Lewis, J. Li et al., “The PERCS

high-performance interconnect,” in 18th Symposium on High

Performance Interconnects. IEEE, 2010, pp. 75–82.

[7] M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa,

P. Heidelberger, S. Singh, B. Steinmacher-Burow, T. Takken, and

P. Vranas, “Design and analysis of the BlueGene/L torus inter-

connection network,” IBM Research Report RC23025 (W0312-

022), vol. 3, 2003.

[8] D. Chen, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara,

S. Kumar, V. Salapura, D. Satterfield, B. Steinmacher-Burow,

and J. Parker, “The IBM Blue Gene/Q interconnection network

and message unit,” in SC: Intl. Conf. for High Performance

Computing, Networking, Storage and Analysis, 2011, pp. 1–10.

[9] J. Kim, W. J. Dally, and D. Abts, “Adaptive routing in high-radix

Clos network,” in SC ’06: Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing, 2006.

[10] D. Roweth and T. Jones, “QsNetIII, an adaptively routed network

for high performance computing,” in IEEE Symposium on High

Performance Interconnects (HOTI), 2008, pp. 157–164.

[11] A. Singh, “Load-balanced routing in interconnection networks,”

Ph.D. dissertation, Stanford University, 2005.

[12] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero,

M. Valero, G. Rodriguez, J. Labarta, and C. Minkenberg, “On-

the-fly adaptive routing in high-radix hierarchical networks,” in

41st International Conference on Parallel Processing (ICPP),

2012, pp. 279–288.

[13] P. Gratz, B. Grot, and S. W. Keckler, “Regional congestion aware-

ness for load balance in networks-on-chip,” in HPCA’08: IEEE

14th Intl. Symp. on High Performance Computer Architecture.,

2008, pp. 203–214.

[14] E.-J. Chang, H.-K. Hsin, S.-Y. Lin, and A.-Y. Wu, “Path-

congestion-aware adaptive routing with a contention prediction

scheme for network-on-chip systems,” Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol. 33,

no. 1, pp. 113–126, 2014.

[15] A. Elwhishi, P.-H. Ho, K. Naik, and B. Shihada, “Self-adaptive

contention aware routing protocol for intermittently connected

mobile networks,” IEEE Trans. Parallel Distrib. Syst., vol. 24,

no. 7, pp. 1422–1435, Jul. 2013.

[16] J. Santos, Y. Turner, and G. Janakiraman, “End-to-end congestion

control for InfiniBand,” in INFOCOM 2003. 22nd Annual Joint

Conference of the IEEE Computer and Communications., vol. 2.

IEEE Societies, 2003, pp. 1123–1133.

[17] K. Bergman and et al., “Exascale computing study: Technology

challenges in achieving exascale systems,” 2008.

[18] C. Camarero, E. Vallejo, and R. Beivide, “Topological character-

ization of hamming and dragonfly networks and its implications

on routing,” ACM Trans. Archit. Code Optim., vol. 11, no. 4, pp.

39:1–39:25, 2014.

[19] D. J. Kerbyson and K. J. Barker, “Analyzing the performance

bottlenecks of the POWER7-IH network.” in CLUSTER. IEEE,

2011, pp. 244–252.

[20] L. Valiant, “A scheme for fast parallel communication,” SIAM

journal on computing, vol. 11, p. 350, 1982.

[21] N. Jiang, J. Kim, and W. J. Dally, “Indirect adaptive routing on

large scale interconnection networks,” in Intl. Symp. on Computer

Architecture (ISCA), 2009, pp. 220–231.

[22] M. Garcı́a, E. Vallejo, R. Beivide, M. Odriozola, and M. Valero,

“Efficient routing mechanisms for dragonfly networks,” in The

42nd International Conference on Parallel Processing (ICPP-42),

2013.

[23] M. Garcı́a, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero,

M. Valero, J. Labarta, and G. Rodrı́guez, “Global misrouting

policies in two-level hierarchical networks,” in INA-OCMC:

Workshop on Interconnection Network Architecture: On-Chip,

Multi-Chip, 2013, pp. 13–16.

[24] M. Garcı́a, P. Fuentes, M. Odriozola, E. Vallejo, and R. Beivide.

(2014) FOGSim Interconnection Network Simulator. University

of Cantabria. [Online]. Available: https://code.google.com/p/

fogsim/

[25] B. Arimilli, S. Baumgartner, S. Clark, D. Dreps, D. Siljenberg,

and A. Maki, “The IBM POWER7 hub module: A terabyte

interconnect switch for high-performance computer systems,” in

Hot Chips, 2010.

[26] E. E. Swartzlander, “Parallel counters,” IEEE Trans. Comput.,

vol. 22, no. 11, pp. 1021–1024, Nov. 1973.

[27] J. H. Ahn, Y. H. Son, and J. Kim, “Scalable high-radix router

microarchitecture using a network switch organization,” ACM

Trans. Archit. Code Optim., vol. 10, no. 3, pp. 17:1–17:25, Sep.

2008.

[28] G. Passas, “VLSI micro-architectures for high-radix crossbars,”

Ph.D. dissertation, FORTH-ICS, April 2012.

[29] B. Prisacari, G. Rodriguez, M. Garcia, E. Vallejo, R. Beivide,

and C. Minkenberg, “Performance implications of remote-only

https://code.google.com/p/fogsim/
https://code.google.com/p/fogsim/

17

load balancing under adversarial traffic in dragonflies,” in INA-

OCMC: Workshop on Interconnection Network Architecture: On-

Chip, Multi-Chip. ACM, 2014, pp. 5:1–5:4.

[30] A. Khanna and J. Zinky, “The revised ARPANET routing metric,”

in Symp. on Communications Architectures & Protocols, ser.

SIGCOMM ’89, 1989, pp. 45–56.

[31] Z. Wang and J. Crowcroft, “Analysis of shortest-path routing

algorithms in a dynamic network environment,” SIGCOMM

Comput. Commun. Rev., vol. 22, no. 2, pp. 63–71, Apr. 1992.

[32] S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4,

pp. 397–413, Aug. 1993.

[33] K. Ramakrishnan, S. Floyd, and D. Black, RFC 3168: The

Addition of Explicit Congestion Notification (ECN) to IP, Std.,

2001.

[34] “IEEE Standard for Local and Metropolitan Area Networks - Vir-

tual Bridged Local Area Networks - Amendment: 10: Congestion

Notification,” 802.1Qau, IEEE Std., April 2010.

[35] E. Gran, M. Eimot, S.-A. Reinemo, T. Skeie, O. Lysne, L. Huse,

and G. Shainer, “First experiences with congestion control in

InfiniBand hardware,” in IEEE Intl. Symp. on Parallel Distributed

Processing, 2010.

[36] S. Lam and M. Reiser, “Congestion control of store-and-forward

networks by input buffer limits–an analysis,” IEEE Trans. on

Communications, vol. 27, no. 1, pp. 127–134, 1979.

[37] V. Jacobson, “Congestion avoidance and control,” in SIGCOMM

’88: Communications architectures and protocols. ACM, 1988,

pp. 314–329.

[38] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP

(DCTCP),” in ACM SIGCOMM Conference, 2010, pp. 63–74.

[39] C. Minkenberg, M. Gusat, and G. Rodriguez, “Adaptive routing

in data center bridges,” in 17th IEEE Symposium on High

Performance Interconnects (HOTI’09). IEEE Computer Society,

2009, pp. 33–41.

[40] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcia, and T. Na-

chiondo, “A new scalable and cost-effective congestion manage-

ment strategy for lossless multistage interconnection networks,”

in HPCA-11: Intl. Symp. on High-Performance Computer Archi-

tecture., 2005, pp. 108–119.

[41] J.-K. Peir and Y.-H. Lee, “Improving multistage network per-

formance under uniform and hot-spot traffics,” in 2nd IEEE

Symposium on Parallel and Distributed Processing, dec 1990,

pp. 548 –551.

	Introduction
	Limitations of congestion detection and misrouting trigger based on buffer occupancy
	Granularity of the congestion detection
	Uncertainty when using output credits
	Response time on traffic changes and slow-lane traffic
	Oscillations of routing

	Contention-based misrouting trigger
	General idea
	Base
	Hybrid
	Explicit Contention Notification (ECtN)

	Evaluation methodology
	Dragonfly topology and implemented routing mechanisms
	Simulation infrastructure

	Performance results
	Steady state
	Transient traffic
	Oscillations of routing

	Discussion
	Misrouting threshold selection
	Complexity of the implementation
	Use of the minimal paths under adversarial traffic
	Alternative topologies

	Related work
	Conclusions
	References

