Characterizing the Communication Demands of the
Graph500 Benchmark on a Commodity Cluster

Pablo Fuentes, José Luis Bosque, Ramén Beivide
University of Cantabria, Santander, Spain
{pablo.fuentes, joseluis.bosque, ramon.beivide } @unican.es

Mateo Valero
Barcelona Supercomputing Center, Barcelona, Spain
mateo@bsc.es

Cyriel Minkenberg
IBM Zurich Research Laboratory, Zurich, Switzerland
sil@zrl.ibm.com

Abstract—Big Data applications have gained importance over
the last few years. Such applications focus on the analysis of
huge amounts of unstructured information and present a series
of differences with traditional High Performance Computing
(HPC) applications. For illustrating such dissimilarities, this
paper analyzes the behavior of the most scalable version of the
Graph500 benchmark when run on a state-of-the-art commodity
cluster facility. Our work shows that this new computation
paradigm stresses the interconnection subsystem.

In this work, we provide both analytical and empirical
characterizations of the Graph500 benchmark, showing that
its communication needs bound the achieved performance on
a cluster facility. Up to our knowledge, our evaluation is the
first to consider the impact of message aggregation on the
communication overhead and explore a tradeoff that diminishes
benchmark execution time, increasing system performance.

Keywords-Graph500, cluster supercomputing platforms, com-
munication characterization, message aggregation

I. INTRODUCTION

Over the last few decades there has been an exponential rise
in the amount of data to be processed in multiple human ac-
tivities. Furthermore, in parallel to this data increase there has
been a fast growth in its complexity. Both factors originate a
need for higher computational capacities and introduce several
algorithmic challenges. Such challenges can be summarized in
a need to discover patterns in the data, to create a framework
to analyze those patterns facing time and resource restrictions,
and to predict future behaviors upon those patterns. These
challenges are valid in fields as diverse as social networks,
medical informatics, banking and cybersecurity among others.
One example is the use of the Facebook social network, whose
number of active monthly users has grown exponentially in last
years before achieving more than 1.2 billion as of late 2013.

The core idea behind these Big Data problems is to extract
knowledge from a huge range of unstructured data, to ease
analysis and decision taking. A convenient model for this
information is a graph, which permits to reorganize data by
searching spanning trees embedded in the graph.

The size of these Big Data applications requires high
amounts of memory and computing capabilities. The state-
of-the-art computing server performance does not meet such
requirements and does not scale at their growth pace. The only
realistic option is to run such applications in parallel, partition-
ing the graph and its associated computation across several
processes. Parallel computers have been constantly used in
other computing fields for decades but are not optimized for
this new set of problems.

In this context, Graph500 [1] organization arises to gather
international High Performance Computing (HPC) experts
from the industry and academia, with the aim to determine
the capacity of current computing systems to run graph-based
applications. Its main contribution is a large-scale benchmark
which performs a typical concurrent tree search algorithm
called Breadth-First Search (BFS). Graph500 proposes a new
performance metric, named the number of Traversed Edges
Per Second (TEPS). TEPS are calculated as the division of
the number of edges traversed in the graph by the execution
time for kernel 2. The Graph500 benchmark consists of various
kernels working with large graphs:

1) Construction of a graph from a random edge list (kernel
1).

2) Ancestors tree computation for a random sample search
key through a BFS algorithm (kernel 2).

3) Validation of the parent tree from kernel 2, through an
assertion of accomplished properties.

Due to the extended and fast-rising relevance of Big Data
applications, it is essential to determine the existence of any
possible performance losses, and identify their sources. In this
regard, a comprehensive study of the specific algorithm behav-
ior can be indispensable to locate and minimize inefficiencies
in the code execution, and to optimize resource usage. The
variety of these applications turns unfeasible to repeat such
scrutiny over each of them. The Graph500 benchmark can
be a good start point, as it represents a subset of graph-
based, data-intensive applications. A more ambitious, long-

This is an earlier accepted version; a final version of this work can be found in the Proceedings of the 2014 IEEE/ACM International Symposium
on Big Data Computing (BDC 2014) under DOI 10.1109/BDC.2014.16. Abstract can be read here. Copyright belongs to IEEE.



http://ieeexplore.ieee.org/document/7321732/?arnumber=7321732

term proposal would be to translate the lessons learned an-
alyzing the Graph500 into new computer architectures and
enhanced software stacks.

In this work, we analyze the Graph500 benchmark code
to establish a thorough understanding of its behavior, and
characterize its parallel execution in a cluster facility intended
to run HPC applications. Our main contributions are:

o We characterize the communications in the Graph500
benchmark, determining their spatial and temporal ho-
mogeneity.

o We evaluate the impact of the interconnection network
on the Graph500 performance, determining sources of
performance losses. More specifically, we focus on the
use of message aggregation and explore the existence of
an optimal value that improves overall performance.

The remainder of this paper is organized as follows: first, we
introduce the most relevant related work. Next, we will analyze
the BFS algorithm, with special focus on characterizing the
communications originated in its parallel execution. Then, we
will present empirical results collected by direct execution to
evaluate our hypothesis. Finally, we will summarize our main
findings and consider future work.

II. RELATED WORK

The Graph500 benchmark is based on a Breadth-First
Search (BFS), a graph search algorithm [1]]. Several au-
thors have proposed efficient and scalable shared memory
implementations of BES algorithms on commodity multicore
processors. Agarwal et. al. [2] have presented a multi-core
implementation with several optimizations. A very interesting
work has been developed by Beamer, Asanovic and Patterson
in [3], where they propose a hybrid approach that is advan-
tageous for low-diameter graphs, combining a conventional
top-down algorithm along with a bottom-up one. The bottom-
up algorithm reduces the number of edges visited, which in
turn accelerates the search as a whole.

Checconi et al. [4] described a family of highly-efficient
Breadth-First Search (BFS) algorithms, optimized for their
execution on IBM Blue Gene/P and Blue Gene/Q super-
computers. Alternatively, Bulu and Madduri [5] conducted a
performance evaluation of a distributed BFS using 1D and 2D
partitioning on Cray XE6 and XT4 systems.

Finally, the BFS algorithm has been implemented in archi-
tectures with hardware accelerators. For instance, Hong et al.
in [6] presented a hybrid method which dynamically decides
the best execution method for each BFS-level iteration, shifting
between sequential execution, multi-core CPU-only execution,
and GPUs. Tao, Yutong and Guang [[7] developed two different
approaches to improve the performance of BFS algorithm on
an Intel Xeon Phi coprocessor.

In this paper, we concentrate on a pure MPI BFS benchmark
executed on a state-of-the-art cluster supercomputer facility
using current Xeon-based servers and Infiniband network
technology. This tries to represent a highly scalable platform
with a good performance/cost ratio. To our knowledge, the
only previous Graph500 benchmark characterization has been
conducted by Suzumura et. al. in [8]. In the current paper,

we compare their estimations to empirical data obtained from
our experiments. In addition, and more importantly, we do
not know any previous work considering the impact on per-
formance of message aggregation.

III. THE BREADTH-FIRST SEARCH ALGORITHM

Breadth-First Search is a strategy to traverse a graph that
organizes all the elements of a graph in a tree, starting by
a given root vertex. The search of the tree is conducted in
multiple stages or ‘graph levels’, by traversing all the edges
that are connected to each of visited vertices in the previous
level. The vertices are analyzed in a FIFO-queue fashion. This
behavior enforces vertices to be searched in order of their
distance from the root vertex. One of BFS uses is to find the
path which traverses the lowest number of edges between two
specific vertices in a graph. More details about BFS and some
alternative implementations are given in [9].

A. BFS Implementation

BFS receives two parameters (scale and edgefactor) and
returns a series of statistics with the time employed for the
BES execution, and number of TEPS. ’Scale’ refers the base
two logarithm of the number of vertices in the graph. The
‘edgefactor’ is the half of the number of edges per graph
vertex, where an ‘edge’ is a link that joins a pair of vertices.
In this paper we will refer the ‘problem size’ as the size of
the graph, given by the values of scale and edgefactor.

Each step of the BFS algorithm (BFS level) can be seen as
a Sparse-Matrix Vector multiplication where the matrix is the
graph’s adjacency matrix recording the connectivity between
pairs of vertices and the vector corresponds to the list of
vertices that have to be visited in such BFS level.

In this work we will focus on the ‘simple’ implementation
of the Graph500 benchmark. This version is expected to
achieve higher performance than other implementations when
the problem size is big. Additionally, it presents more memory
scalability: each process only operates with the visited vertices
of its own part of the graph, instead of storing the complete
array of visited vertices. The drawback of this version is
that every process needs to send visited vertices to their host
processes, resulting in a higher exchange of data that increases
the network impact on the performance. The ‘simple’ version
is considered to be a better approach for relatively big problem
sizes with a high number of processes employed. Ueno [10]
describes with more detail the differences and communication
needs of the different implementations of the algorithm.

We have analyzed the behavior of the ‘simple’ version of
the algorithm, and modelled it through a pseudocode described
in Fig. [T] which combines computation and communication
phases. This helps to understand how it will perform and to
identify potential sources of inefficiency.

B. Analysis of the communications

In the pseudocode of the algorithm in Fig. [I| we can see the
presence of two send calls, both implemented through asyn-
chronous MPI_Isend functions. The first send (in line [8) can



visited = current = 0
next = {root}
repeat
current = next
for vertex in current do
for neigh in Neighbors(vertex) do
if neigh hosted in another process then
MPIL_Isend [vertex,neigh] to host process
while not MPI_Test (outgoing messages completed) do
if outgoing message completed then
clear sending buffer
if MPI_Test (incoming messages) then
[vertex,neigh] = receive()
if neigh not visited then
visit neigh and add it to next
else
if neigh not visited then
visit neigh and add it to to next
for all process do
MPI_Isend (this process has stopped sending)

O J gy Vg U Y
PO RXIADNNREWRN 2OV IRNE RN

21:  repeat

22: if MPI_Test (incoming messages) then

23: [vertex,neigh] = receive()

24: if neigh not visited then

25: visit neigh and add it to to next
26:  until rest of processes have stopped sending
27:  MPI_Allreduce(next)

28: until next is empty

Fig. 1. BFS pseudocode with communications

have different message size for communications aggregation:
it starts accumulating queries to another processes and only
generates a message when the amount of queries exceeds a
threshold called “coalescing size”. When the graph level has
been traversed, those queries that have not completed a full
message are dispatched regardless of their size. The second
send (line 20) is employed for each process to communicate
to the rest that it has ended dispatching messages for this level.
The number of messages originated in the second send is
much lower than in the first, and its contribution to total traffic
can be neglected. We can estimate the amount of messages that
will be sent per process by the first MPI_Isend function as:

28caletl . edgefactor n—1

# messages/ _
process —

I —. (D
coalescing size n
where n represents the number of processes employed. This
estimation can be explained as follows: the algorithm has
to traverse all the edges in the graph, 29°%¢ . edge factor.
Since the graph is undirect, edges are traversed in both senses,
leading to a factor of 2. Processes generate a query per every
vertex to visit that is hosted by another process. Considering
that graph distribution is homogeneous, 1/n of the visited
vertices will be located in the same process and will not
originate a query, leading to a factor of (n—1)/n. Additionally,
each process only traverses its own part of the graph. Finally,
message aggregation forces multiple queries to be joined into
a single message, with coalescing size adjusting the amount
of queries per message.

Additionally, a query consists of 2 vertices (the vertex to
visit and its possible tree parent), with each vertex being an
integer of 8 bytes. As we have stated, one message consists
of coalescing size queries. This gives a total amount of
exchanged data in the network estimated by

5 n
Data sent = 25°4t5 . edge factor - ——. 2)
n

Last equation matches the estimation given by Suzumura et al.
in [8]], and will be later contrasted with empirical data from
our experiments in section [[V-B]

At the beginning of this subsection we have described the
function calls in the code that originate communications. A
second analysis concerns the behavior at the reception side,
which is composed by three test calls at lines O] [12] and 22]
and one All-reduce at line 27 in Fig. [T}

Test in line [9] determines when an outgoing message has
been dispatched, to flush the corresponding buffer. Both tests
in lines [12] and [22] check the arrival of messages from other
processes, and, for our purposes, they will be evaluated as
a single call. All these test calls are asynchronous functions
which are executed a high number of times, and introduce a
significant overhead over execution time. Specifically, test in
line 22] is placed inside a loop at the end of each graph level,
acting as a polling for synchronization between processes. This
test clearly impacts on performance, because processes enter
such loop when they do not have any remaining messages
to dispatch, and its execution is overlapped with computation
only when a message is received. We will not consider the
impact of reception functions, as they are asynchronous and
will be only executed upon a positive test.

Finally, the All-reduce is a collective blocking call that
will stall those processes that arrive first. However, it is used
after the polling and will find processes with a high level of
synchronization, so we expect it to have a minor impact on
the overall behavior of the algorithm.

IV. EMPIRICAL EVALUATION OF THE BFS KERNEL
A. System description

Our evaluations have been conducted through the “Al-
tamira” supercomputer cluster, located at the University of
Cantabria. This platform consists of IBM-idataplex dx360m4
nodes, each one with two Intel Sandybridge Xeon E5-2670
processors, 8 cores per processor, and 64 GB of RAM. These
nodes are interconnected by a folded Clos topology using
Infiniband FDR10 network technology. The results shown in
this paper correspond to the execution of the benchmark code
in its version 2.1.4 [11]. This code was compiled with GCC
version 4.4.7 [12] and the OpenMPI 1.6.5 library [[13]], which
was the latest stable release version at the time.

B. Communication pattern

Communications in the benchmark execution are originated
by two asynchronous MPI send calls: one to exchange queries
for the graph traversal (line [§] in Fig. [I) and the other to
communicate the end of the graph level traversal (line 20).
For simplicity, we will refer to them as ‘sendl’ and ‘send2’,
respectively. Fig. [2] displays the total number of messages
sent for these two calls, for an execution with scale 25,
edgefactor 16, and 128 processes. Results show that ‘sendl’
has been called 30 times more than ‘send2’. The amount of
those messages, detailed in , is inversely related to the
‘coalescing size” parameter described in section [[II-B] which in
this case has been set to 256. It should be noted that employing
these actual parameters in , a number of approximately 25



40000

35000 132324

30000 -

25000 -

20000

15000 |

Number of messages / process

10000

5000 -~
1016

Sendl Send2

Fig. 2. Number of messages sent per MPI process. Results correspond
with a problem of scale 25 and edgefactor 16, ran with 128 processes. Bar
value represents average value, errorbar shows standard deviation between
processes.

messages per process is obtained which perfectly match with
the empirical data obtained from direct execution. A number of
32512 messages per process is obtained, with the actual value
(32824 messages) diverging less than 1%. This difference is
explained by the message aggregation and the random nature
of the algorithm: in every graph level, there will be queries
that do not complete a 256-queries message, thus increasing
the number of messages that are exchanged in total. This
variability completely disappears when we consider total data
exchanged in ‘sendl’, as the number of queries is fixed by the
problem size.

As we explained in the code description (Section [[II-A),
graph data distribution is uniform across processes. Since all
the processes must execute the computations on the vertices
they host, this should lead to an homogeneous spatial dis-
tribution of messages. The results from our evaluations have
proven the existence of a symmetry in the communication
matrix for the messages dispatched in ‘sendl’ during the
execution of the BFS key search. This symmetry does not
correspond to a petition-response model, but to the undirected
nature of the graph traversed. Searches on undirected graphs
imply that all the edges must be traversed twice, once per
edge direction. This communication distribution is widely
known and acts as a validation step for the accuracy of our
evaluation platform, which will be used to achieve the more
comprehensive information explained in further subsections of
the paper.

C. Behavior of the synchronization points

As it was stated in Section [[II-B] there are four points in the
code which can lead to communication waiting times: three
MPI_Test calls and one MPI_Allreduce. We can observe that
tests in lines [9] and [22] of Fig. [T] are originated in polling loops,
in which processes repetitively execute these functions until
they return a positive match (confirming that a message has
been sent or received, upon each case). For the rest of the
paper, we will refer to these synchronization points as ‘testl’
(tests for incoming messages, grouping the execution of tests
in lines [I2] and 22)), ‘test2’ (tests for dispatched messages) and
‘allreduce’ (to signal the BFS level completion).

04

0.35

03

0.25 |-

0.2 -

0.15 |-

Time / process (seconds)

0.1

0 —_—

Testl Test2  Allreduce

Fig. 3. Total execution time per process of each reception-related call. Results
correspond with a problem size of scale 25 and edgefactor 16, with 128
processes. Bar values represent average values, error bars show minimum
and maximum values among all processes.

Fig. [3] reporting empirical values confirms our descrip-
tion, showing a significantly lower amount of time spent on
‘allreduce’ call because it is executed after the polling loops.
‘Test2’ is in charge of confirming message dispatching to flush
send buffers. ‘Testl’ determines the existence of incoming
communications from other processes. Although ‘test2’ time is
slightly higher than ‘testl’, the impact of ‘testl” on benchmark
execution time is more important because a significant part of
it happens when processes are stalled at the end of a graph
level. Hence, diminishing that time would have an immediate
effect on reducing the whole benchmark execution time. This
analysis is extended on the following section.

D. Load balancing analysis

We have characterized the benchmark communications in
section as an application with high spatial homogeneity.
In this section, we will evaluate the time homogeneity of those
communications. Based on the code analysis in Section
we can conclude that transmissions will be homogenously
distributed between processes across execution time. Never-
theless, these processes will synchronize at the end of every
graph level, which can lead to unproductive stalls in those
processes that end their graph level analysis first.

Fig. 4] plots the execution of 1 BFS key search with
three phases: communications between processes interleaved
with several small computation blocks, polling loops, and
‘allreduce’ call executions. There is also computation during
the polling loops, but only when a message is received, which
occurs significantly less than during communications. Those
polling loops are placed between the end of every commu-
nications phase and the ‘allreduce’ execution, and act as a
synchronization point between all the processes, continuing as
long as any process is still dispatching messages. The number
of ‘allreduce’ calls equals the number of graph levels plus one
last empty iteration, as can be observed in the pseudocode in
Fig. [} For this problem size, there are 7 ‘allreduce’ calls.

The execution is divided into several stages, one per graph
level. The first and last phases show an almost nonexistent
amount of communications and little gap with ‘allreduce’ calls.
Two intermediate phases (the middle graph levels) concentrate
around 90% of the execution time as it can be better appre-



5
B3 P —
anEEEeeEnEnEnnnEEEREER S s ESEREREEE

20% 40% 60% 80% 100%

Fig. 4.  Snapshot of 1 BFS search execution for a problem with scale
22 and edgefactor 16, executed with 32 MPI processes. X-axis represents
the execution time, scaled to total BFS kernel execution time. Numbers in
Y-axis refer every MPI process employed. Light grey bars correspond to
communication phases. Dark grey bars correspond to polling loops for process
synchronization. Black bars correspond to MPI_Allreduce calls which act as
synchronization barriers at the end of every graph level. During white gaps
and interleaved with the communication in the light grey parts are multiple
small computation phases. In the polling loops (dark grey bars) there are also
computation phases, although to a much smaller ratio.

ciated in the figure. These stages are the most interesting in
terms of interprocess communications and clearly show a load
imbalance problem. The first of these stages is bounded by the
communications of processes 25 and 29, whereas processes 7,
9 and 26 show highest polling time awaiting for incoming
messages. There are less processes on the communications
phase when they get closer to the ‘allreduce’ call, diminishing
the probability of an incoming message and reducing the ratio
of effective execution. In the second of these two phases a
similar behavior can be observed.

This behavior originates because the tree search does not
involve an equal number of vertices to be traversed per process
and, more importantly, because the graph is not regular. This
lack of regularity implies that some vertices will have a
significantly higher degree than others, and is representative
of the common structure of graphs in Big Data applications.
This evaluation proves the impact of communications on this
benchmark, because most of the execution time corresponds
with message delivery and tests for the completion of either
side of the transmission. It also demonstrates a temporal
uniformity in the communications pattern.

E. Impact of message aggregation

As stated in previous sections, ‘Sendl’ constitutes the core
of the benchmark communications. The number of messages
between processes can be modulated by aggregating queries,
with coalescing size being the threshold that determines the
granularity of the aggregation. This threshold is affected by
two different tradeoffs.

One is a technological tradeoff and is related to the em-
ployed communications network: if the network latency is low,
it is interesting to have a fine granularity which translates
into sending more messages with less queries on them. On

the other hand, each message has an overhead caused by
the message creation that can not be neglected, and that
enforces a higher level of aggregation, to take advantage of the
network bandwidth. This technological tradeoff will obviously
vary from one computing system to another, and enforces to
conduct a detailed evaluation of the coalescing size parameter
for each system employed.

The other tradeoff is driven by the algorithm implementa-
tion. Message sending is asynchronous, so we need to prevent
sending buffer from being altered while a message is being
dispatched. To guarantee an atomic access to this buffer,
processes enter a polling loop using ‘test2’ to determine the
dispatching completion. This loop is interleaved with another
test that verifies the reception of any incoming messages, and
its subsequent computation, reducing the amount of unpro-
ductive CPU usage. Increasing the value of the coalescing
size will lower the number of messages exchanged and the
time consumed in their delivery, but it will also increase the
time employed in message reception and sending buffer release
because messages are larger. Additionally, the number of tests
for incoming messages conducted during the traversal of the
graph level will be reduced, delaying a higher proportion of
the computation associated to incoming queries towards the
end of every graph level. Moreover, this can potentiate the
imbalance between processes that was observed in previous
subsection.

By default, the coalescing size value is set to 256 queries
per message in the original code. Every query consists of
two vertices (vertex to visit and its ancestor) stored as 8-
byte unsigned integers, giving a total message size of 4KB.
By finely tuning this value we can adequately exploit the
particular network infrastructure and achieve a compromise
between time dedicated to sending messages and time spent
awaiting for other processes to synchronize. This compromise
would reduce the total amount of time spent in the execution
of the BFS algorithm. Fig. [5] shows the mean answer time
and TEPS for different message sizes, with a problem size
of scale 25, and three edgefactor values: 16, 64 and 128.
The coalescing size ranges from the default value of 256 to
524288, corresponding with message sizes from 4KB to SMB.
All the experiments were conducted running 128 processes,
fully populating 8 nodes.

Fig. [5 portrays the execution time for a BFS search and
the number of Traversed Edges Per Second (TEPS). TEPS
is the selected metric for the Graph500 benchmark, and is
transparent to the edgefactor because a higher connectivity
implies longer execution times but also larger number of edges
to be traversed. This explains the similarity between the 3
edgefactor curves in the TEPS metric. The value of curves in
Fig. can be calculated as the division of the number of
graphs edges by the execution time shown in corresponding
curve of Fig. [5(a)l Curves in Fig. [5(a)] show the presence
of a minimum execution time for a message size of 12KB,
corresponding to a coalescing size of 768. The impact of this
time reduction is more visible when the edgefactor is higher,
since it increases the graph connectivity and thus the number
of messages to be sent, as stated in @ After this minimum,
execution time rises and overpasses the achieved time for the



Scale25

Edgefactor
1

64
128 ——

Average execution time (seconds)
N
T

0 I I I I I
4KB 16KB 64KB 256KB 1024KB 4096KB

Message size

(a) Execution time Scale 25

Fig. 5.

Scale25
9e+08

8.5e+08
Edgefactor

8e+08 7 64

128 ——
7.5e+08

7e+08
6.5e+08

6e+08

Traversed Edges Per Second

5.5e+08 |- LN P

5e+08 I I I I I
4KB 16KB 64KB 256KB 1024KB 4096KB

Message size

(b) TEPS Scale 25

Average execution time and TEPS for a problem size of scale 25 and different edgefactors, with several message sizes. Every curve represents

an edgefactor value. Results correspond to the average of 10 executions with 32 BFS key searches per execution. All the executions employ 128 processes
distributed across 8 computing nodes. Each message size is defined from a coalescing size value, multiplied by a factor of 16.

default coalescing size. Finally, the curves reach an asymptote
which marks the upper bound for the execution time. This
behavior unveils the predicted existence of a tradeoff between
time spent dispatching messages and the time consumed in
polling loops awaiting for incoming communications. Greater
connectivity levels provoke a higher number of edges to be
traversed in the graph, and explain the difference between
the three curves. This evaluation confirms the big impact of
the coalescing size on performance, and the need to carefully
select this value to achieve optimal performance.

V. CONCLUSIONS

Big Data applications have gained attention from indus-
try and academia in the past few years. These applications
present high demands for memory and network subsystems
due to their huge data sizes with fast growth rhythms. Most
HPC supercomputer systems are not designed to address the
specific needs of such applications. Graph500 has proposed a
benchmark to rank computing systems upon their suitability
for Big Data applications, promoting the optimization of new
systems for data-intensive workloads. This benchmark consists
of a parallel Breadth-First Search over a graph.

This paper concentrates on two main contributions. The
first is the analysis of the highly scalable simple Graph500
benchmark behavior, focusing on characterizing its commu-
nications demands. This analysis is followed by an empirical
evaluation of the Grap500 performance obtained from direct
monitoring of real executions. Our experiments reveal the
spatial and temporal uniformity of the communications, and
their big impact over the execution time.

The other main contribution is the evaluation of message
aggregation for the communications between processes and
its impact on benchmark performance. As far as we are
concerned, this analysis has not been conducted previously.
A tradeoff can be achieved for the two effects that this
aggregation causes: time spent for message generation and
dispatching, and time consumed awaiting incoming communi-
cations. This tradeoff is related both to the network technology

and to the algorithm behavior. In our experiments, a finely
tuning of the coalescing size value has permitted significative
performance improvements of more than 10% over the default
value.

In forthcoming works we will extend our analysis of the
Graph500 benchmark to other parts of the system infrastruc-
ture apart from the interconnection network. We will also con-
sider repeating some of our experiments in different computing
platforms, as well as evaluating other BFS implementations.

ACKNOWLEDGMENT

This work has been supported by the Spanish Science and
Technology Commission (CICYT) under contract TIN2010-
21291-C02-02, the European Unions FP7 under Agreements
ERC-321253 (RoMoL) and ICT-288777 (Mont-Blanc) and by
the European HiPEAC Network of Excellence. This project
has also been partially funded by the JSA no. 2013_119 as
part of the IBM/BSC Technology Center for Supercomputing
agreement.

REFERENCES

[1] R. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the Graph 500,” Cray User’s Group (CUG), May 5, 2010.

[2] V. Agarwal, FE. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. 1EEE Computer Society, 2010, pp.
1-11, doi:10.1109/SC.2010.46.

[3] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing

breadth-first search,” in High Performance Computing, Networking,

Storage and Analysis (SC), 2012 International Conference for. 1EEE,

2012, pp. 1-10, doi:10.1109/SC.2012.50.

F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, A. R. Choudhury,

and Y. Sabharwal, “Breaking the speed and scalability barriers for graph

exploration on distributed-memory machines,” in High Performance

Computing, Networking, Storage and Analysis (SC), 2012 International

Conference for. 1EEE, 2012, pp. 1-12, doi:10.1109/SC.2012.25.

A. Bulu¢ and K. Madduri, “Parallel breadth-first search on distributed

memory systems,” in Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis.

ACM, 2011, p. 65, doi:10.1145/2063384.2063471.

[4

=

[5

[ty



[6] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph

[7]

[8

]

[9]
[10]

[11

[12
[13

]
]

exploration on multi-core cpu and gpu,” in Parallel Architectures and
Compilation Techniques (PACT), 2011 International Conference on.
IEEE, 2011, pp. 78-88, doi:10.1109/PACT.2011.14.

G. Tao, L. Yutong, and S. Guang, “Using mic to accelerate a typ-
ical data-intensive application: the breadth-first search,” in Parallel
and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2013 IEEE 27th International. 1EEE, 2013, pp. 1117-1125,
doi:10.1109/IPDPSW.2013.197.

T. Suzumura, K. Ueno, H. Sato, K. Fujisawa, and S. Mat-
suoka, “Performance characteristics of Graph500 on large-scale dis-
tributed environment,” in Workload Characterization (IISWC), 2011
IEEE International Symposium on. IEEE, 2011, pp. 149-158,
doi:10.1109/IISWC.2011.6114175.

R. Sedgewick, “Algorithms in C, part 5: Graph algorithms,” 2002.

K. Ueno and T. Suzumura, “Highly scalable graph search for the
Graph500 benchmark,” in Proceedings of the 21st international sym-
posium on High-Performance Parallel and Distributed Computing, ser.
HPDC 12, ACM. New York, NY, USA: ACM, 2012, pp. 149-160,
doi:10.1145/2287076.2287104.

(2014, Jun.) Graph500 benchmark. [Online]. Available: http://www.
graph500.org/

GNU Compiler Collection (gcc). [Online]. Available: http://gcc.gnu.org/
OpenMPI. [Online]. Available: http://www.open-mpi.org/


http://www.graph500.org/
http://www.graph500.org/
http://gcc.gnu.org/
http://www.open-mpi.org/

	Introduction
	Related Work
	The Breadth-First Search Algorithm 
	BFS Implementation
	Analysis of the communications

	Empirical Evaluation of the BFS kernel
	System description
	Communication pattern
	Behavior of the synchronization points
	Load balancing analysis
	Impact of message aggregation

	Conclusions
	References

