ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

UNIVERSIDAD DE CANTABRIA

Proyecto Fin de Grado

ANÁLISIS FLUIDO-TÉRMICO-MAGNETOELÉCTRICO DE UN TRANSFORMADOR TRIFÁSICO REFRIGERADO POR ACEITE MINERAL

(Thermal-fluid-magnetoelectric analysis of triphasic transformer cooled by mineral oil)

Para acceder al Título de

GRADUADO EN INGENIERÍA ELÉCTRICA

Autor: José Ramón Puente Botín

Septiembre - 2016

ÍNDICE GENERAL

1	INTRODUCCIÓN AL PROYECTO	4
2	ASPECTOS CONSTRUCTIVOS DE UN TRANSFORMADOR TRIFÁSICO	5
	2.1. DEFINICIÓN	6
	2.2. PRINCIPALES ASPECTOS CONSTRUCTIVOS	6
	2.3. PRINCIPIO DE FUNCIONAMIENTO	9
	2.4. PERDIDAS DE UN TRANSFORMADOR	11
	2.4.1. Rendimiento de un transformador	12
	2.5. CALENTAMIENTO DE UN TRANSFORMADOR	13
	2.6. GEOMETRÍA DE UN TRANSFORMADOR TRIFÁSICO DE COLUMNAS	14
3	REFRIGERACIÓN DE TRANSFORMADORES	15
	3.1. INTRODUCCIÓN	15
	3.2. TIPOS DE REFRIGERACIÓN	15
	3.3. NOMENCLATURA	16
	3.4. CONFIGURACIONES DE LOS CIRCUITOS DE REFRIGERACION	18
	3.5. FLUIDOS UTILIZADOS EN LA REFRIGERACIÓN DEL TRANSFORMADOR	21
4	FISICAS: FLUIDO-TÉRMICO-ELECTROMAGNÉTICO	23
	4.1. INTRODUCCIÓN	23
	4.2. PRINCIPIOS FISICOS	23
	4.2.1. Circuitos eléctricos	23
	4.2.2. Campos magnéticos	24
	4.2.3. Mecánica de fluidos	25
	4.2.4. Transferencia de calor	26
5	MODELO DE SIMULACIÓN	27
	5.1. INTRODUCCIÓN	27
	5.2. MÉTODO DE ELEMENTOS FINITOS	27
	5.2.1. Comsol Multiphysics	28

Grado en Ingeniería Eléctrica

ETSIIT

	5.3. PROC	CEDIMIENTO GENERAL DE CÁLCULO	30
	5.4. GEON	METRÍA DEL TRANSFORMADOR	33
	5.4.1.	Simplificaciones del modelo geométrico	34
	5.5. PROF	PIEDADES FÍSICAS DE LOS MATERIALES	39
	5.5.1.	Propiedades del hierro	39
	5.5.2.	Propiedades del cobre	40
	5.5.3.	Propiedades del aceite mineral	40
		ELO MATEMÁTICO DE LAS FÍSICAS APLICADAS	
	5.6.1.	Ecuaciones de gobierno	45
	5.6.2.	Condiciones de contorno y valores iniciales	45
		Acoplamiento multifísica	
	5.7. REAL	IZACIÓN DEL MODELO FÍSICO-MATEMÁTICO	50
	5.8. MALL	ADO	54
	5.8.1.	Mallado tetradiétrico	55
	5.9. ESTU	JDIO	60
	5.9.1.	Estudio temporal	60
6		ADOS	
6		ADOS	
6	6.1. INTRO		62
6	6.1. INTRO	DDUCCIÓN	62 62
6	6.1. INTRO 6.2. RESU 6.2.1.	DDUCCIÓNILTADOS ELÉCTRICOS	62 62 62
6	6.1. INTRO 6.2. RESU 6.2.1. 6.2.2.	DDUCCIÓNILTADOS ELÉCTRICOS	62 62 63
6	6.1. INTRO 6.2. RESU 6.2.1. 6.2.2. 6.2.3. 6.2.4.	DDUCCIÓN ILTADOS ELÉCTRICOS Tensiones Intensidades Potencias Campos eléctricos	62 62 63 66
6	6.1. INTRO 6.2. RESU 6.2.1. 6.2.2. 6.2.3. 6.2.4.	DDUCCIÓN	62 62 63 66
6	6.1. INTRO 6.2. RESU 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.3. RESU	DDUCCIÓN ILTADOS ELÉCTRICOS Tensiones Intensidades Potencias Campos eléctricos	62 62 63 66 67
6	6.1. INTRO 6.2. RESU 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.3. RESU 6.3.1.	DDUCCIÓN JLTADOS ELÉCTRICOS Tensiones Intensidades Potencias Campos eléctricos JLTADOS DE CAMPOS MAGNÉTICOS	62 62 63 66 68
6	6.1. INTRO 6.2. RESU 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.3. RESU 6.3.1. 6.4. RESU	DDUCCIÓN ILTADOS ELÉCTRICOS Tensiones Intensidades Potencias Campos eléctricos ILTADOS DE CAMPOS MAGNÉTICOS Densidad de flujo magnético	62 62 63 66 67 68
6	6.1. INTRO 6.2. RESU 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.3. RESU 6.3.1. 6.4. RESU 6.4.1.	DDUCCIÓN ILTADOS ELÉCTRICOS Tensiones Intensidades Potencias Campos eléctricos ILTADOS DE CAMPOS MAGNÉTICOS Densidad de flujo magnético. ILTADOS DE TEMPERATURAS	62 63 66 68 68 72
6	6.1. INTRO 6.2. RESU 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.3. RESU 6.3.1. 6.4. RESU 6.4.1. 6.4.2.	DDUCCIÓN ILTADOS ELÉCTRICOS Tensiones Intensidades Potencias Campos eléctricos ILTADOS DE CAMPOS MAGNÉTICOS Densidad de flujo magnético ILTADOS DE TEMPERATURAS Temperatura promedio	62 62 63 66 68 68 72 73
6	6.1. INTRO 6.2. RESU 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.3. RESU 6.3.1. 6.4. RESU 6.4.1. 6.4.2. 6.4.3. 6.4.4.	DDUCCIÓN	6262636668727373
6	6.1. INTRO 6.2. RESU 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.3. RESU 6.3.1. 6.4. RESU 6.4.1. 6.4.2. 6.4.3. 6.4.4.	DDUCCIÓN	6262636668727373
6	6.1. INTRO 6.2. RESU 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.3. RESU 6.3.1. 6.4. RESU 6.4.1. 6.4.2. 6.4.3. 6.4.4.	DDUCCIÓN	6262636668727373
6	6.1. INTRO 6.2. RESU 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.3. RESU 6.3.1. 6.4. RESU 6.4.1. 6.4.2. 6.4.3. 6.4.4. 6.5. RESU 6.5.1.	DDUCCIÓN ILTADOS ELÉCTRICOS Tensiones. Intensidades. Potencias. Campos eléctricos. ILTADOS DE CAMPOS MAGNÉTICOS Densidad de flujo magnético. ILTADOS DE TEMPERATURAS Temperatura promedio. Temperatura en canales de refrigeración. Temperatura resto del fluido. Constantes físicas del fluido en función de la temperatura. ILTADOS DE VELOCIDADES	626263666872737373

Grado en Ingeniería Eléctrica

ETSIIT

	6.6. RESULTADOS DE PRESIONES	78
	6.6.1. Presión en los canales de refrigeración	79
	6.6.2. Presión resto del fluido	79
7	CONCLUSIONES	80
	7.1. INTRODUCCIÓN	80
	7.2. CONCLUSIONES ELÉCTRICAS	80
	7.3. CONCLUSIONES MAGNÉTICAS	81
	7.4. CONCLUSIONES TÉRMICAS	81
	7.5. CONCLUSIONES DE VELOCIDADES	81
	7.6. CONCLUSIONES DE PRESIONES	82
	7.7. CONCLUSIONES FINALES	82
8	BIBLIOGRAFÍA	83
ΑI	NEXO 1	84
ΔΙ	NEXO 2	87

1 INTRODUCCIÓN AL PROYECTO

Desde la segunda mitad del siglo XVIII, con la llamada revolución industrial, la industria y la energía han venido correlacionadas y han sido dos factores muy importantes en el desarrollo de las actuales tecnologías. La energía es un bien de uso diario, especialmente la energía eléctrica, que es un bien de fácil acceso y presente en la mayor parte del planeta. La creciente demanda de este tipo de energía obliga a minimizar las pérdidas en su transporte y distribución con el fin de optimizar los recursos existentes.

El elemento principal de las redes de transporte de electricidad es el transformador, elemento mediante el cual es posible aumentar la tensión en grandes valores, reduciendo la intensidad y provocando una disminución notable en las pérdidas de la línea. Debido a los fenómenos electromagnéticos inducidos en el transformador durante su funcionamiento, son producidas una serie de pérdidas de potencia, manifestadas en forma de calor principalmente, siendo requerido un sistema de refrigeración en el mismo. El fluido encargado del intercambio de calor varía según la potencia asignada del aparato, pudiendo ser aire en pequeños transformadores o aceites minerales en transformadores de alta potencia. Podemos así afirmar que, en el funcionamiento nominal de un transformador entran en juego cuatro físicas diferentes: circuitos eléctricos, campos magnéticos, transferencia de calor y mecánica de fluidos.

El conocimiento de la interacción de estas cuatro naturalezas actuando dependientemente entre ellas ha abierto una nueva línea de investigación, en la cual se trata de representar los fenómenos ocurridos durante el funcionamiento de un transformador.

Este proyecto tiene como objetivo iniciar una nueva línea de investigación, creando un prototipo de simulación que nos permita estudiar las cuatro físicas involucradas durante la marcha industrial de un transformador y poder representar los fenómenos ocurridos durante la misma mediante el análisis de resultados.

En esta modelización se realiza un estudio completo sobre un transformador trifásico de tres columnas. Se comienza definiendo las características de un transformador, explicando tanto su principio de funcionamiento como el origen de sus pérdidas. A continuación, se definen los tipos de refrigeración transformador, citando propiedades y características del fluido más usado comúnmente, el aceite mineral. Finalmente, se procede con el análisis del modelo numérico a resolver.

Grado en Ingeniería Eléctrica ETSIIT

José Ramón Puente Botín

Este proyecto se enmarca dentro de una de las líneas de investigación sobre nuevos aceites de transformadores de potencia que lleva a cabo el Grupo de Investigación de Transformadores Eléctricos de Potencia (GITEP). Siendo más concreto, esta línea de investigación estudia el comportamiento fluido-térmico de aceites alternativos basados en ésteres naturales dopados con nanopartículas magnéticas. Este comportamiento se modeliza numéricamente.

Para la realización del estudio, se usarán técnicas computacionales basadas en el método de los elementos finitos (MEF), siguiendo un procedimiento de cálculo descrito en capítulos posteriores, mediante el uso del software Comsol Multiphysics versión 5.0. Se llevará a cabo un análisis de un estudio temporal con el objetivo de obtener resultados en diferentes espacios temporales de funcionamiento del transformador.

Una vez realizadas la simulación, se da por concluido el estudio y se procederá a la obtención y análisis de resultados.

2 ASPECTOS CONSTRUCTIVOS DE UN TRANSFORMADOR TRIFÁSICO

2.1 DEFINICIÓN

El transformador es una máquina eléctrica estática que funciona mediante la excitación de una onda sinusoidal, constituido principalmente por el núcleo y dos arrollamientos, primario y secundario, que, por medio del acoplamiento magnético entre ambos bobinados, permite la transformación de los valores de un sistema tensión-corriente en otros distintos con la misma frecuencia.

Actualmente los transformadores son dispositivos de gran importancia en los sistemas de transporte de energía, permiten mantener el valor de una potencia determinada aumentando la tensión de la línea, pudiéndose reducir así la sección de los conductores.

Al tratarse de una máquina que carece de órganos móviles, los rendimientos obtenidos son cercanos al 100%.

2.2 PRINCIPALES ASPECTOS CONSTRUCTIVOS

Un transformador está compuesto por un núcleo de material ferromagnético y dos conductores arrollados sobre él que se ejercen inducción mutua. Cada uno de los arrollamientos se conoce como devanado, distinguiéndose a su vez entre primario y secundario. El devanado primario es el que recibe potencia eléctrica y el secundario el capaz de transferirla a una red externa. Las partes principales que forman un transformador son: núcleo, devanados, sistema de refrigeración y aisladores pasantes de salida.

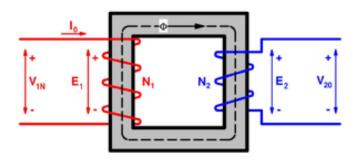


Figura 2.1 Esquema de un transformador monofásico

Se conoce como núcleo del transformador a la parte que forma su circuito magnético. Está constituido por chapas de acero al silicio apiladas de manera compacta, sin entrehierros, las

Grado en Ingeniería Eléctrica

ETSIIT

cuales han sido sometidas a un tratamiento químico conocido como carlite, recubriéndolas de una capa aislante muy delgada, aislándolas entre sí, reduciendo considerablemente las pérdidas en el hierro.

En el circuito magnético se distinguen las columnas, que es la parte del núcleo donde se arrollan los devanados y los yugos que son las partes que realizan la unión entre las columnas. Los espacios entre las columnas y los yugos se denominan ventanas del núcleo.

Según la posición relativa entre los devanados y las columnas, se clasifican en acorazados, en los que los devanados están la mayor parte abrazados por el núcleo magnético, y de columnas, en los cuales los devanados rodean al núcleo magnético casi en su totalidad. En el tipo acorazado, la sección de la columna central tiene el doble de sección debido a que por ella circula el doble de flujo que por las restantes. En los transformadores de columnas su sección es igual en todas.

En los transformadores trifásicos de tres columnas, cada una de ellas es arrollada por una fase, devanados primario y secundario.

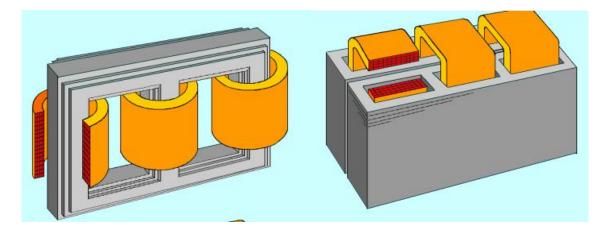
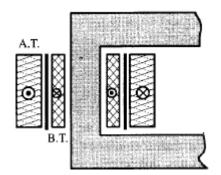


Figura 2.2 a) Núcleo de columnas 2.2 b) Núcleo acorazado

Las secciones transversales de las columnas muestran forma cuadrada en el caso de transformadores de baja potencia mientras que en los de gran potencia muestran forma de polígono escalonado, conocido como sección cruciforme, optimizando el aprovechamiento de espacio en el interior del bobinado, siendo más escalonado cuanta mayor potencia asignada tenga el transformador.

Los devanados constituyen el circuito eléctrico del transformador, están formados por hilo de cobre de sección redonda en transformadores de baja potencia y de pletinas de cobre de sección rectangular en los de mayor potencia. Los conductores están recubiertos por una



Grado en Ingeniería Eléctrica

ETSIIT

capa aislante que puede ser barniz en el caso de transformadores de baja potencia y capas de fibra de algodón o cinta de papel en los de pletinas de cobre.

Atendiendo a la disposición relativa entre los arrollamientos de alta y baja tensión, los devanados pueden ser concéntricos o alternados. En los devanados concéntricos los bobinados tienen forma de cilindros coaxiales, colocando el devanado primario en la posición interior, aislándose entre si ambos arrollamientos mediante un cilindro de cartón o papel baquelizado. En los devanados alternados ambos arrollamientos se suceden alternativamente a lo largo de la columna subdividiéndose en varias secciones. Con el fin de disminuir el flujo de dispersión es frecuente colocar en cada extremo media bobina, por razones de aislamiento esta posición la ocupa el devanado de baja tensión.

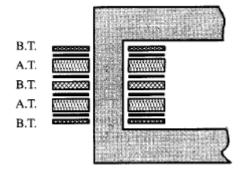


Figura 2.3 a) Devanado concéntrico

Figura 2.3 b) Devanado alternado

El núcleo magnético y los devanados se encuentran alojados en el interior de una cuba, sumergidos en líquido refrigerante, comúnmente aceite, que actúa como refrigerante y aislante a la vez.

La cuba deberá estar diseñada para aislar herméticamente ambos dominios, facilitar el transporte y no presentar deformaciones ante los considerables aumentos de temperatura. El sistema de refrigeración de un transformador se detallará en posteriores capítulos.

Si la tensión asignada del transformador es moderada, los bornes de los devanados se llevan al exterior de la cuba mediante unos pasantes de porcelana rellenos de aceite o aire. Cuando la tensión es notablemente elevada, se crea un fuerte campo eléctrico entre el conductor terminal y el borde del orificio en la parte superior de la cuba, para evitar perforaciones del aislador éste se realiza con una serie de cilindros que rodean el borde metálico dentro del espacio cerrado que contiene el aceite. Los pasantes correspondientes a cada devanado se distinguen por ser más altos cuanto mayor tensión soportan.

Grado en Ingeniería Eléctrica

ETSIIT

Figura 2.4 Pasantes de un transformador

2.3 PRINCIPIO DE FUNCIONAMIENTO

Su principio de funcionamiento se basa en las leyes de la inducción magnética. Al aplicar una tensión alterna en el bobinado primario, circulará por él una corriente alterna generando en el núcleo, por la ley de Ampere, un flujo alterno. La variación periódica de este flujo, de acuerdo con la ley de Faraday, induce fuerzas electromotrices distintas en los devanados primario y secundario cuya relación es igual a la relación de vueltas entre ambos, dado que el flujo en ambos devanados es el mismo. Estas fuerzas electromotrices son proporcionales al número de espiras y a la variación instantánea del flujo, y se oponen al cambio de flujo por la ley de Lenz.

Al conectar una carga en el secundario, circulará por él una corriente que generará una fuerza magnetomotriz, que tratará de variar el flujo. Debido a que la tensión asignada del transformador no cambia, en condiciones nominales, el flujo no puede cambiar, con lo que aparecerá en el primario una corriente que genere una fuerza magnetomotriz de mismo módulo y en contraposición. Estableciendo una relación entre las tensiones y corrientes de ambos devanados, obteniendo la siguiente relación de transformación.

$$\frac{E_1}{E_2} = \frac{I_2}{I_1} = \frac{N_1}{N_2} = m$$

A continuación, se muestra el circuito equivalente exacto de un transformador y las ecuaciones que lo forman.

Grado en Ingeniería Eléctrica

ETSIIT

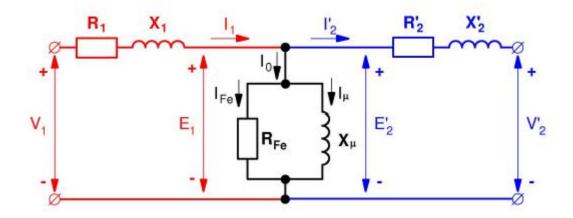


Figura 2.5 Circuito equivalente exacto de un transformador monofásico

$$I_1 = I_0 + I'_2$$

$$I_0 = I_{Fe} + I_{\mu}$$

Posteriormente, se explicarán las pérdidas asociadas a los elementos que componen este circuito equivalente.

En un transformador trifásico de columnas se rigen los mismos principios de funcionamiento. Se distinguirán dos tipos de relaciones de transformación, atendiendo a si las magnitudes son de línea o de fase. Siendo m la relación de transformación entre las tensiones asignadas de fase y m_T la que relacione las tensiones de línea.

$$m = \frac{V_{1N}}{V_{2N}} = \frac{I_{2N}}{I_{1N}} = \frac{E_1}{E_2} = \frac{N_1}{N_2}$$
$$m_T = \frac{V_{1NL}}{V_{2NL}} = \frac{I_{2NL}}{I_{1NL}}$$

La relación existente entre ambas varía en función del tipo de conexión entre las fases de los devanados.

Si el sistema de alimentación es trifásico equilibrado, los flujos de cada fase estarán desfasados 120º en el tiempo, resultando un flujo en la columna central igual a cero. Este efecto produce un desequilibrio en las corrientes que circulan en vacío, pero cuando se encuentra en estado de carga su efecto es despreciable.

A efectos de estudio, un transformador trifásico que alimenta a cargas equilibradas se comporta como tres transformadores monofásicos independientes, realizándose el estudio de uno solo de ellos siguiendo los principios de funcionamiento de un transformador monofásico.

Grado en Ingeniería Eléctrica

ETSIIT

Debido a la separación de los circuitos para su análisis, se deberán usar valores de fase, obteniendo que la potencia de cada columna supone una tercera parte del total.

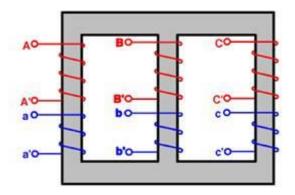


Figura 2.6 Transformador trifásico de tres columnas

2.4 PÉRDIDAS DE UN TRANSFORMADOR

El transformador como cualquier máquina eléctrica lleva asociados diferentes tipos de pérdidas que se dividen en fijas y variables, representándose como pérdidas en el cobre y pérdidas en el hierro.

Las pérdidas en el cobre constituyen las pérdidas variables del transformador y se producen a causa del efecto Joule, siendo proporcionales a la resistencia del bobinado y al cuadrado de la intensidad que transporta.

Las pérdidas fijas se denominan pérdidas en el hierro (I_0) y se dividen en pérdidas por Histéresis, por corrientes parásitas o de Foucault (I_{Fe}) y por flujos de dispersión (I_{μ}) . Las pérdidas por Histéresis son referidas a la energía consumida por el núcleo en la constante polarización que sufre, mientras que las pérdidas por corrientes de Foucault se deben a una fuerza electromotriz inducida en el núcleo por la ley de Faraday, esto se disminuye en gran cantidad construyendo el núcleo a base de chapas apiladas y aisladas entre ellas. Las pérdidas por flujos de dispersión siguen la misma ley que las corrientes de Foucault, pero son generalmente mínimas.

Si el transformador cuenta con los servicios de máquina auxiliares, hay que tener en cuenta las pérdidas sufridas por estos elementos.

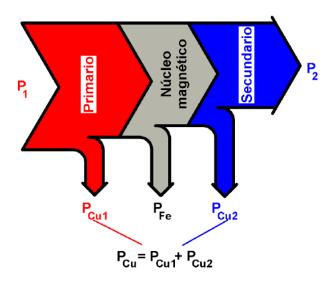


Figura 2.7 Pérdidas de un transformador

2.4.1 Rendimiento de un transformador

Como en cualquier máquina eléctrica la potencia se define como el cociente entre la potencia útil o del devanado secundario y la potencia total o del devanado primario, siendo posible expresarse en función de la potencia perdida, como el cociente entre la potencia en el secundario y la suma de la potencia en el secundario más la potencia perdida.

$$\eta = \frac{P_2}{P_1} = \frac{P_2}{P_2 + P_P}$$

Generalmente los transformadores son máquinas muy eficientes, logrando rendimientos superiores al 99%. El rendimiento es prácticamente constante, disminuyendo de manera poco notable al aumentar la carga, esto es debido a que las pérdidas eléctricas son dependientes mientras que las pérdidas magnéticas permanecen constantes.

Grado en Ingeniería Eléctrica ETSIIT

Figura 2.8 Rendimiento de un transformador en función de su carga y f.d.p

2.5 CALENTAMIENTO DE UN TRANSFORMADOR

Las pérdidas de potencia producidas en el transformador se manifiestan en forma de calor, produciendo un aumento de la temperatura, disminuyendo su eficiencia y degradando los materiales aislantes. El calor producido en el conjunto activo se disipa al exterior mediante mecanismos de convección y radiación por medio del sistema de refrigeración que estudiaremos en capítulos posteriores.

Cuando se establece una marcha industrial en el transformador se produce un incremento progresivo de la temperatura hasta alcanzar la condición de servicio, manteniéndose la temperatura constante. La temperatura alcanzada en este régimen estacionario, determina la selección de materiales aislantes a utilizar para conseguir las mejores condiciones de funcionamiento. Como regla orientativa, la vida de un aislante se reduce a la mitad o se alarga el doble con una variación de ±10°C, respectivamente.

Las pérdidas fijas en el hierro se deben a la tensión aplicada. Las pérdidas variables en el cobre por efecto Joule, son causadas por la intensidad aplicada al devanado. Con el objetivo de mantener una temperatura de servicio constante se deberán definir límites en la tensión y corriente aplicadas, conocidas como tensión y corriente nominales o asignadas.

Grado en Ingeniería Eléctrica ETSIIT

Si el transformador se sobrecarga, el aumento de la temperatura hará que los aislantes sufran un envejecimiento prematuro. La fuerza dieléctrica de los aislantes sufre un importante gradiente negativo a partir de cierta temperatura. Generalmente la constante de tiempo que rige este efecto es de 2 horas.

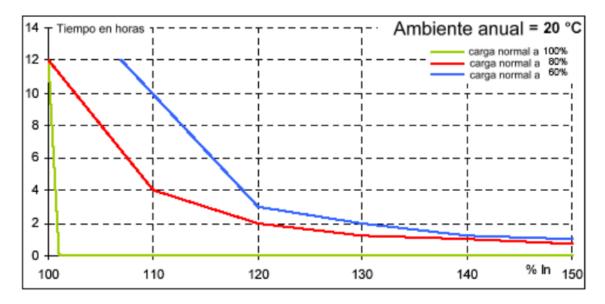


Figura 2.9 Tiempo máximo de sobrecarga sin pérdida de vida de los aislantes

2.6 GEOMETRÍA DE UN TRANSFORMADOR TRIFÁSICO DE TRES COLUMNAS

En capítulos posteriores se procederá a estudiar un transformador trifásico de tres columnas, por lo que daremos unas nociones básicas de su geometría, la cual será profundizada en el modelado de la misma.

En este tipo de transformador el núcleo está formado por tres columnas, situándose en la misma sección que el yugo, sobre cada una de ellas se colocan los arrollamientos de cada fase. Los devanados de mayor tensión son los dispuestos de manera concéntrica en la parte exterior.

El núcleo tiene una sección rectangular y los devanados presentan una forma cilíndrica, se encuentran en una cuba inmersos en líquido refrigerante, generalmente aceite mineral, que es bombeado de la parte inferior hacia la superior.

Grado en Ingeniería Eléctrica

ETSIIT

3 REFRIGERACIÓN DE TRANSFORMADORES

3.1 INTRODUCCIÓN

Los transformadores están dotados de sistemas de refrigeración con el fin de conservar la fuerza dieléctrica y mecánica de sus aislantes y por ente conseguir una condición óptima de funcionamiento.

En función de la potencia del dispositivo, se dotará de distintos aparatos tales como ventiladores de aire o bombas de aceite.

3.2 TIPOS DE REFRIGERACIÓN

Los transformadores pueden estar refrigerados por aire, siendo denominado este tipo como refrigeración en seco, o por aceite, denominándose refrigeración por baño de aceite.

Para pequeñas potencias asignadas, la superficie externa del transformador es suficiente para evacuar de forma eficiente el calor. Las corrientes de aire circulan entre la parte activa del transformador refrigerándolo mediante convección de calor. En el caso de potencias mayores, se dispone de ventilación forzada de aire, la cual permite aumentar hasta un 40% la potencia asignada. Este tipo de transformadores suelen ser usados en el interior de edificios, alejados de atmósferas hostiles.

Figura 3.1 Transformador trifásico de refrigeración en seco

Los transformadores de altas potencias se refrigeran mediante baño de aceite. Consiste en introducir la parte activa del dispositivo en una cuba hermética con aceite en su interior. El aceite circula entre los devanados y el núcleo, intercambiando el calor absorbido mediante convección y radiación con el exterior, además el aceite posee mejores propiedades dieléctricas que el aire, lo que hace que este tipo de sistema se utilice en Alta Tensión.

Grado en Ingeniería Eléctrica

ETSIIT

Conforme aumenta la potencia asignada se agregan radiadores externos para aumentar la superficie del intercambiador de calor, pudiéndose añadir ventilación forzada para conducir el aire directamente sobre los radiadores.

Figura 3.2 Transformador trifásico bañado en aceite

3.3 NOMENCLATURA

Los transformadores poseen una placa grabada que contiene la información necesaria para definir el aparato, en ella se refleja el valor de su capacidad nominal, tensiones nominales, tipos de conexiones y una serie de letras que indican el sistema de refrigeración utilizado. La designación del sistema de refrigeración viene dada por la norma IEC 60076-2.

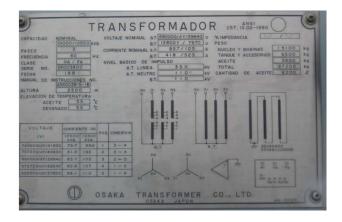


Figura 3.3 Placa de características de un transformador

Grado en Ingeniería Eléctrica

ETSIIT

La norma define el método de refrigeración de un transformador bañado en aceite mediante un código de cuatro letras atendiendo al fluido usado y a su circulación.

La primera letra indica el fluido refrigerante en contacto entre los arrollamientos.

LETRA	DEFINICIÓN
0	Líquido aislante mineral o sintético con punto de inflamación ≤300ºC
K	Líquido aislante con punto de inflamación >300°C
L	Líquido aislante con punto de inflamación indeterminable

Tabla 3.1 Definición primera letra del código de refrigeración

La segunda letra indica el tipo de circulación del fluido interno.

LETRA	DEFINICIÓN
N	Circulación natural por termosifón a través del sistema de refrigeración y en
	los arrollamientos
F	Circulación forzada a través de equipos de refrigeración, flujo de termosifón
	en bobinas
D	Circulación forzada a través de equipos de refrigeración, bajo la dirección de
	los equipos de refrigeración en al menos los devanados principales

Tabla 3.2 Definición segunda letra del código de refrigeración

La tercera letra indica el fluido refrigerante exterior.

LETRA	DEFINICIÓN
А	Aire
W	Agua

Tabla 3.3 Definición tercera letra del código de refrigeración

Grado en Ingeniería Eléctrica

ETSIIT

La cuarta letra indica el mecanismo de circulación del fluido refrigerante exterior.

LETRA	DEFINICIÓN
N	Convección natural
F	Convección forzada

Tabla 3.4 Definición cuarta letra del código de refrigeración

El sistema de refrigeración del transformador del estudio quedaría definido por la nomenclatura ONAN, lo que significa que la refrigeración interna se realiza mediante un aceite de tipo mineral o sintético con un punto de inflamación menor o igual a 300°C y método de circulación natural debido a la pérdida de densidad que sufre el fluido. La refrigeración externa usa como fluido el aire siendo circulado de forma natural.

3.4 CONFIGURACIONES DE LOS CIRCUITOS DE REFRIGERACIÓN

Las secciones de un transformador disponen en sí mismas de canales de refrigeración verticales que toman mayor importancia conforme aumenta el tamaño del núcleo. Permiten reducir el aumento de temperatura de la superficie del núcleo respecto a la del aceite y el aumento de la temperatura en el interior del núcleo respecto a la superficie. El número de conductos de refrigeración reduce el área efectiva del núcleo, por lo que deberán ser los mínimos necesarios.

La superficie del núcleo se encuentra en su mayor parte en contacto con el aislamiento que está en contacto con los devanados, por lo que el límite de temperatura del devanado corresponderá con el de la superficie del núcleo. Generalmente la diferencia de temperatura entre la mitad de dos canales y la superficie oscila entre 15 y 20°C.

Figura 3.4 Canales de refrigeración del núcleo

Grado en Ingeniería Eléctrica

ETSIIT

Los arrollamientos de un transformador se encuentran separados por espaciadores radiales que cubren en torno al 30% de la superficie del devanado, haciendo inefectivo el intercambio de calor mediante convección en la zona cubierta. El calor producido se transmite por conducción, aumentando la carga térmica en la zona no cubierta por los separadores. Siendo proporcional el grosor del separador a su capacidad de refrigeración.

El flujo radial de aceite por los devanados puede ser de tipo flujo indirecto representado en la figura 3.5a, o de flujo directo aumentando la eficiencia de los canales de refrigeración, dirigiendo el flujo mediante restricciones de paso evitando posibles acúmulos de aceite caliente como se muestra en la figura 3.5b.



Figura 3.5 a) Refrigeración por flujo indirecto

Figura 3.5 b) Refrigeración por flujo directo

En función del sistema de refrigeración que posea el transformador la disposición de los circuitos de refrigeración no serán los mismos.

En transformadores con baja capacidad nominal, es suficiente la superficie de la cuba para disipar el calor directamente a la atmósfera. Conforme aumenta la potencia asignada se requiere una mayor superficie para intercambiar el calor, por lo que se añaden radiadores al circuito, pudiendo disponerse sobre la cuba o en una estructura ajena a la del transformador, denominándose banco de radiadores. El fluido refrigerante circula por el circuito cerrado debido a la pérdida de densidad que sufre al calentarse en la parte activa del transformador, desplazándose el líquido más caliente hacia la parte superior de la cuba. Este sistema de refrigeración se denomina ONAN

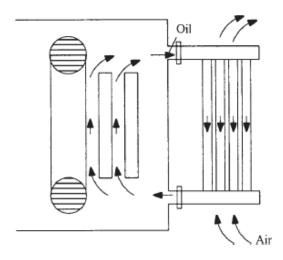


Figura 3.6 Circuito de refrigeración ONAN

Cuando la potencia demandada por el transformador es mayor, pueden ser añadidos ventiladores para conducir el aire de manera forzada sobre la superficie de intercambio de calor. Pueden instalarse bajo los radiadores siendo normalmente suficiente la superficie cubierta por el cono de aire generado, refrigerándose por convección natural una pequeña parte del radiador o pueden acoplarse en el mismo plano que los radiadores siendo esta la opción más eficiente. Este sistema de refrigeración se denomina ONAF.

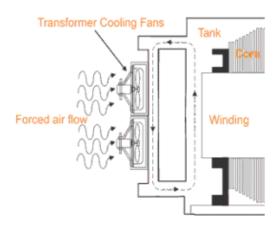


Figura 3.7 Circuito de refrigeración ONAF

El caudal de aceite conducido por el circuito en los tipos de refrigeración que hemos visto es de una baja magnitud puesto que depende de la variación de su propia densidad. Cuando se requiere una mayor disipación de calor al exterior, se instala una bomba, aumentando el caudal, denominándose el sistema de refrigeración OFAF. El flujo de aceite forzado por el transformador se rige por la ruta de menor resistencia, por lo que parte del fluido puede no ingresar correctamente en los devanados o el núcleo produciendo una disminución de la

Grado en Ingeniería Eléctrica

ETSIIT

temperatura del aceite situado en la parte alta del transformador, reduciendo la eficiencia de los radiadores. Este efecto se puede evitar conduciendo el fluido forzado directamente a los devanados, denominándose este tipo de circuito ODAF. Este sistema presenta la desventaja de una pérdida de presión debido a los conductos añadidos para dirigir el flujo de aceite.

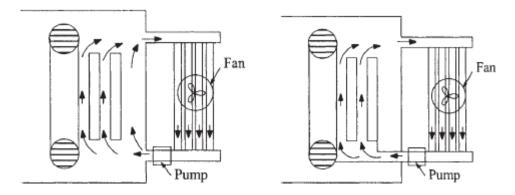


Figura 3.8 a) Sistema de refrigeración OFAF Figura 3.8 b) Sistema de refrigeración ODAF

3.5 FLUIDOS UTILIZADOS EN LA REFRIGERACIÓN DEL TRANSFORMADOR

Los transformadores están refrigerados en su mayoría mediante aceite de tipo mineral, siendo este líquido dieléctrico el empleado en la refrigeración del transformador de este estudio. En la actualidad están abiertas numerosas vías de investigación sobre nuevos posibles refrigerantes que aún no están implementados, denominados líquidos alternativos, entre los que se incluyen ésteres naturales, ésteres sintéticos y aceites de silicona.

Basándonos en la composición química podemos decir que el aceite mineral es una mezcla compleja de hidrocarburos producida por la destilación del petróleo.

La viscosidad es una propiedad que determina en gran cantidad la capacidad de refrigeración de un líquido dieléctrico. Unos valores bajos de esta magnitud facilitan la impregnación del líquido en los aislantes sólidos de la parte activa del transformador, expulsando el aire que contienen, mejorando así su comportamiento eléctrico. El aceite mineral se caracteriza por poseer una baja viscosidad en comparación con otros posibles refrigerantes.

La resistencia a la oxidación de un líquido refrigerante cobra vital importancia en la vida útil de un transformador, ya que, en su presencia pueden ser modificadas las propiedades dieléctricas iniciales del fluido mediante la aparición de nuevos subproductos. En el caso del aceite mineral, a partir de una temperatura de 105°C, se comienza a dar este fenómeno, afectando negativamente al funcionamiento general del transformador.

Grado en Ingeniería Eléctrica

ETSIIT

La tensión de ruptura de un líquido dieléctrico se define como el valor de la tensión límite para el cual dicho líquido pierde su capacidad dieléctrica. Ésta propiedad de los refrigerantes es muy sensible a la presencia de impurezas en el líquido, en los aceites minerales cobran una gran importancia en presencia de humedad, ya que ésta no es disuelta en el líquido dieléctrico. Esta tensión límite está fijada en 72kV en el caso del aceite mineral en ausencia de humedad.

Líquido dieléctrico	Aceite mineral
Origen	Destilación del petróleo
Composición	Mezcla compleja de hidrocarburos
Estabilidad frente oxidacion	Buena
T ^a inflamación °C	160-170
Saturación de agua a T ^a ambiente (ppm)	55
Viscosidad (40°C)	9,2

Tabla 3.5 Propiedades físico-químicas del aceite mineral

4. FÍSICAS: FLUIDO-TÉRMICO-ELECTROMAGNÉTICO

4.1 INTRODUCCIÓN

En la simulación del modelo geométrico se consideran cuatro físicas diferentes en el fluido. La primera de ellas es la mecánica de fluidos mediante la cual se determina el movimiento y campo de velocidades del fluido refrigerante en circulación en el interior de la cuba; la segunda es la transferencia de calor mediante la cual se calcula la distribución de temperatura en todos los dominios de la geometría; la tercera es circuitos eléctricos mediante la cual se representan los campos eléctricos y densidades de corriente presentes en los dominios; y la cuarta son campos magnéticos mediante la cual se determinan las fuerzas magnetomotrices y los campos magnéticos inducidos en la parte activa del transformador. Los cuatro fenómenos influyen directamente correlacionados en el funcionamiento de un transformador y por ello en capítulos posteriores se realizará un estudio temporal para caracterizar la relación entre las cuatro físicas.

La nomenclatura usada en la demostración de la física mediante alusiones a diferentes ecuaciones viene determinada en el apéndice al final del documento.

4.2 PRINCIPIOS FÍSICOS

4.2.1 Circuitos eléctricos

Las principales magnitudes que definen un circuito eléctrico son corriente, tensión y potencia eléctrica. La corriente eléctrica se define como la variación de la carga eléctrica con respecto al tiempo que circula por un conductor y se mide en amperios.

$$i(t) = \frac{\mathrm{d}q(t)}{\mathrm{d}t}$$

Mediante la definición de la corriente eléctrica podremos estudiar posteriormente la densidad de corriente distribuida por la parte activa del transformador, siendo ésta, la intensidad por unidad de superficie.

La tensión o diferencia de potencial entre dos puntos se define como el trabajo realizado para mover una carga eléctrica unidad entre los dos puntos, su magnitud se denomina voltio.

$$u_{AB} = u(t) = v_A - v_B = \frac{\mathrm{d}w}{\mathrm{d}q}$$

Grado en Ingeniería Eléctrica

ETSIIT

Mediante la ley de Coulomb se define que la fuerza de atracción o repulsión entre dos cargas puntuales es proporcional a una constante del medio, al producto de sus cargas, a un vector unitario con dirección de la carga fuente hacia la de prueba e inversamente proporcional al cuadrado de la distancia que las separa. Si eliminamos la carga de prueba de la expresión, obtenemos el campo eléctrico E creado por la carga fuente en un punto P, medido en V/m.

$$\vec{E} = K \frac{q}{r^2} \vec{u}_r$$

La relación existente entre la diferencia de potencial entre dos puntos y la intensidad que circula por el conductor se postula en la ley de Ohm, en la cual se establece un factor de proporcionalidad denominado resistencia.

$$u(t) = i(t)R$$

La potencia eléctrica se define como el trabajo ejercido por una carga que se desplazada entre dos puntos a distinto nivel de potencial por unidad de tiempo y se mide en watios.

$$p(t) = \frac{\mathrm{d}w}{\mathrm{d}t} = u(t)\frac{\mathrm{d}q}{\mathrm{d}t} = u(t)i(t) = i(t)^2 R$$

Debido a esta última expresión, se produce el efecto Joule, mediante el cual se disipa calor de manera proporcional al cuadrado de la intensidad que atraviesa una resistencia, debido a los choques que sufren las cargas en circulación por el conductor, cediendo parte de su energía cinética en forma de calor. Se trata de un fenómeno irreversible que posteriormente estudiaremos en la simulación del modelo.

4.2.2 Campos magnéticos

Un campo magnético se produce por el movimiento de partículas cargadas en un conductor. Este campo vectorial se caracteriza por la inducción magnética B y que se define a partir de la fuerza de Lorentz que aparece sobre una carga eléctrica que se mueve con una velocidad v en el seno de un campo magnético. Esta fuerza tiene una dirección perpendicular a la velocidad y la inducción magnética y se define por la siguiente ecuación:

$$\vec{F} = q(\vec{v} \land \vec{B})$$

El teorema de Ampere postula que la integral del vector excitación H a lo largo de un recinto cerrado L es igual a la suma de todas las corrientes que encierran el contorno. Este teorema nos permite calcular las fuerzas magnetomotrices originadas en el contorno encerrado y analizar los campos magnéticos.

Grado en Ingeniería Eléctrica

ETSIIT

$$\oint_C \vec{H} \cdot d\vec{l} = \sum_i i_j$$

Según la ley de Faraday cuando el campo magnético en una espira es variable en el tiempo, se induce en ella una fuerza electromotriz de igual valor a la derivada del flujo concatenado respecto el tiempo. Esta fuerza electromotriz inducida da lugar a la circulación de una nueva corriente que generará un campo magnético, que, por la ley de Lenz, se opondrá a la variación de flujo. La ecuación que define ambos teoremas es la siguiente:

$$e = -\frac{d\varphi}{dt}$$

4.2.3 Mecánica de fluidos

Es el principio físico mediante el cual podemos estudiar el equilibrio y movimiento de los fluidos. A continuación, se definirán los argumentos físicos que definen un flujo laminar.

Flujo laminar

El análisis del movimiento del fluido se estudia mediante las ecuaciones de conservación de la cantidad de movimiento y la conservación de la masa. Estas ecuaciones fueron postuladas por Navier-Stokes para fluidos incompresibles, siendo incógnitas el campo de velocidades del fluido y el campo de presiones.

$$\frac{\partial \rho}{\partial t} + \nabla(\rho U) = 0$$

$$\frac{\partial (\rho U)}{\partial t} + \nabla (\rho U \times U) = -\nabla p + \mu (\nabla^2 U) + g(\rho - \rho_{ref})$$

La primera ecuación representa la conservación de la masa, la segunda representa la conservación de la cantidad de movimiento.

Variaciones en la densidad del fluido dan lugar a fuerzas de flotabilidad $g(\rho - \rho_{ref})$, las variaciones de presión dan lugar a fuerzas de presión $-\nabla p$, y las variaciones de velocidad dan lugar a fuerzas de viscosidad $\mu(\nabla^2 U)$.

Grado en Ingeniería Eléctrica

ETSIIT

4.2.4 Transferencia de calor

Diferenciaremos entre dos tipos de transferencia de calor; por conducción, mediante la cual el intercambio de calor se basa en el contacto directo entre los cuerpos sin que se produzca intercambio de materia, transmitiéndose el calor de la región con mayor temperatura a la región de menor temperatura; por convección, mediante la cual se produce un intercambio de calor entre fluidos y sólidos, cuando entran en contacto un fluido y un sólido a distinta temperatura, si el movimiento del fluido se debe a una pérdida de densidad causada por la variación de la temperatura se denomina convección natural, mientras que si el flujo es causado por un mecanismo externo se denomina convección forzada.

<u>Sólidos</u>

La transferencia de calor en sólidos es definida por la ley de Fourier de la termodinámica, dónde se describe que el calor por unidad de tiempo transferido Q, es proporcional a una constante K de la conductividad térmica del medio, a la sección transversal del sólido, a la diferencia de temperaturas entre el foco caliente y el foco frío, e inversamente proporcional al espesor del medio δ . La ecuación que rige el fenómeno es la siguiente:

$$\frac{\Delta Q}{\Delta t} = KA \frac{(t_{caliente} - t_{frio})}{\delta}$$

Este postulado nos va a permitir posteriormente estudiar este fenómeno termodinámico a lo largo del núcleo y los devanados del transformador.

Fluidos

La transferencia de calor por convección se define mediante la ley de Newton del enfriamiento, que una vez resuelta, postula que el calor transferido por unidad de tiempo es proporcional a la diferencia de temperatura entre ambos medios, a la superficie en contacto con el fluido A y a un coeficiente de convección h que es dependiente de múltiples parámetros correspondientes a la física de fluidos que explicaremos posteriormente. La ecuación mediante la cual se rige este fenómeno es la siguiente:

$$\frac{\Delta Q}{\Delta t} = hA(t_{s\'olido} - t_{fluido})$$

Esta expresión estará representada mediante la transferencia de calor entre la parte activa del transformador y el propio fluido refrigerante.

Grado en Ingeniería Eléctrica

ETSIIT

5 MODELO DE SIMULACIÓN

5.1 INTRODUCCIÓN

En capítulos previos se han expuesto tanto los aspectos constructivos de un transformador como los diferentes tipos de refrigeración que poseen. Además, se han definido las físicas presentes en la simulación.

En este capítulo, se desarrollan los apartados que nos permiten llevar a cabo la simulación incluyéndose el método de los elementos finitos, la geometría de la simulación, las propiedades físicas de los materiales, el modelo numérico y las condiciones de contorno e iniciales necesarias para llevarlo a cabo.

5.2 MÉTODO DE LOS ELEMENTOS FINITOS

El método de los elementos finitos (MEF) es un procedimiento que permite obtener soluciones aproximadas de ecuaciones diferenciales parciales, así como de ecuaciones integrales, mediante técnicas numéricas estándar, como el método de Euler, o de Runge-Kutta.

El MEF se caracteriza por llevar a cabo la división de un continuo en un conjunto de pequeños elementos interconectados entre sí por una serie de puntos denominados nodos, sobre los cuales se materializan las incógnitas fundamentales del problema. Las ecuaciones que rigen el comportamiento del continuo, también regirán el comportamiento del elemento.

Mediante esta nueva reestructuración se consigue transformar un sistema continuo con infinitos grados de libertad, que es regido por un sistema de ecuaciones diferenciales, a un sistema de número de grados de libertad finito cuyo comportamiento se modela por un sistema de ecuaciones, lineales o no. El número de ecuaciones que es necesario resolver es proporcional al número de nodos.

En cualquier sistema podemos diferenciar entre:

- Dominio: espacio geométrico donde se va a analizar el sistema.
- Condiciones de contorno e iniciales: Variables conocidas y que condicionan el cambio del sistema: desplazamientos, temperaturas, focos de calor, etc.
- Incógnitas: variables del sistema que deseamos conocer después de que las condiciones de contorno e iniciales hayan actuado sobre los dominios. Se les denomina grados de libertad de cada nodo del modelo. Los grados de libertad de un nodo son las variables que determinan el estado y/o posición del mismo.

Grado en Ingeniería Eléctrica

ETSIIT

El método de los elementos finitos lleva a cabo, para solucionar el problema, el discretizado del dominio en subdominios denominados elementos, formados a partir de la aplicación de un mallado a la superficie total continua, de características concretas elegidas. Tras la discretización del modelo, los elementos se definen por un número discreto de puntos que conectan entre sí, estos nodos regirán las incógnitas principales de nuestro problema.

El MEF permite realizar un modelo matemático de cálculo del sistema real con cierta precisión, más fácil y económico de modificar que un prototipo. Sin embargo, se trata de un método aproximado de cálculo que converge en soluciones aproximadas. Los prototipos, por lo tanto, siguen siendo necesarios, pero en menor número, ya que pueden acercarse bastante más al diseño óptimo.

5.2.1 Comsol Multiphysics

De entre los programas informáticos basados en el método de los elementos finitos, el software seleccionado para el análisis es el programa Comsol Multiphysics en su versión 5.0 Este programa pertenece a la empresa COMSOL, fundada en 1986 en Estocolmo, Suecia.

Este programa, al igual que otros equivalentes como SolidWorks, Catia, Ansys, Cosmos, etc. Es usado por científicos, ingenieros y otros interesados en realizar un pre-análisis de cierta profundidad con anterioridad a la decisión de llevar a cabo la fabricación de un prototipo sobre el que realizar los análisis finales que verificarán la validez de lo diseñado y su posterior producción. Se consigue así, de forma ágil, obtener resultados que hayan tenido en cuenta tanto el nivel de detalle elegido por el usuario como algunos de los varios procesos físico-químicos actuantes de forma instantánea, al disponer Comsol Multiphysics de la posibilidad de implementar varios módulos de principios para actuar simultáneamente.

En este programa es posible modelar a partir de la representación de una geometría en la que se fijan las cantidades físicas que caracterizan al problema, o bien a través de la introducción de las ecuaciones que modelen el problema, siendo igualmente posible, la combinación de ambas formas de modelado.

Como programa basado en método de los elementos finitos, COMSOL trabaja sobre un sistema de Ecuaciones Diferenciales Parciales (PDEs, en inglés) implementadas en el programa, que crean una descripción matemática de varios fenómenos físicos basados en las leyes de la ciencia.

Como resumen de las principales características del programa podemos destacar:

Grado en Ingeniería Eléctrica

ETSIIT

- Interfaz gráfica "amigable" e interactiva para todas las etapas del proceso de modelado.
- Ilimitadas prestaciones de Multifísica.
- Formulación general para un modelado rápido y sencillo de sistemas arbitrarios de PDEs.
- Multifísica multidimensional para modelado simultáneo de sistemas en 1D, 2D y 3D.
- Incorpora herramientas CAD para modelado sólido en 1D, 2D y 3D.
- Permite importar y reparar la geometría de archivos CAD en formato DXF y IGES. En particular, permite la importación de archivos creados en AutoCAD y CATIA.
- Generación automática y adaptativa de mallas, con un control explícito e interactivo sobre su tamaño.
- Extensa biblioteca de modelos que documentan y muestran más de 80 ejemplos resueltos.
- Disponibles los "solvers" más novedosos; entre ellos destacan, "solvers" iterativos para problemas estacionales lineales y no lineales, dependientes del tiempo, y de valores propios.
- Post-procesado interactivo que permite visualizar cualquier función de la solución.
- Integración total con MATLAB y sus toolboxes.

Mediante distintos módulos Comsol Multiphysics es aplicable a un amplio número de áreas:

- Acústica, electromagnetismo, sistemas microelectromecánicos (MEMS), ingeniería de microondas, componentes de radiofrecuencia, dispositivos semiconductores, propagación de ondas.
- Reacciones químicas, difusión, dinámica de fluidos, fluidos en medios porosos, transferencia del calor, fenómenos de transporte.
- Mecánica de estructuras
- Física, geofísica, óptica, fotónica, mecánica cuántica.
- Sistemas de control.
- Modelización de componentes.
- Matemática aplicada.

5.3 PROCEDIMIENTO GENERAL DE CÁLCULO

En la generación del modelo a estudiar por el MEF, se tiene en cuenta que dicho modelo es una idealización de un sistema físico real, el mismo que puede ser desarrollado gracias a un procedimiento analítico o una sustitución matemática.

La metodología empleada en la simulación, de manera común a la mayor parte de programas que emplean este método de simulación, se puede dividir en tres grandes etapas; el preprocesado, procesado y post-procesado.

La etapa de pre-procesado constituye todos los pasos iniciales previos a la simulación del problema, es decir, la introducción de todos los inputs que posteriormente mediante el procesado nos van a permitir obtener los outputs esperados. El pre-procesado en Comsol Multiphysics lo llevaremos a cabo como sigue.

Al inicio del programa seleccionaremos el tipo de modelo deseado: 1D, 2D, 3D, etc. A continuación, la interface del programa nos mostrará los módulos físico-químicos disponibles de cuya selección dependerán las físicas aplicadas en la simulación e indicaremos el tipo de análisis (estacionario, dominio del tiempo o de la frecuencia...).

Una vez introducidos los primeros datos, procederemos a la representación de la geometría de nuestro modelo. Comsol Multiphysics cuenta con su propia herramienta de dibujo mediante formas lineales y poligonales predefinidas, que posteriormente se extruirán en caso de buscar una figura 3D, o puede importarse una geometría CAD sin usar esta herramienta. Una vez realizado este paso ya dispondremos de nuestros dominios geométricos, pudiendo modificar las propiedades de sus contornos, aristas, etc.

Una vez tenemos definida nuestra geometría, proporcionaremos al modelo los valores y expresiones deseadas que se añadirán a los valores y procedimiento que por defecto asume Comsol en las físicas seleccionadas previamente. Todas estas expresiones, valores o constantes definidas se pueden poner a disposición de todo nuestro dominio geométrico o aplicarse a determinadas partes del diseño. Estas expresiones y variables se denominan condiciones de contorno e iniciales, que el programa utilizará en sus procedimientos de cálculo posteriormente.

A continuación, procedemos a asignar las condiciones de contorno a los subdominios.

Para finalizar la etapa de pre-procesado, como se ha citado previamente, procederemos a la creación de un mallado de nuestro modelo, consiguiendo una discretización de la geometría

Grado en Ingeniería Eléctrica

ETSIIT

José Ramón Puente Botín

continua. La calidad de nuestra solución será proporcional a la finura del mallado geométrico. Posteriormente se podrá refinar la densidad de mallado, ajustándose a las exigencias del solucionador.

La etapa de procesado se define como el proceso mediante el cual el programa resuelve las ecuaciones algebraicas de gobierno y calcula los valores de las variables del campo primarias. Comsol dispone de varios tipos de solucionadores, que escogeremos atendiendo al tipo de estudio que queremos realizar. Tanto el tipo de resultados como el modo en que se obtendrán, dependerán directamente del tipo de solucionador escogido.

Finalmente, en la etapa de post-proceso, evaluaremos y analizaremos los resultados obtenidos. Mediante las diferentes opciones de representación gráfica y numérica de Comsol, mostraremos los resultados obtenidos en gráficas y tablas pudiendo ser exportados a otros formatos para su presentación final.

Como conclusión, podemos ver el procedimiento general de cálculo como un conjunto de operaciones de las cuales su correcto funcionamiento depende directamente de la calidad de diseño de la operación anterior. Así, podemos esquematizar mediante bloques la dependencia a través de lazos de retroalimentación en etapas concretas del análisis.

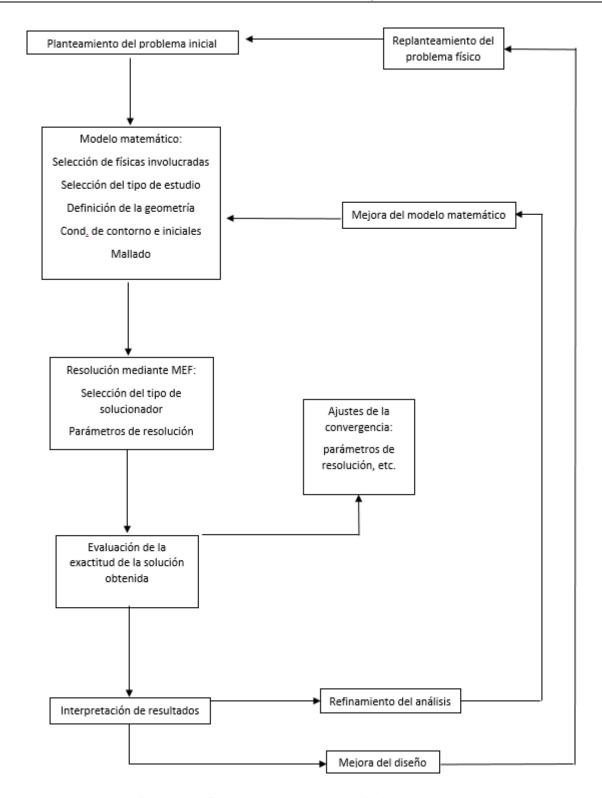


Figura 5.1 Esquema etapas procedimiento general

Grado en Ingeniería Eléctrica

ETSIIT

5.4 GEOMETRÍA DEL TRANSFORMADOR

El transformador que procedemos a analizar es un transformador trifásico de tres columnas, donde la disposición de los devanados primario y secundario es concéntrica, situándose el devanado de menor tensión en la posición interior. Los devanados se disponen arrollados en las tres secciones verticales del núcleo, dándose la relación de una sección vertical por cada dos devanados, primario y secundario de cada fase, respectivamente. El transformador consta de dos yugos que unen las tres columnas formando un único circuito magnético

El conjunto activo -devanados y núcleo- ahora presentado, se encuentra encerrado dentro de una cuba en baño de aceite, siendo ésta la configuración de un transformador de potencia.

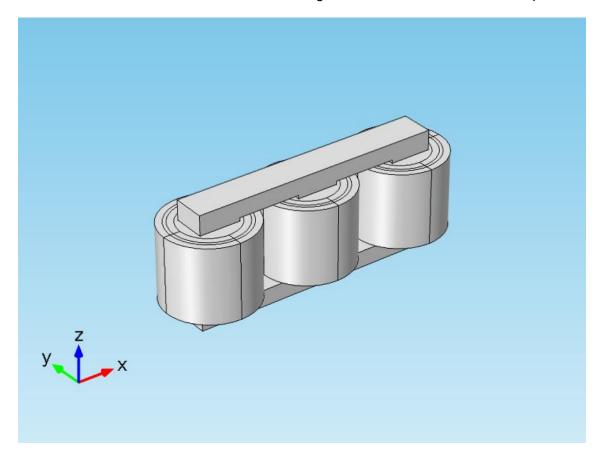


Figura 5.2 Modelo geométrico del estudio

El modelo estudiado es un prototipo a escala 1:50 del mencionado transformador de potencia con varias simplificaciones que a continuación se detallarán, con el objetivo de poder estudiar los principales fenómenos físicos producidos en el aparato causados por la interacción de las cuatro físicas entre sí anteriormente detalladas. El modelo geométrico está definido por los siguientes elementos.

Grado en Ingeniería Eléctrica

ETSIIT

Dominios	Contorno	Aristas	Puntos
45	208	312	152

Tabla 5.1 Composición de la geometría del modelo

5.4.1 Simplificaciones geométricas del modelo

Con el fin de reducir el coste computacional y poder alcanzar una solución, se asumen una serie de simplificaciones geométricas en cada uno de sus componentes. A continuación, se detallan los elementos considerados, sus simplificaciones y los elementos geométricos que forman cada uno de ellos.

<u>Núcleo</u>

El núcleo del transformador es reducido a dos yugos que unen tres columnas verticales. Se asume que el conjunto de dominios sólidos que forman el núcleo son del mismo material que, además, es continuo. Es decir, se desprecian las capas aislantes en las uniones de las chapas. A continuación, se presentan las dimensiones del núcleo en las figuras 5.3a y 5.3b.

Dominios	Contorno	Aristas	Puntos
5	34	84	48

Tabla 5.2 Composición de la geometría del núcleo

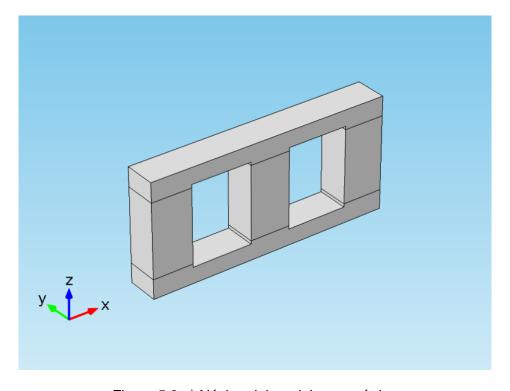


Figura 5.3 a) Núcleo del modelo geométrico

Grado en Ingeniería Eléctrica

ETSIIT

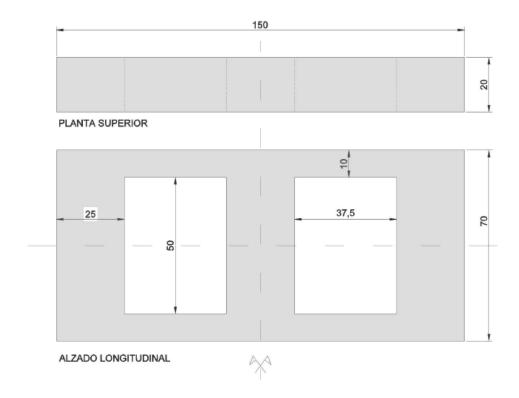


Figura 5.3 b) Vistas geométricas del núcleo

Devanados

Los devanados del transformador se encuentran dispuestos concéntricamente, dos a dos. Se asume que cada arrollamiento está representado por un cilindro uniforme y compacto, estando compuesto de un único material, no presentando papel dieléctrico, ni canales verticales de refrigeración en su interior. En las figuras 5.4a y 5.4b se presentan las dimensiones de los devanados.

Dominios	Contorno	Aristas	Puntos
24	97	142	96

Tabla 5.3 Composición de la geometría de los devanados

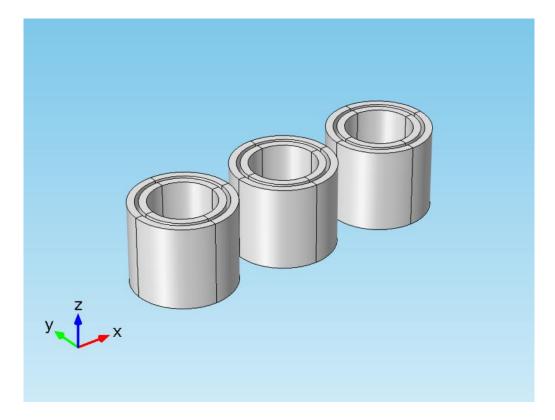


Figura 5.4 a) Devanados del modelo geométrico

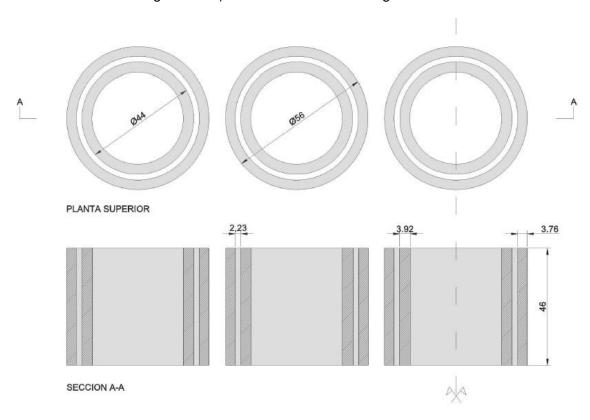


Figura 5.4 b) Vistas geométricas de los devanados

Grado en Ingeniería Eléctrica

ETSIIT

Fluido refrigerante

El aceite mineral se asume que fluye por la cuba rodeando, el exterior de la parte activa del transformador. La refrigeración en el interior de los propios devanados no se contempla, el fluido circulará por los dominios definidos por los volúmenes creados por la concentricidad de los arrollamientos. Las columnas verticales del núcleo serán refrigeradas únicamente por la circulación del fluido alrededor de sus contornos. La cuba del transformador queda representada como un hexaedro que contendrá la parte activa. Las Figuras 5.5a y 5.6 muestran de manera sombreada los canales de refrigeración y la cuba contenedora del transformador, respectivamente.

En la figura 5.5b se muestran las dimensiones que presentan los canales de refrigeración.

Dominios	Contorno	Aristas	Puntos
16	136	288	152

Tabla 5.4 Composición de la geometría del fluido refrigerante

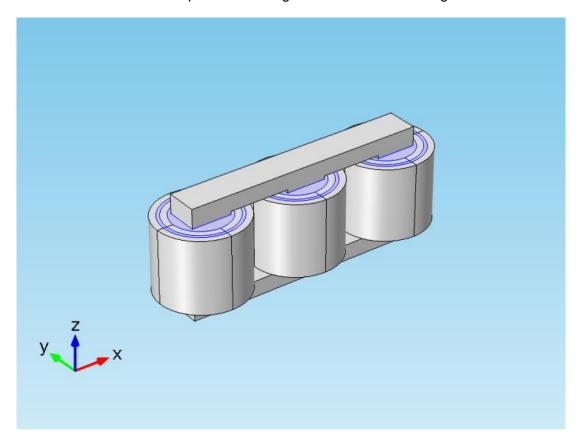


Figura 5.5 a) Canales de refrigeración del modelo geométrico

Grado en Ingeniería Eléctrica

ETSIIT

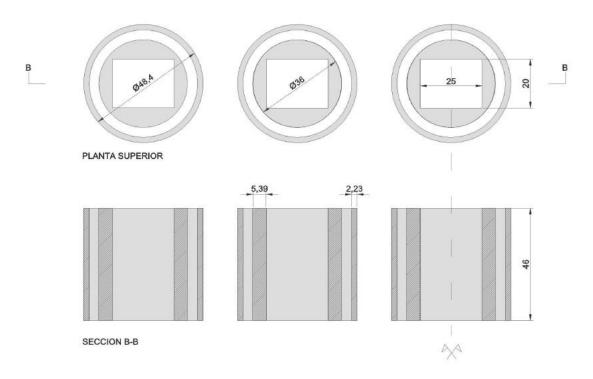


Figura 5.5 b) Vistas geométricas de los canales de refrigeración

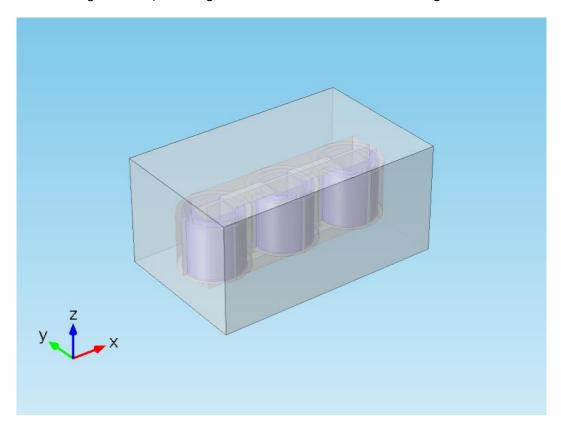


Figura 5.6 Cuba del modelo geométrico

Grado en Ingeniería Eléctrica

ETSIIT

5.5 PROPIEDADES FÍSICAS DE LOS MATERIALES

En el modelo del estudio se han asignado sus dominios geométricos a tres materiales diferentes, dos sólidos y un fluido, los cuales quedan caracterizados por una serie de propiedades físicas y parámetros requeridos para la correcta simulación del transformador. Estas magnitudes han sido proporcionadas por la librería de materiales de Comsol Multiphyisics a excepción de ciertas modificaciones que se han aplicado al fluido que posteriormente se explicarán. A continuación, se detallan los materiales.

5.5.1 Hierro

El hierro se asigna a los dominios geométricos correspondientes al núcleo del transformador, siendo definido por los siguientes parámetros.

Propiedad	Valor	Unidad
Conductividad eléctrica	1,12E07	S/m
Permitividad relativa	1	adimensional
Conductividad térmica	400	W/(m·K)
Densidad	8700	kg/m^3
Capacidad térmica a presión constante	385	J/(kg·K)

Tabla 5.5 Propiedades físicas del hierro

En el estudio, el núcleo tiene un comportamiento magnético regido por la curva de magnetización B-H que se muestra en la Figura 5.1.

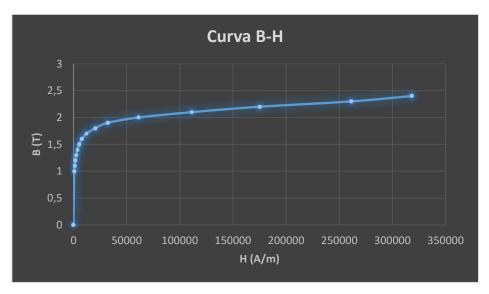


Figura 5.7 Curva de saturación del hierro

Grado en Ingeniería Eléctrica

ETSIIT

5.5.2 Cobre

El cobre se asigna a los dominios geométricos correspondientes a los arrollamientos siendo definido por los siguientes parámetros.

Propiedad	Valor	Unidad
Conductividad eléctrica	5,998e7	S/m
Permitividad relativa	1	adimensional
Conductividad térmica	400	W/(m·K)
Densidad	8700	kg/m^3
Capacidad térmica a presión constante	385	J/(kg·K)

Tabla 5.6 Propiedades físicas del cobre

5.5.3 Propiedades del aceite

El aceite mineral es un material fluido que se asigna a los dominios geométricos pertenecientes a la cuba del transformador y los canales de refrigeración. Los parámetros de viscosidad dinámica, capacidad térmica a presión constante, densidad y conductividad térmica proporcionados por la librería de materiales de Comsol Multiphysics han sido modificados. Debido a la interacción fluido-térmica entre los elementos sólidos y el fluido, se han añadido expresiones matemáticas que proporcionan una variación en las propiedades anteriormente mencionadas en función de la temperatura.

Las expresiones matemáticas de la densidad, capacidad térmica a presión constante, conductividad térmica y viscosidad cinemática del aceite mineral en función de la temperatura del fluido son las siguientes, respectivamente:

$$\rho = -0.5859 * T + 1048.9 \left[\frac{kg}{m^3} \right]$$

$$C_p = 3,6080 * T + 816,62 \left[\frac{J}{kg * K} \right]$$

$$k = -7,53 * 10^{-5} * T + 0,154 \left[\frac{W}{m * K} \right]$$

$$v = 2,44 * 10^{-9} * T^2 - 1,77 * 10^{-6} * T + 3,25 * 10^{-4} \left[\frac{m^2}{s} \right]$$

La variable T representa la temperatura y viene dada en su unidad del sistema internacional, el Kelvin.

Grado en Ingeniería Eléctrica

ETSIIT

A continuación, las tablas 5.7, 5.8, 5.9, 5.10 5.11 y las Figuras 5.1, 5.2, 5.3, 5.4 y 5.5 muestran las propiedades del fluido en función de las expresiones anteriormente citadas.

Propiedad	Valor	Unidad
Conductividad eléctrica	10	S/m
Permitividad relativa	1	adimensional
Permeabilidad relativa	1	adimensional
Coeficiente de dilatación adiabática	1	adimensional

Tabla 5.7 Propiedades físicas constantes del aceite mineral

Densidad

Tª (K)	Densidad (kg/m3)
273	888,93
283	883,09
293	877,23
303	871,37
313	865,51
323	859,65

Tabla 5.8 Densidad aceite mineral

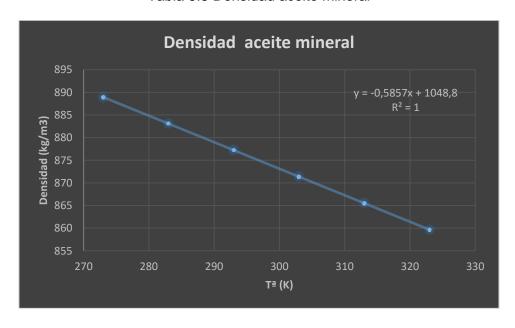


Figura 5.8 Densidad aceite mineral

Grado en Ingeniería Eléctrica

ETSIIT

Capacidad térmica a presión constante

	Capacidad	térmica a
Tª (K)	presión	constante
	J/(kg*K)	
273	1801,6	
283	1837,6	
293	1873,7	
303	1909,8	
313	1945,90	
323	1982	

Tabla 5.9 Calor específico aceite mineral

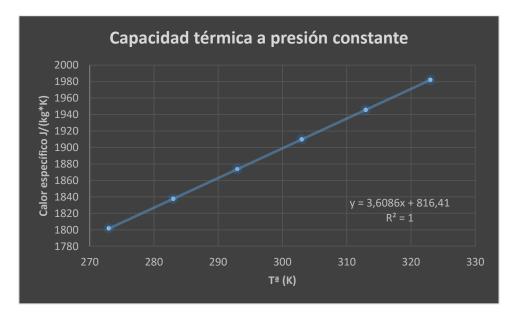


Figura 5.9 Calor específico aceite mineral

Grado en Ingeniería Eléctrica ETSIIT

Conductividad térmica

Tª (K)	Conductividad térmica (W/m*K)
273	0,1334
283	0,1326
293	0,1319
303	0,1311
313	0,1304
323	0,1296

Tabla 5.10 Conductividad térmica aceite mineral

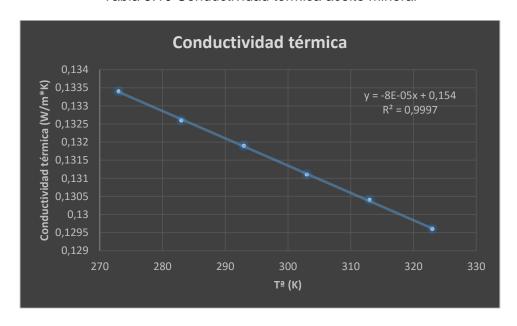


Figura 5.10 Conductividad térmica aceite mineral

Grado en Ingeniería Eléctrica ETSIIT

Viscosidad cinemática

Tª (K)	Viscosidad cinemática
1 = (K)	(m^2/s)
273	2,3640E-05
293	1,5861E-05
313	1,0034E-05
333	6,1591E-06
353	4,2359E-6
373	4,2647E-06

Tabla 5.11 Viscosidad cinemática aceite mineral

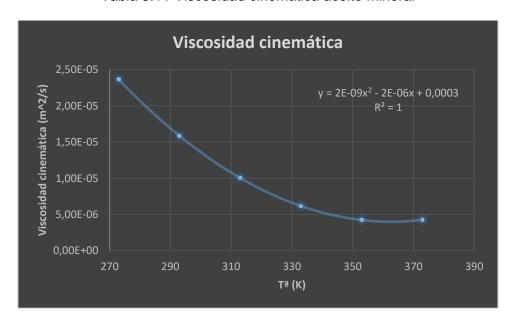


Figura 5.11 Viscosidad cinemática aceite mineral

5.6 MODELO MATEMÁTICO DE LAS FISICAS APLICADAS

En este apartado se define el modelo físico-matemático a resolver por el programa, exponiéndose las ecuaciones de gobierno seleccionadas, las condiciones de contorno e iniciales definidas y el acoplamiento mutuo entre las diferentes físicas. De este paso correspondiente al pre-procesado de la simulación dependerá que posteriormente los resultados arrojados sean congruentes.

Grado en Ingeniería Eléctrica ETSIIT

5.6.1 Ecuaciones de gobierno

• Ley de Ampere:

$$\sigma \frac{\partial A}{\partial t} + \nabla \times H = J_e$$

$$B = \nabla \times A$$

Conservación de la cantidad de movimiento:

$$\rho \frac{\partial u}{\partial t} + \rho(u \cdot \nabla)u = \nabla \cdot \left[-pI + \mu(\nabla u + (\nabla u)^T) - \frac{2}{3}\mu(\nabla \cdot u)I \right] + F$$

Conservación de la masa:

$$\frac{\partial \rho}{\partial t} + \rho \nabla \cdot (u) = 0$$

Transferencia de calor en sólidos:

$$\rho C_p \frac{\partial T}{\partial t} + \rho C_p u \cdot \nabla T = \nabla \cdot (k \nabla T) + Q$$

• Transferencia de calor en fluidos:

$$\rho C_p \frac{\partial T}{\partial t} + \rho C_p u \cdot \nabla T = \nabla \cdot (k \nabla T) + Q + Q_{vd} + Q_p$$

5.6.2 Condiciones de contorno y valores iniciales

Antes de realizar el análisis es necesario definir los valores iniciales y condiciones sobre los que, las ecuaciones gobernantes anteriormente citadas, comenzarán a calcular nuevos valores para, posteriormente mediante el solucionador seleccionado arrojar una solución.

Campos magnéticos

Relación constitutiva de la permeabilidad relativa:

$$B = \mu_0 \mu_r H$$

• Relación constitutiva de la curva HB:

$$H = f(|B|) \frac{B}{|B|}$$

• Corriente a través de la bobina:

$$J_e = \frac{Nl_{cir}}{A}e_{coil}$$

Grado en Ingeniería Eléctrica

ETSIIT

Aislamiento magnético:

$$n \times A = 0$$

- La discretización del vector de potencial magnético será lineal
- La ley de Ampere aplicada, se diferenciará entre dos grupos de dominios; en el núcleo activo del transformador la relación constitutiva del campo magnético vendrá dada por la curva HB del material y en el resto de dominios vendrá definida por la permeabilidad relativa
- Se fija la intensidad de campo magnético inicial en 1 A/m, como una variable de escala en condición de divergencia.

Circuitos eléctricos

• Se fijan los siguientes parámetros iniciales en el circuito eléctrico:

Característica	Valor
Espiras primario	3,00E+05
Espiras secundario	300
Resistencia primario	100 (ohm)
Resistencia secundario	100 (ohm)
Tensión en bornes	50 (kV)
Frecuencia de la tensión	50 (Hz)

Tabla 5.12 Características circuito eléctrico

- Se establece un aislamiento eléctrico en todos los contornos de los devanados
- La conexión de los tres generadores de tensión sinusoidal será de tipo estrella
- Campo eléctrico:

$$D = \varepsilon_0 \varepsilon_r E$$

Flujo laminar

Paredes:

$$u = 0$$

Grado en Ingeniería Eléctrica
ETSIIT

E12111

Entrada de fluido:

$$u = -U_0 n$$

Salida de fluido

$$[-pI + \mu(\nabla u + (\nabla u)^T)]n = -p_0 n$$

- El fluido se considera como comprensible con un número de Mach menor a 0,3
- Tanto la velocidad y presión iniciales en el volumen se consideran nulas
- Se aplicará una fuerza volumétrica de flotabilidad dependiente de la densidad que permitirá el movimiento del fluido ante un cambio en dicha magnitud. La expresión dependiente se muestra a continuación
- Es considerada una condición de no-deslizamiento, mediante la cual, la velocidad del fluido en contacto con las paredes es nula. Debido a la formación de la capa límite hidrodinámica en el fluido próximo a la pared.
- El contorno inferior de la geometría se considera la entrada del fluido, aplicando una velocidad inicial de 0,04 m/s
- En el contorno superior de la geometría, salida del fluido, se considera una presión nula

Transferencia de calor

Temperatura constante:

$$T = T_0$$

Aislamiento térmico:

$$-n \cdot (-k\nabla T) = 0$$

- La temperatura dentro de la cuba aumenta linealmente
- El valor inicial de la temperatura de los sólidos en las simulaciones será de 293,15°K
- Los contornos de la cuba son considerados como aislantes térmicos
- La entrada del fluido se realiza con una temperatura constante de 293,15°K
- Se consideran tres fuentes de calor distintas; del núcleo, del devanado primario y del devanado secundario, siendo su origen general el calentamiento electromagnético producido en cada instante de simulación

Grado en Ingeniería Eléctrica

ETSIIT

5.6.3 Acoplamiento multifísica

Previamente se han definido las condiciones de contorno aplicadas al modelo, clasificándose por sus físicas correspondientes. El objetivo de este estudio es poder obtener resultados considerando la interacción entre las diferentes físicas, para poder lograr este efecto, se impondrán ciertas condiciones adicionales proporcionadas por un módulo opcional de Comsol Multiphysics llamado nodo Multifísica.

Cuando se definen varias físicas en Comsol, el propio software acopla las físicas. A continuación, se definen las relaciones impuestas entre las físicas.

Flujo no isotérmico

Permite establecer un flujo no isotérmico en el modelo. Establece un acoplamiento de temperatura directo entre el flujo laminar y el módulo de transferencia de calor, imponiendo la temperatura sobre la que se llevarán a cabo los cálculos en las expresiones algebraicas correspondientes a la transferencia de calor en fluidos y en el propio flujo laminar. Además, tomando como origen el flujo laminar y como destino la transferencia de calor en fluidos, definirá el campo de velocidades y la presión absoluta como datos de entrada.

Por otra parte, permite definir la existencia de un calentamiento en el fluido debido al trabajo ejercido por los cambios de presión en el mismo. Las ecuaciones que definen este efecto son las siguientes:

$$Q_p = \alpha_p T(\frac{\partial p}{\partial t} + u \cdot \nabla p)$$

$$\alpha_p = -\frac{1}{\rho} (\frac{\partial \rho}{\partial t})$$

Fuente de calor electromagnético

Establece una nueva definición en los parámetros de las expresiones de transferencia de calor, acoplando las físicas electromagnética y transferencia de calor, al habilitarlo, nos permite tener en cuenta el calor generado en el núcleo debido a las corrientes de Foucault generadas por la inducción de una diferencia de potencial eléctrico resultado de la variación de flujo magnético, creando pérdidas por efecto Joule. Las expresiones aportadas son las siguientes:

$$\rho C_p \frac{\partial T}{\partial t} - \nabla \cdot (k \nabla T) = Q_e$$

Grado en Ingeniería Eléctrica

ETSIIT

$$J \cdot E = Q_e$$

Fuente de calor electromagnético de contorno

Este módulo nos permite establecer un acoplamiento entre las físicas electromagnética y transferencia de calor, realizando una distribución superficial de las pérdidas producidas en el núcleo y los devanados. La expresión aportada por el módulo es la siguiente:

$$-n \cdot (-k\nabla T) = Q_b$$



Figura 5.12 Relación módulo Multifísica

Grado en Ingeniería Eléctrica

ETSIIT

5.7 REALIZACIÓN DEL MODELO FÍSICO-MATEMÁTICO EN COMSOL

A continuación, se procede a describir la elaboración con Comsol Multiphysics del modelo físico-matemático anteriormente descrito.

Como paso inicial, ejecutamos el programa y seleccionamos el asistente de nuevo modelo. Acto seguido, se abrirá una ventana en la cual podremos elegir el espacio dimensional del modelo y posteriormente las físicas involucradas. Seleccionaremos un espacio 3D y consideraremos la transferencia de calor conjugado en flujo laminar, campos magnéticos y circuitos eléctricos.

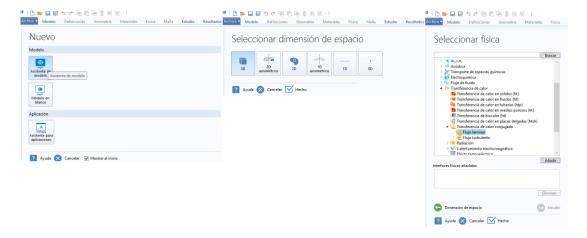


Figura 5.13 Interface inicial del software

Una vez seleccionado el espacio de trabajo y las físicas, procedemos a importar la geometría del modelo. Comsol Multiphysics permite importar geometrías con distintas extensiones, en este caso la extensión será la propia del programa, ".mphbin". Seleccionaremos con el botón derecho el apartado de Geometría y acto seguido escogeremos la opción Importar. Una vez hecho esto, nos aparecerá una ventana donde seleccionar la ruta del archivo que queremos importar, una vez seleccionada, marcaremos la opción Importar.

Una vez importada la geometría, procedemos a hacer selecciones explícitas de los dominios y contornos de la geometría que más nos interesen, para posteriormente, poder asignar las variables de contorno y estudiar las zonas que deseemos.

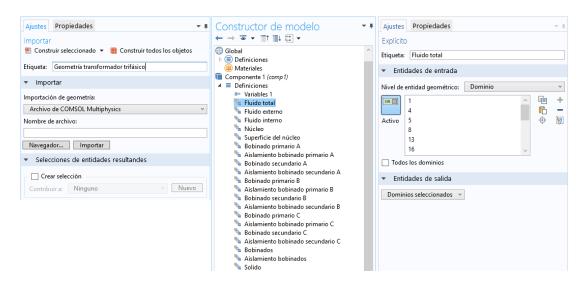


Figura 5.14 a) Interface para importar geometría b) Interface de selección explícita

El siguiente paso consiste en definir los valores de las constantes que aparecen en el modelo. Para ello seleccionamos con el botón derecho en Definiciones Globales y escogemos Parámetros. A continuación, definimos los valores como se muestra.

Figura 5.15 Parámetros constantes de la simulación

Como anteriormente se ha citado, las propiedades del fluido se han modificado y definido como funciones dependientes de la temperatura. Para imponer en el modelo las propiedades de viscosidad cinemática, conductividad térmica y capacidad térmica a presión constante como funciones analíticas seleccionaremos con el botón derecho en Definiciones Globales y escogeremos Analítico.

Grado en Ingeniería Eléctrica

ETSIIT

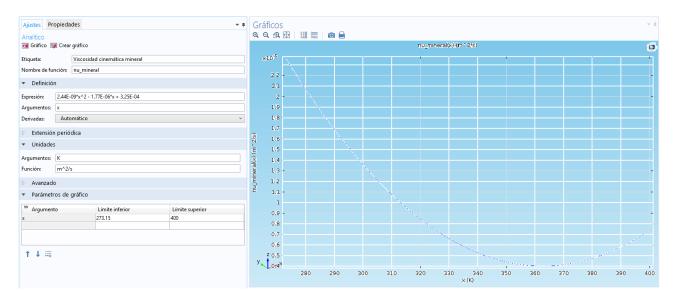


Figura 5.16 Definición funciones analíticas

A continuación, procedemos a declarar las funciones analíticas como propiedades, introduciéndolas en el modelo como variables. Para ello, seleccionamos con el botón derecho Definiciones Componente 1 y escogemos Variables.

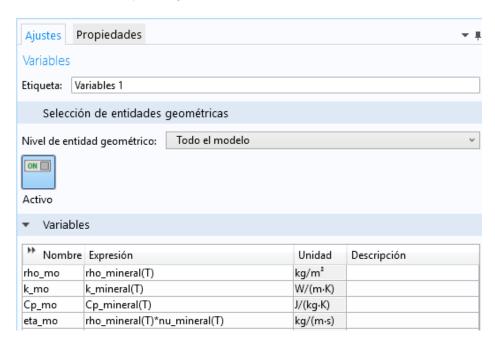


Figura 5.17 Definición de las propiedades dependientes

Una vez definidas las magnitudes constantes y variables, procedemos a asignar los materiales, anteriormente mencionados, correspondientes a cada dominio.

Hierro dulce: Núcleo

Grado en Ingeniería Eléctrica

ETSIIT

Cobre: DevanadosAceite mineral: Fluido

Seleccionaremos con el botón derecho Materiales Componente 1 y escogeremos Añadir material. En la librería de materiales que se nos mostrará escogeremos Soft Iron (with losses), Copper y Transformer Oil. A continuación, definiremos cada dominio con su material correspondiente mediante las selecciones explicitas de domino que anteriormente creamos. En el caso del Oil Transformer, en los valores de las propiedades que queremos cambiar, introduciremos los nombres de las variables declaradas en el paso anterior.

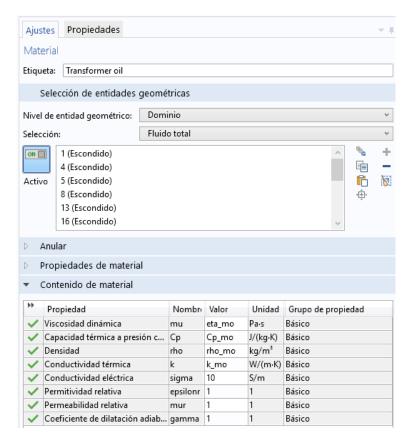


Figura 5.18 Asignación de material a dominio geométrico

Acto seguido, procedemos a definir las condiciones de contorno impuestas en capítulos anteriores. La manera de asignar cada condición a su física correspondiente será seleccionando con el botón derecho en cada módulo y escogiendo del listado que nos aparecerá, cada condición deseada. Una vez finalizado este paso, habremos definido nuestro modelo físico del estudio. A continuación, se muestra un ejemplo de la ventana mostrada al escoger una condición de contorno.

Grado en Ingeniería Eléctrica

ETSIIT

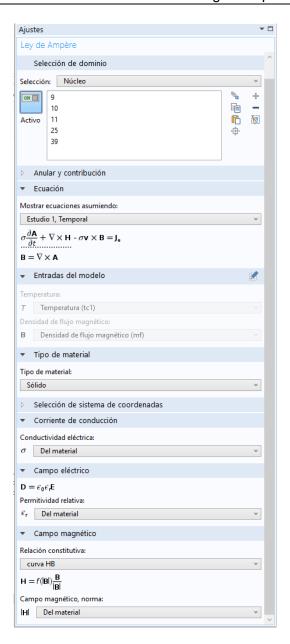


Figura 5.19 Definición de Ley de Ampere sobre el núcleo

Para concluir la etapa de pre-proceso, estableceremos el mallado del modelo para posteriormente proceder con su simulación.

5.8 MALLADO

La discretización del modelo es la última etapa del pre-proceso y por tanto el paso previo a la simulación del mismo. El tamaño de los elementos del mallado es inversamente proporcional a la precisión con la cual la herramienta de cálculo resolverá el problema, y al coste computacional requerido para llevar a cabo la simulación.

Grado en Ingeniería Eléctrica

ETSIIT

Tanto la cantidad como el tipo de elementos que conforman el mallado influirán en el resultado obtenido. En el estudio de este modelo, se han escogido dos mallados diferentes, atendiendo al tipo de estudio seleccionado, a las físicas destacadas a analizar en el mismo y a los requerimientos computacionales.

Como posteriormente se explicará, se han seleccionado dos estudios; uno temporal y uno estacionario. Al primero de los estudios se le aplicará un mallado basado en tetraedros, mientras que, al segundo estudio se le impondrá un mallado basado en hexaedros.

5.8.1 Mallado estudio temporal

Este tipo de mallado será aplicado al estudio temporal del modelo como en capítulos posteriores se explicará. Debido al elevado coste computacional que deriva de este tipo de estudio, se discriminarán dos calibraciones diferentes en la discretización continua; una para los dominios del fluido y otra para los dominios sólidos. El mallado correspondiente al fluido está calibrado para "dinámica de fluidos" con un tamaño de elemento "grueso", mientras que para el mallado de los dominios geométricos sólidos el calibrado será "malla controlada por el usuario". A continuación, se muestran los parámetros de tamaño de los elementos que conforman ambas discretizaciones, las características del mallado del modelo y el histograma de calidad de elementos.

Dominio	Sólido	Fluido
Tamaño máximo de elemento (mm)	5	10,4
Tamaño mínimo de elemento (mm)	2,5	3,12
Tasa de crecimiento máxima de		
elemento	1,3	1,2
Factor de curvatura	0,6	0,7
Resolución de regiones estrechas	0,7	0,6

Tabla 5.13 Parámetros de tamaño de elemento

PROPIEDAD	VALOR
Número de elementos	188755
Calidad mínima de elemento	0,1021
Calidad promedio de	
elemento	<mark>0,7299</mark>
Tasa máxima de crecimiento	4,088
Tasa media de crecimiento	1,714
Elementos tetraédricos	188755
Elementos triangulares	28482
Elementos de arista	2550
Elementos de vértice	152

Tabla 5.14 Características del mallado

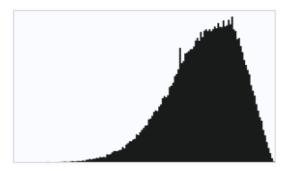


Figura 5.20 Histograma de calidad de elementos

La calidad del mallado se representa a continuación en las figuras 5.21a, 5.21b y 5.21c diferenciando gráficamente entre la cuba del transformador, la parte activa y los canales de refrigeración, respectivamente.

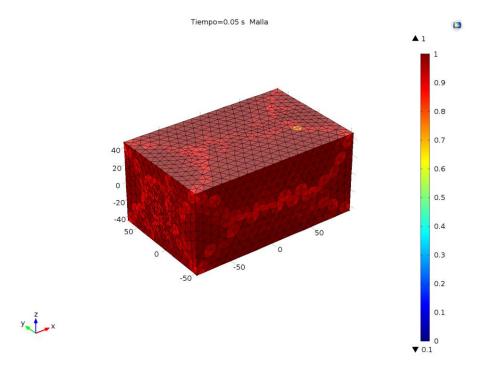


Figura 5.21 a) Calidad de elementos de la cuba

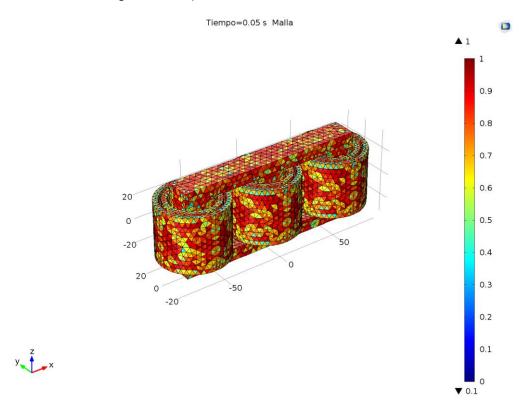


Figura 5.21 b) Calidad de mallado de la parte activa

Grado en Ingeniería Eléctrica ETSIIT

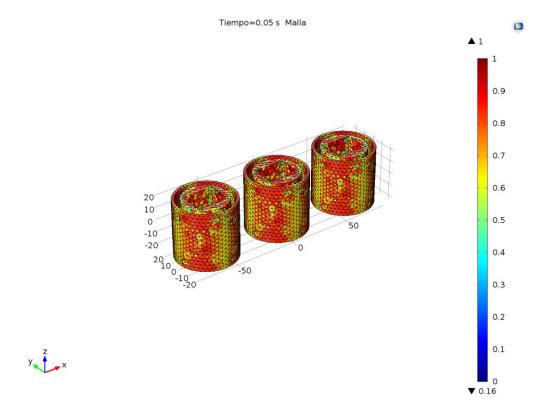


Figura 5.21 c) Calidad de mallado de los canales de refrigeración

Debido a la simplicidad geométrica que presenta el dominio de la cuba, muestra un mallado mayormente homogéneo, manteniendo la calidad de los elementos en un rango superior al 70%.

Los mallados correspondientes a la parte activa del transformador y los canales de refrigeración, presentan una distribución notablemente heterogénea de la calidad de sus elementos, presentando elementos puntuales con un rango inferior al 50%.

Se muestra a continuación gráficamente la distribución del tamaño de los elementos empleados en la discretización del modelo, diferenciando entre la cuba del transformador, parte activa y canales de refrigeración en las figuras 5.22a, 5.22b y 5.22c, respectivamente.

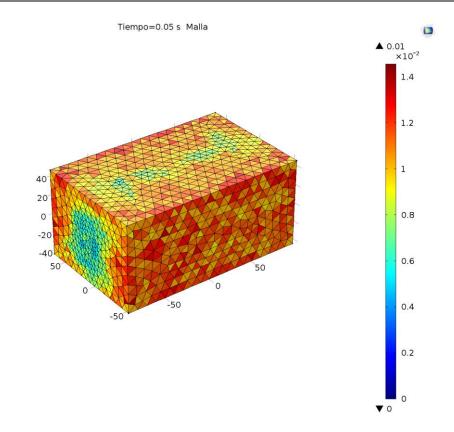


Figura 5.22 a) Tamaño de elementos de la cuba

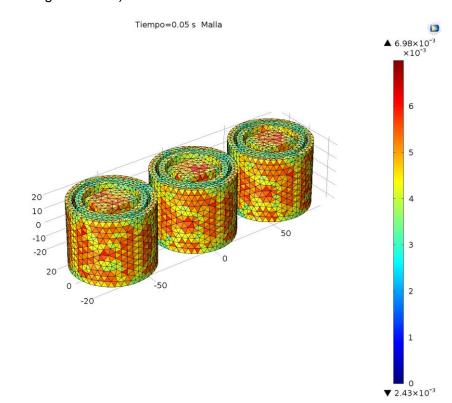


Figura 5.22 b) Tamaño de elementos de la parte activa

Grado en Ingeniería Eléctrica

ETSIIT

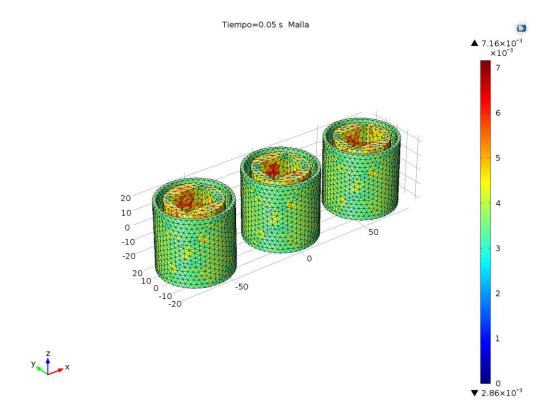


Figura 5.22 c) Tamaño de elementos de los canales de refrigeración

En general, la discretización empleada es bastante burda. Como ya se ha mencionado en capítulos anteriores, teniendo en cuenta las limitaciones computacionales con las que cuenta este estudio y que se trata de un primer modelado de una línea de investigación, consideraremos de aceptable este mallado.

5.9 ESTUDIO

El estudio del modelo se llevará a cabo mediante un estudio temporal, mediante el cual podamos obtener resultados en diferentes intervalos de los efectos de las cuatro físicas implicadas en nuestro modelo. Se procede a explicar las características de dicho estudio.

5.9.1 Estudio temporal

Como se ha visto previamente, los campos magnéticos y fuerzas de inducción son efectos originados por cargas en movimiento y variaciones de flujo respecto al tiempo, por esto, la función principal de este estudio será obtener unos resultados relevantes en las físicas de circuitos eléctricos y campos magnéticos, afectadas ambas, por las físicas de transferencia de calor y mecánica de fluidos.

Grado en Ingeniería Eléctrica

ETSIIT

José Ramón Puente Botín

La simulación en el modelo está definida para un tiempo total de 50ms con un intervalo de 5E-4 entre cada solución arrojada. Debido a requisitos computacionales inalcanzables, por el nivel de este estudio, no se puede aplicar un estudio de este tipo de mayor longitud temporal.

El estudio consta de siete pasos a seguir; de los cuales seis corresponden al cálculo de la densidad de corriente en cada uno de los seis devanados totales y el último paso es definido por el estudio temporal.

El solucionador escogido es completamente acoplado de tipo directo.

El número de grados de libertad resuelto son 401099 más 34209 grados de libertad internos.

El gasto computacional durante la simulación ha sido de 10,57GB de memoria física y 11,76 GB de memoria virtual.

El tiempo empleado para converger en una solución ha sido de 19 horas 49 minutos y 9 segundos.

Se adjunta en el Anexo 2 el registro del proceso de resolución del modelo.

6 RESULTADOS

6.1 INTRODUCCIÓN

Como producto de la simulación, se procede a presentar los resultados más relevantes obtenidos. La clasificación mediante la cual se presentan, atiende a las cuatro físicas envueltas en la simulación del modelo.

6.2 RESULTADOS ELÉCTRICOS

6.2.1 Tensiones

Los resultados obtenidos del modelo atendiendo a las diferencias de potencial se mostrarán para el devanado primario y secundario.

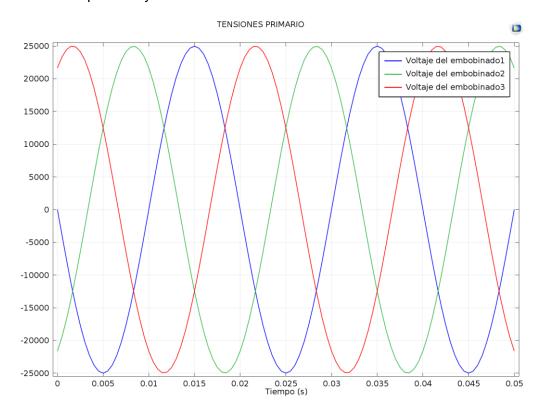


Figura 6.1 Distribución de tensiones en el devanado primario

Grado en Ingeniería Eléctrica ETSIIT

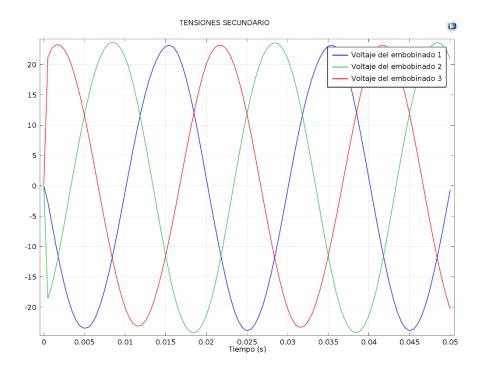


Figura 6.2 Distribución de tensiones en el devanado secundario

6.2.2 Intensidades

Los valores obtenidos de intensidades se muestran a continuación para los devanados primario y secundario.

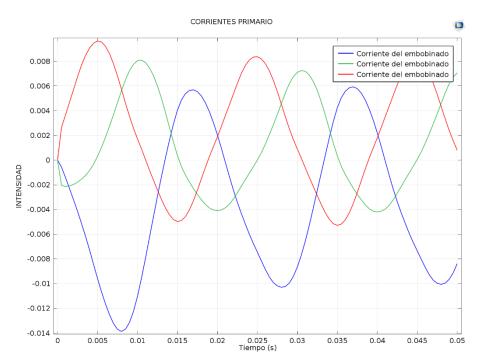


Figura 6.3 Distribución de intensidades en el devanado primario

Grado en Ingeniería Eléctrica

ETSIIT

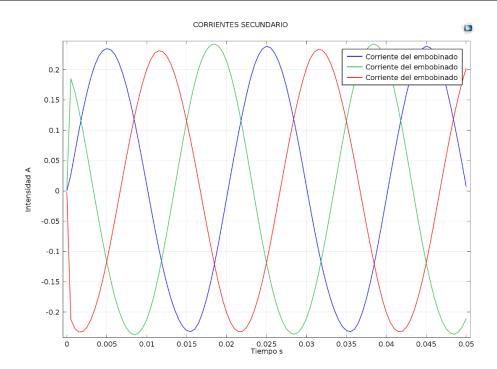


Figura 6.4 Distribución de intensidades en el devanado secundario

A continuación, se muestra la distribución de densidad de corriente mediante una representación 3D, para tres instantes de tiempo diferentes.

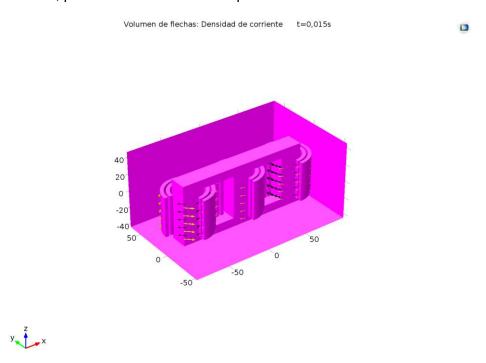


Figura 6.5 Dirección de la densidad de corriente para t=0,015s

Grado en Ingeniería Eléctrica

ETSIIT

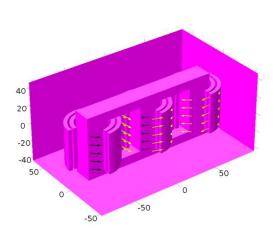


Figura 6.6 Dirección de la densidad de corriente para t=0,03s

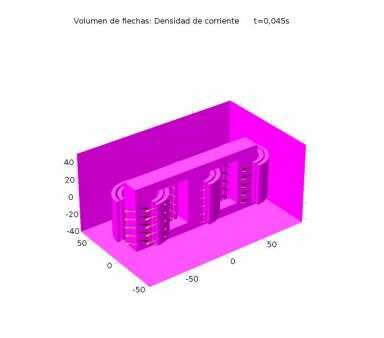


Figura 6.7 Dirección de la densidad de corriente para t=0,045s

Grado en Ingeniería Eléctrica ETSIIT

Convocatoria: Septiembre 2016

6.2.3 Potencia

La potencia disipada por los devanados primario y secundario se muestran a continuación.

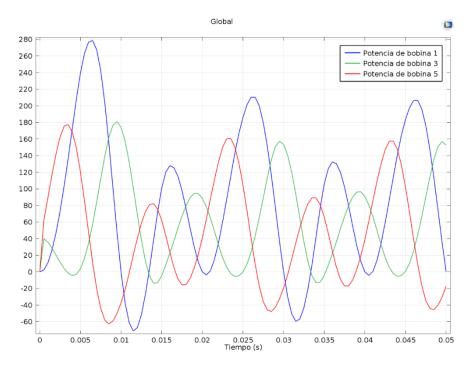


Figura 6.8 Distribución de potencias en el devanado primario

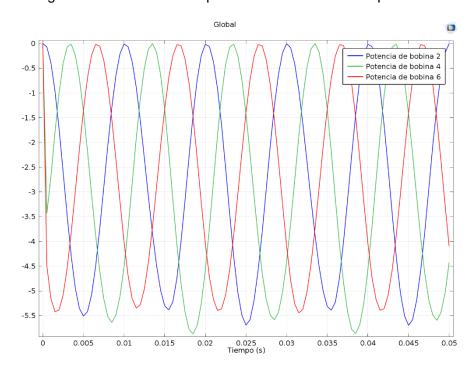


Figura 6.9 Distribución de potencias en el devanado secundario

Grado en Ingeniería Eléctrica

ETSIIT

6.2.4 Campo eléctrico

Se muestran los resultados obtenidos en campos eléctricos alrededor de los devanados, para tres instantes de tiempo diferentes: t=0,015; t=0,03 y t=0,045s. Se ha realizado una apertura en los devanados de un volumen correspondiente a 45º de los mismos, para visualizar la trayectoria de las líneas de flujo del campo eléctrico.

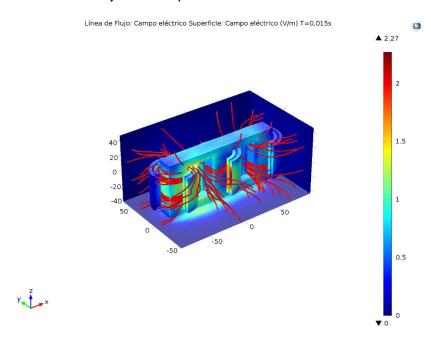


Figura 6.10 Distribución del campo eléctrico para t=0,015s

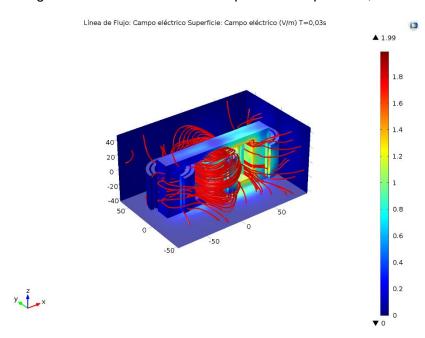


Figura 6.11 Distribución del campo eléctrico para t=0,03s

Grado en Ingeniería Eléctrica

ETSIIT

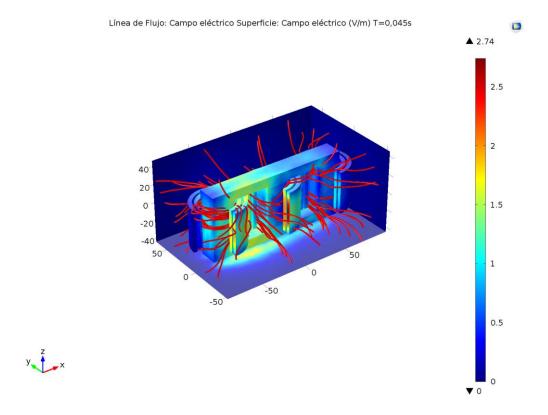


Figura 6.12 Distribución del campo eléctrico para t=0,045s

6.3 RESULTADOS DE CAMPOS MAGNÉTICOS

6.3.1 Densidad de flujo magnético

A continuación, se representan los resultados correspondientes a la densidad de flujo magnético. Los valores obtenidos se expresarán para tres diferentes intervalos de tiempo, en los que diferenciaremos la densidad de flujo que recorre el núcleo del transformador y la cantidad que es fugada del mismo y cierra sus anillos a través del líquido dieléctrico.

En la misma representación, se han usado una rebanada del núcleo para representar su distribución en el interior y líneas de flujo para simular su recorrido.

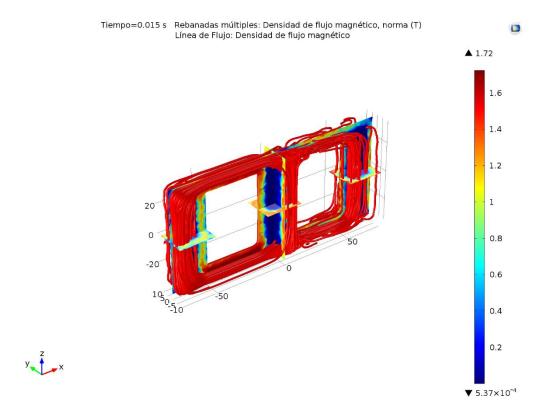


Figura 6.13 a) Recorrido del flujo magnético en el núcleo para t=0,015s

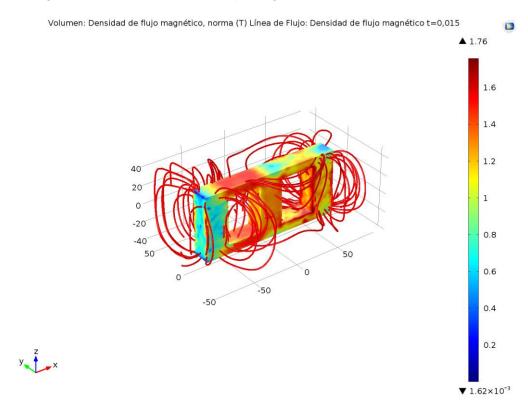


Figura 6.13 b) Recorrido del flujo magnético a través del aceite para t=0,015s

Grado en Ingeniería Eléctrica

ETSIIT

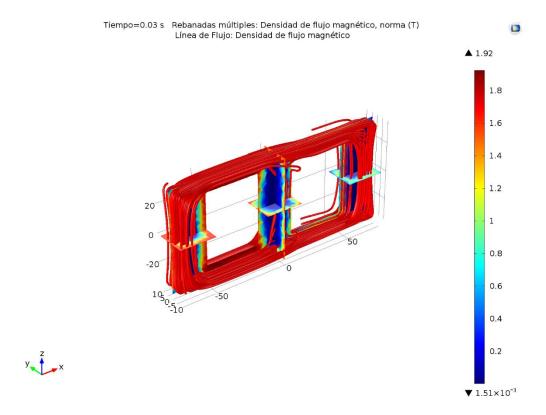


Figura 6.14 a) Recorrido del flujo magnético en el núcleo para t=0,03s

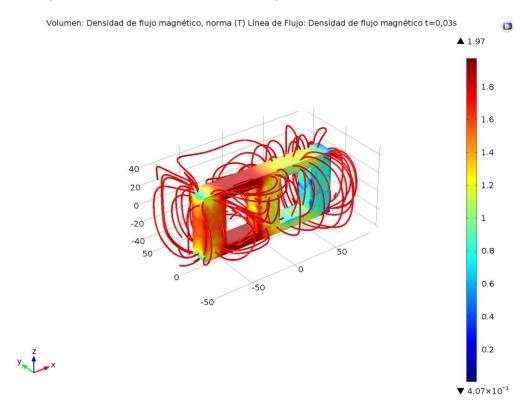


Figura 6.14 b) Recorrido del flujo magnético a través del aceite para t=0,03s

Grado en Ingeniería Eléctrica

ETSIIT

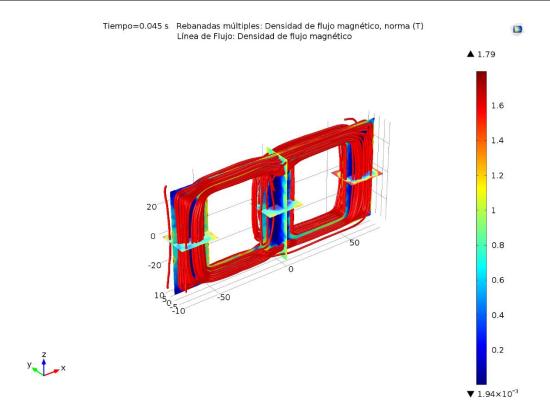


Figura 6.15 a) Recorrido del flujo magnético en el núcleo para t=0,045s

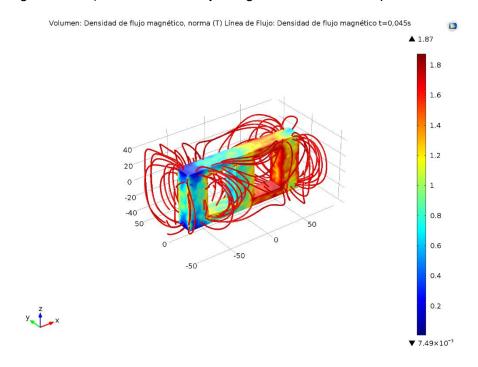


Figura 6.15 b) Recorrido del flujo magnético a través del aceite para t=0,045s

Grado en Ingeniería Eléctrica **ETSIIT**

6.4 RESULTADOS DE TEMPERATURAS

6.4.1 Temperatura promedio

Se representa a continuación la evolución de la temperatura promedio adquirida por el modelo a lo largo de la simulación y una visión 3D de la distribución térmica final.

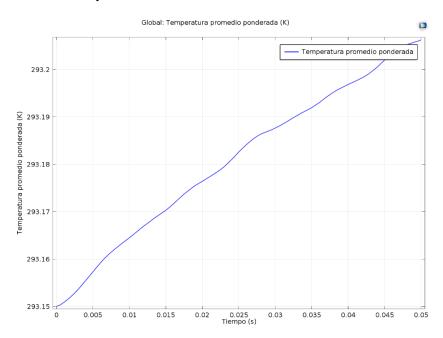


Figura 6.16 Evolución de la temperatura promedio

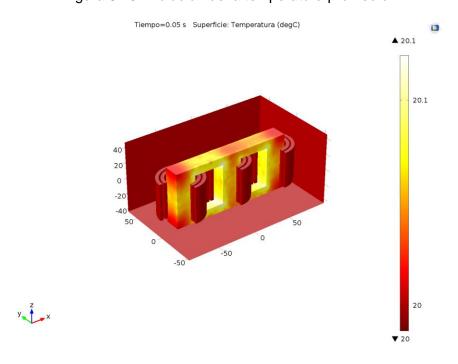


Figura 6.17 Distribución final de temperaturas

Grado en Ingeniería Eléctrica

ETSIIT

6.4.2 Temperatura en canales de refrigeración

Se representa en la figura 6.18 mediante cinco rebanadas en el plano xy, la distribución de temperaturas en los canales interiores de refrigeración.

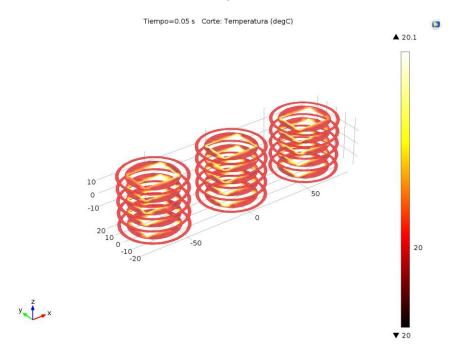


Figura 6.18 Distribución final de temperaturas en los canales de refrigeración

6.4.3 Temperatura resto del fluido

A continuación, se muestra en la figura 6.19 una rebanada en el plano xy, dónde podemos ver el aumento térmico del resto del fluido refrigerante al abandonar los canales de refrigeración.

La temperatura máxima alcanzada por este fluido se corresponde con la zona de mayor proximidad al núcleo.

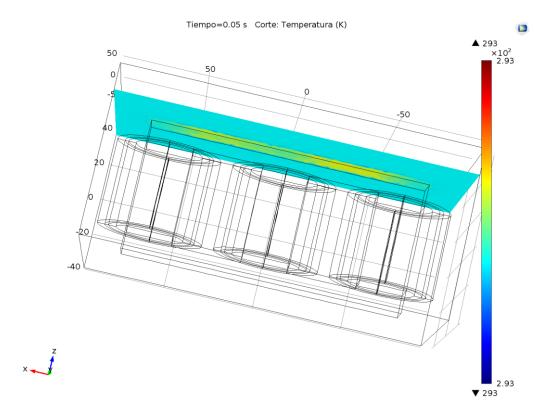


Figura 6.19 Temperatura del fluido a la salida de los canales de refrigeración

6.4.4 Constantes físicas del fluido en función de la temperatura

Se muestra a continuación la variación de las propiedades físicas del fluido que circula por los canales internos de refrigeración, dependiente directamente de la temperatura por medio de las expresiones citadas en capítulos anteriores.

Las variables afectadas son: calor específico, conductividad térmica, densidad y viscosidad dinámica; representadas en las figuras 6.20, 6.21, 6.22 y 6.23, respectivamente.

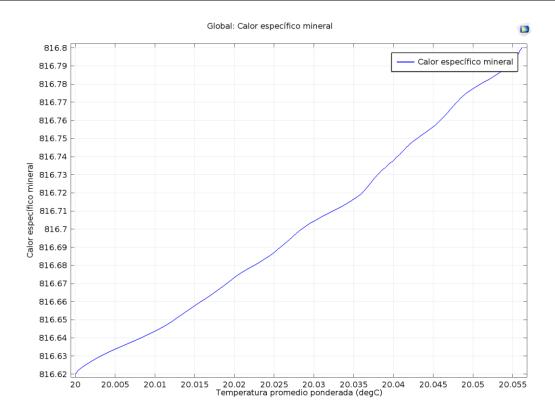


Figura 6.20 Variación del calor específico

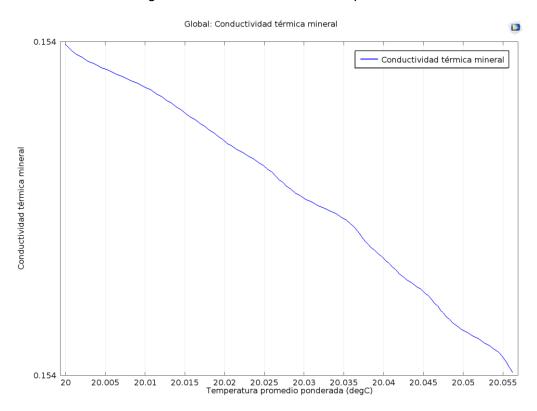


Figura 6.21 Variación conductividad térmica

ETSIIT

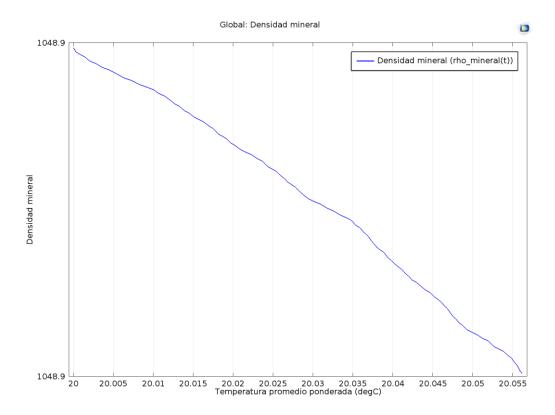


Figura 6.22 Variación de la densidad

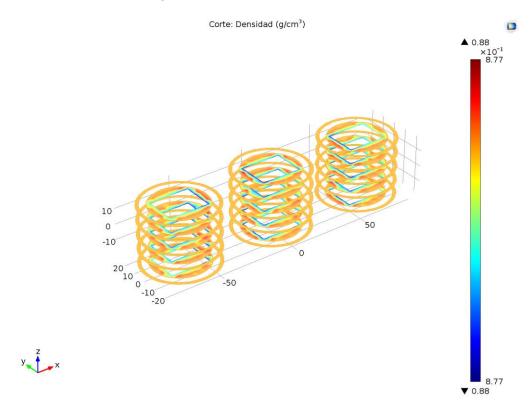


Figura 6.23 Distribución de la densidad en los canales de refrigeración

ETSIIT

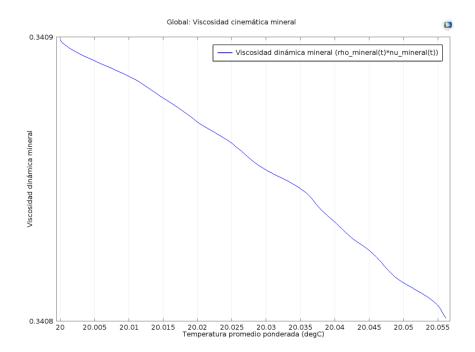


Figura 6.24 Variación viscosidad dinámica

6.5 RESULTADOS DE VELOCIDADES

6.5.1 Velocidad canales de refrigeración

Se muestra en la figura 6.24 mediante rebanadas en el plano xy la distribución de velocidades en los canales de refrigeración.

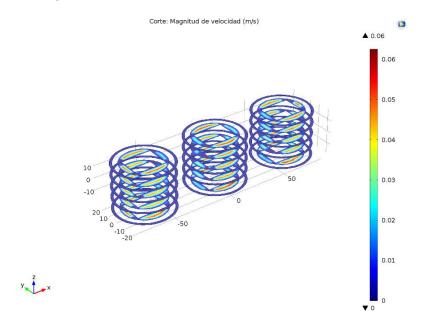


Figura 6.25 Velocidad en los canales de refrigeración

Grado en Ingeniería Eléctrica

ETSIIT

6.5.2 Velocidad del fluido y temperatura

Se muestra a continuación en la figura 6.25 mediante una representación 3D, la distribución final de las velocidades adquiridas por el fluido dieléctrico junto a la temperatura obtenida por el modelo a lo largo de la simulación.

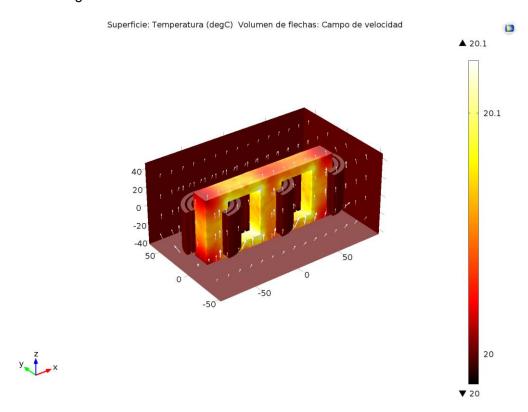


Figura 6.26 Velocidad del fluido y temperatura

6.6 RESULTADOS DE PRESIONES

Se muestra en las figuras 6.27 y 6.28 la distribución de las presiones en el modelo mediante un corte de rebanadas múltiples y una geometría 3D con isóbaras de presión, respectivamente.

6.6.1 Presión en los canales de refrigeración

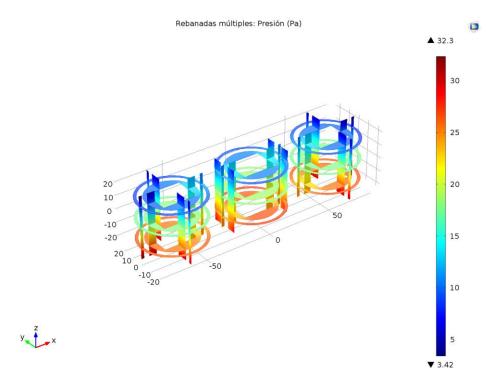


Figura 6.27 Presión en los canales de refrigeración

6.6.2 Presión resto del fluido

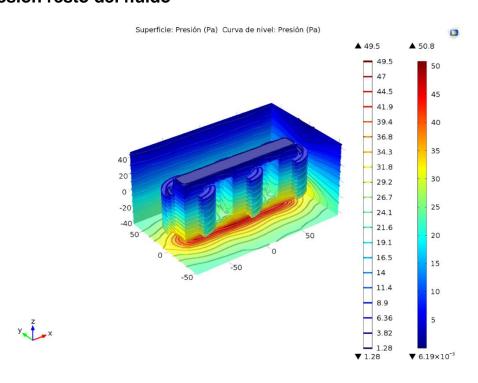


Figura 6.28 Distribución de la presión del fluido

Grado en Ingeniería Eléctrica

ETSIIT

7 CONCLUSIONES

7.1 INTRODUCCIÓN

Este capítulo tratará de explicar las conclusiones obtenidas a partir de los resultados expuestos anteriormente, siguiendo la misma clasificación en la que se han presentado los mismos.

7.2 CONCLUSIONES ELÉCTRICAS

Las tensiones correspondientes al devanado primario y secundario muestran que la relación de transformación impuesta en el modelo (3e5/300), se cumple. Transformando la tensión trifásica de entrada con valor eficaz de 25kV a 25V, representando en las figuras 6.1 y 6.2, que están equilibradas.

Las corrientes en el devanado secundario se encuentran equilibradas, mientras que las intensidades en el devanado primario se encuentran desequilibradas como podemos apreciar en la figura 6.3. Esto es debido a la gran saturación a la que está sometido el núcleo y que la relación existente entre la inducción y la corriente de excitación no es lineal. El valor tan alto de la inducción magnética, que explicaremos posteriormente, introduce armónicos en la señal, que circulan por la conexión existente entre los neutros de las estrellas del devanado primario. Este efecto, aumenta la componente de la intensidad de vacío deformando las corrientes en el primario. En las figuras 6.5, 6.6 y 6.7 podemos observar cómo cambia de sentido la corriente con respecto al tiempo.

Las potencias eléctricas correspondientes a los devanados primario y secundario, mostradas en las figuras 6.8 y 6.9, presentan valores acordes a los resultados en intensidades anteriormente comentados, debido a que son proporcionales a la corriente. En el devanado primario no se guarda equilibrio y los valores obtenidos son positivos ya que consumen energía de la red. Al contrario que los resultados del devanado secundario, que se muestran negativos al ceder potencia en la carga. En este modelo, no se cumple la conservación de la energía entre ambos devanados. Esto es debido a que, en busca de obtener variaciones en las magnitudes en un horizonte de estudio de 50ms, se ha sobrealimentado el transformador, obteniendo altos valores de saturación y generando una gran cantidad de pérdidas.

El campo eléctrico varía de manera correcta tal y como se muestra en las figuras 6.10, 6.11 y 6.12 para tres instantes de tiempo diferentes. Observamos como las líneas de campo

Grado en Ingeniería Eléctrica

ETSIIT

eléctrico cambian su dirección en función del tiempo, al cambiar la polaridad. Las líneas representadas se encuentran más cercanas, cuanto mayor sea la intensidad del campo eléctrico.

7.3 CONCLUSIONES MAGNÉTICAS

La densidad de flujo magnético alcanzada en el núcleo para algunos instantes de tiempo, muestra valores muy elevados alcanzando casi 2T, analizando la curva BH del material, consideramos que se encuentra en estado de saturación, haciéndose notables las pérdidas por histéresis. Las aleaciones de hierro de alta permeabilidad empleadas en la fabricación de transformadores, alcanzan su saturación entre 1,6T y 2,2T.

En las figuras 6.13a, 6.14a y 6.15a observamos como las líneas de flujo varían correctamente con el tiempo, siguiendo el camino de menor reluctancia, el núcleo.

Debido al fuerte campo magnético originado, observamos en las figuras 6.13b, 6.14b y 6.15b, que una pequeña parte del flujo es fugado a través del líquido dieléctrico. Naciendo y muriendo sus anillos principalmente en la misma columna del núcleo, debido a que presenta un camino con menor reluctancia que el recorrido de una columna a otra.

7.4 CONCLUSIONES TEMPERATURAS

La evolución de las temperaturas a lo largo de la simulación es escasa, alcanzando una variación de 0,1°C entre el instante inicial y final. Podemos observar en las figuras 6.18 y 6.19 como el gradiente de temperatura es mayor en la parte del fluido que se encuentra más cercano al núcleo, debido a que es la principal fuente de calor en este modelo por elevada saturación.

Las propiedades físicas dependientes de la temperatura, que se impusieron en el inicio del modelado, cumplen las expresiones tal y como se muestra en las figuras 6.20, 6.21, 6.22 y 6.24. Los cambios producidos en estas propiedades son despreciables debido al escaso aumento de temperatura.

7.5 CONCLUSIONES VELOCIDADES

La variación producida en la velocidad del fluido por pérdida de densidad del mismo, es despreciable. Se aprecia un ligero aumento de la misma en la figura 6.25, en la proximidad al núcleo. En la figura 6.26 observamos mediante el volumen de flechas la dirección y sentido

Grado en Ingeniería Eléctrica

ETSIIT

del fluido dieléctrico apreciando un ligero aumento de velocidad a la entrada de los canales de refrigeración, originado por la disminución de volumen.

7.6 CONCLUSIONES PRESIONES

Observamos con claridad la diferencia de presiones existente en el fluido en función de la posición en la que se encuentre, tal y como se muestra en las figuras 6.27 y 6.28, asumiendo que la superficie superior se ha tomado como punto de referencia. El punto de máxima presión se encuentra en la sección inferior del núcleo, debido a que el fluido se encuentra una disminución del volumen. La presión obtenida en el modelo no se puede considerar numéricamente correcta debido al escaso tiempo de simulación.

7.7 CONCLUSIONES FINALES DEL PROYECTO

- El modelo numérico estudiado cumple satisfactoriamente las expectativas respecto a los resultados esperados en la física electromagnética.
- El horizonte temporal para el que se ha llevado a cabo el estudio, no resulta suficiente para afirmar que el análisis fluido-térmico concluido alcanza resultados adecuados.
 Analizando las gráficas observamos una correcta evolución de las magnitudes, pero permaneciente en un estado transitorio.
- La reducida geometría empleada en el modelo junto con la elevada tensión a la que ha sido sometido, con el objetivo de obtener variaciones de temperaturas y velocidades, ha provocado un elevado aumento de la saturación del núcleo. Produciéndose una gran cantidad de pérdidas y flujos de dispersión, repercutiendo directamente en las intensidades y potencias en los devanados.
- Como un primer prototipo ante la línea de investigación sobre simulación por elementos finitos de transformadores eléctricos de potencia, este modelo numérico ha cumplido los objetivos impuestos. No obstante, requiere evolucionarlo. Se sugiere como líneas futuras de investigación los siguientes ítems:
 - o Adecuación del estudio a un transformador real.
 - Estudio temporal de un rango superior de tiempo. Se estima como adecuado unos 15 minutos.
 - Estudio estacionario del modelo.
 - Mejora de la calidad y tamaño del mallado.

Grado en Ingeniería Eléctrica

ETSIIT

8 BIBLIOGRAFÍA

- Jesús Fraile Mora. (2003). *Máquinas eléctricas* (5ª ed.). Madrid: Mc Graw Hill.
- Kulkarni, S. V., & Khaparde, S. A. (2004). Transformer engineering: design and practice (Vol. 25). CRC Press.
- Fofana, I. (2013). 50 years in the development of insulating liquids. *IEEE Electrical Insulation Magazine*, *29*(5), 13-25.
- Hjalmars, M. (2012). Optimization Study on Oil Flow and Temperature Distribution in Power Transformer Windings.
- Macas Valdez, X. O., & Guallichico Simbaña, F. R. (2010). Diseño de sólidos de revolución mediante el método de elementos finitos.
- Pozueta, M. A. R. (2008). TRANSFORMADORES.
- Pryor, R. W. (2009). Multiphysics modeling using COMSOL: a first principles approach.
 Jones & Bartlett Publishers.

ANEXO 1 NOMENCLATURA EMPLEADA

NOMENCLATURA			
E	Tensión en la bobina	$ec{E}$	Campo eléctrico
	(V)		(V/m)
I	Intensidad (A)	K	Constante de
			coulomb
m	Relación de	R	Resistencia eléctrica
	transformación		(Ω)
N	Número de espiras	В	Inducción magnética
			(T)
I_0	Intensidad de vacío	Н	Corriente de
	(A)		excitación de campo
			(A)
I_{Fe}	Intensidad en el	arphi	Flujo magnético
	hierro (A)		(Wb)
I_{μ}	Intensidad de	ho	Densidad (g / cm^3)
	dispersión (A)		
m_T	Relación de	μ	Viscosidad dinámica
	transformación de		(Pa⋅s)
	línea		
V	Tensión de fase en	∇	Operador Nabla
	bornes (V)		
V_L	Tensión de línea (V)	$ ho_{ref}$	Densidad de
			referencia (g / cm³)
η	Rendimiento	p	Presión (Pa)
P	Potencia (W)	Q	Calor (<i>W</i> / <i>m</i> ³)
P_1	Potencia aplicada	t	Tiempo (s)
	(W)		
P_2	Potencia útil (W)	A	Sección (m²)
P_{Fe}	Potencia en el hierro	δ	Espesor del material
	(W)		(m^2)
P_{Cu}	Potencia en el cobre	T_0	Temperatura inicial
	(W)		(K)

Grado en Ingeniería Eléctrica

ETSIIT

q	Carga eléctrica (C)	Q_e	Fuente de calor
			electromagnética
			(W/m^3)
w	Trabajo (J)	Q_{b}	Fuente de calor
			electromagnética de
			contorno (W/
			m^2)
T	Temperatura (K)	$arepsilon_0$	Permitividad vacío
ΔT	Variación de	$arepsilon_r$	Permitividad relativa
	temperatura (K)		
h	Coeficiente de	p_0	Presión inicial (Pa)
	convección		
C_p	Capacidad térmica a	$ec{F}$	Fuerza de Lorentz
	presión constante		
	$\left[\frac{J}{kg*K}\right]$		
ν	Viscosidad	ACRÓNIMOS	
	cinemática $\left[\frac{m^2}{s}\right]$		
J_e	Densidad de	GITEP	Grupo de
	corriente (A/m)		Investigación en
			Transformadores
			Eléctricos de
			Potencia
и	Velocidad (m/s)	F.D.P	Factor de potencia
k	Conductividad	ONAN	Oil Natural Air
	térmica		Natural
Q_p	Fuente de calor por	ONAF	Oil Natural Air
	el cambio de		Forced
	presiones (W/m^3)		
μ_0	Permeabilidad vacío	OFAF	Oil Forced Air
			Forced
μ_r	Permeabilidad	ODAF	Oil Direct Air Forced
	relativa		

ETSIIT

l_{cir}	Longitud bobina (m)	MEF	Método de los
			Elementos Finitos
e_{coil}	Matriz de flujo de	PDE	Ecuaciones
	corriente en la		Diferenciales
	bobina (x,y,z)		Parciales
n	Constante de		
	aislamiento		

ANEXO 2 REGISTRO DEL PROCESO DE RESOLUCIÓN

Resolvedor temporal 1 in Solution 1 started at 27-may-2016 19:51:07.

Time-dependent solver (BDF)

Number of degrees of freedom solved for: 401099 (plus

34209 internal DOFs).

Nonsymmetric matrix found.

Scales for dependent variables:

Temperature (comp1.T): 29

Magnetic vector potential (comp1.A): 0.069

Pressure (comp1.p): 18

Divergence condition variable (comp1.mf.psi): 0.11

Velocity field (comp1.u): 2.9e+002

comp1.currents: 2.8

Sparse null-space function used.

							So	Ord	Tfa	NLf		
Step	Time		Stepsize		Res	Jac	I	er	il	ail	LinErr	LinRes
											4.3e-	6.6e-
0		0		out	4	5	4			0	800	013
					_	_	_		_	_	3.1e-	1.7e-
1		4,59E-03	4,59E-03		6	7	6	1	0	0		011
2		0.475.02	4 505 03		•	0	0	4	_	0	1.6e-	4.8e-
2		9,17E-03	4,59E-03		8	9	8	1	0	U	008	014
3		1 025 02	0 175 02		10	11	10	2	0	0	1.6e- 008	8.5e- 014
3		1,83E-02	9,17E-03		10	11	10	2	U	U	2.4e-	6.2e-
4		3,67E-02	1,83E-02		12	13	12	2	0	0		014
4		3,07E-02	1,03E-02		12	13	12	2	U	U	1.9e-	1.4e-
5		7,34E-02	3,67E-02		14	15	14	2	0	0	006	015
3		7,542 02	3,072 02		17	13		_	J	Ü	1.2e-	9.6e-
6		1,10E-01	3,67E-02		16	17	16	2	0	0	008	015
		_,	0,0,7 = 0 =					_	·		7.5e-	1.1e-
7		1,47E-01	3,67E-02		18	19	18	2	0	0		015
		,	,								5.1e-	9.4e-
8		1,83E-01	3,67E-02		20	21	20	2	0	0	009	016
											1.8e-	2.1e-
9		2,20E-01	3,67E-02		22	23	22	2	0	0	009	015
											1.9e-	3.1e-
10		2,57E-01	3,67E-02		24	25	24	2	0	0	009	015
											2.7e-	3.9e-
11		2,94E-01	3,67E-02		26	27	26	2	0	0		015
											5,00E-	6.5e-
12		3,30E-01	3,67E-02		28	29	28	2	0	0	09	015

Grado en Ingeniería Eléctrica

ETSIIT

									5.3e-	6.4e-
13	3,67E-01	3,67E-02	30	31	30	2	0	0	009	015
									3,00E-	3.7e-
14	4,40E-01	7,34E-02	32	33	32	2	0	0	09	015
									6.8e-	3.9e-
15	5,14E-01	7,34E-02	34	35	34	2	0	0	009	015
									3.1e-	3.2e-
16	5,87E-01	7,34E-02	36	37	36	2	0	0	009	015
									9.1e-	3.8e-
17	6,60E-01	7,34E-02	38	39	38	2	0	0	009	015
									7.3e-	1.9e-
18	8,07E-02	1,47E-01	40	41	40	2	0	0	009	015
									1.5e-	3.2e-
19	9,54E-01	1,47E-01	42	43	42	2	0	0	800	015
									1.8e-	3.1e-
20 0.0	0011007	1,47E-01	44	45	44	2	0	0	800	015
									5.9e-	3.2e-
21 0.0	0012475	1,47E-01	46	47	46	2	0	0	009	015
									7.6e-	4.9e-
22 0.0	0013943	1,47E-01	48	49	48	2	0	0	009	015
							_	_	1.5e-	5.4e-
23 0.0	001541	1,47E-01	50	51	50	2	0	0	800	015
							_		1.1e-	8.8e-
24 0.0	0016878	1,47E-01	52	53	52	2	0	0	800	015
25 22	0040046	4 475 04	- 4		- 4	•	•	_	8.6e-	1.4e-
25 0.0	0018346	1,47E-01	54	55	54	2	0	0	009	014
26.00	0024204	2.045.04	5 .0		5 .0	2	•	•	2,00E-	
26 0.0	0021281	2,94E-01	56	57	56	2	0	0		015
27 0 0	0022022	2.645.04	F0	F0	F0	2	•	_	1.8e-	1.4e-
27 0.0	0023923	2,64E-01	58	59	58	2	0	U	008	014
20 0 0	0026564	2,64E-01	60	61	60	2	0	0	1.6e- 008	1.3e- 014
20 0.0	0020304	2,046-01	00	01	00	2	U	U	9.6e-	3.4e-
20 00	0029206	2,64E-01	62	63	62	2	0	Ω	009	014
29 0.0	0029200	2,041-01	02	03	02	2	U	U	9,00E-	
30 00	0031848	2,64E-01	64	65	64	2	0	Ω		014
30 0.0	0031040	2,042 01	04	05	04	2	U	U	3.3e-	5.7e-
31 0.0	003449	2,64E-01	66	67	66	2	0	Λ	008	014
J1 0.0		2,072 01	00	0,	50	_	3	9	8.6e-	8.6e-
32 0.0	0037131	2,64E-01	68	69	68	2	0	0	009	014
32 3.0		2,0 .2 01	30	33	00	_	J	J	1.1e-	1.1e-
33 0.0	0039773	2,64E-01	70	71	70	2	0	0	008	013
23 0.0		_,0 01	. •		. •	-	_	ŭ	7.8e-	6.5e-
34 0.0	0045057	5,28E-01	72	73	72	2	0	0	009	014
		, -	_	-	•	•	-	-	3.8e-	3.7e-
35 0.0	0049812	4,76E-01	74	75	74	2	0	0	008	014
	005 -	out								
0.0		Sat								

ETSIIT

										9.3e-	5.9e-
36	0.00054567	4,76E-01		76	77	76	2	0	0	006	016
										6.3e-	1.2e-
37	0.00059322	4,76E-01		78	79	78	2	0	0	006	015
										1.1e-	9.8e-
38	0.00064077	4,76E-01		80	81	80	2	0	0	005	016
										5.6e-	4.7e-
39	0.00068832	4,76E-01		82	83	82	2	0	0	005	015
										4,00E-	5,00E-
40	0.00073588	4,76E-01		84	85	84	2	0	0	05	15
										1.3e-	4.3e-
41	0.00078343	4,76E-01		86	87	86	2	0	0	005	015
										1.2e-	2.1e-
42	0.00083098	4,76E-01		88	89	88	2	0	0	005	015
										4,00E-	2,00E-
43	0.00087853	4,76E-01		90	91	90	2	0	0	06	15
										9.6e-	3.3e-
44	0.00092608	4,76E-01		92	93	92	2	0	0	006	015
		·								8.4e-	4.5e-
45	0.00097363	4,76E-01		94	95	94	2	0	0	006	015
	0.001 -	•	out								
	0.002		0 0.0							9.6e-	5.7e-
46	0.0010212	4,76E-01		96	97	96	2	0	0	006	016
	0.0010212	.,, 02 02		30	3,	30	_	·	•	6.7e-	1.7e-
47	0.0010687	4,76E-01		98	99	98	2	0	0	006	015
	0.0020007	.,, 0_ 0_				10	_		•	6.7e-	7.6e-
48	0.0011163	4,76E-01		100	101	0	2	0	0	006	016
		.,				10	_	•	_	1.1e-	2.7e-
49	0.0011638	4,76E-01		102	103	2	2	0	0	005	015
	0.0011000	.,, 0_ 0_				10	_		•	6.5e-	5.5e-
50	0.0012114	4,76E-01		104	105	4	2	0	0	006	016
		.,, 0_ 0_				10	_		•	1.3e-	5.5e-
51	0.0012589	4,76E-01		106	107		2	0	0	005	015
		.,				10	_	•	_	5.5e-	3.7e-
52	0.0013065	4,76E-01		108	109	8	2	0	0	006	016
	0.002000	.,, 0_ 0_				11	_		•	1.3e-	3,00E-
53	0.001354	4,76E-01		110	111	0	2	0	0	005	16
		.,, 0_ 0_				11	_		•	1,00E-	
54	0.0014016	4,76E-01		112	113	2	2	0	0		015
	0.002.020	.,, 0_ 0_				11	_		•	8.5e-	1.6e-
55	0.0014492	4,76E-01		114	115	4	2	0	O	006	015
	0.0011.32	.,, 02 02				11	_	·	Ŭ	7.8e-	7.1e-
56	0.0014967	4,76E-01		116	117	6	2	0	n	006	016
	0.0015 -	1,702 01	out	110	/	Ü	_	Ü	•	000	010
	0.0013 -		out			11				1,00E-	5 60-
57	0.0015918	9,51E-01		118	119	8	2	0	Λ		016
"	0.0013310	J,J1L-U1		110	119	12	_	J	J	1.3e-	3.4e-
5.2	0.0016869	9,51E-01		120	121	0	2	0	Λ	005	016
1 30	0.0010003	3,316-01		120	171	U	۷	J	U	003	010

ETSIIT

						12				5.1e-	5.3e-
59	0.001782	9,51E-01		122	123	2	2	0	0	006	016
						12				7.5e-	3.4e-
60	0.0018771	9,51E-01		124	125	4	2	0	0	006	016
						12				5.2e-	4.9e-
61	0.0019722	9,51E-01		126	127	6	2	0	0	006	016
	0.002	-	out								
						12				1,00E-	8.3e-
62	0.0020673	9,51E-01		128	129	8	2	0	0	05	016
						13				1.1e-	4.4e-
63	0.0021624	9,51E-01		130	131	0	2	0	0	005	016
						13				5.4e-	6.5e-
64	0.0022575	9,51E-01		132	133	2	2	0	0	006	016
						13				6.5e-	5,00E-
65	0.0023526	9,51E-01		134	135	4	2	0	0	006	16
						13	_	_	_	7.8e-	6.1e-
66	0.0024477	9,51E-01		136	137	6	2	0	0	006	016
	0.0025	-	out								
						13	_	_	_	8.4e-	6.6e-
67	0.0025428	9,51E-01		138	139	8	2	0	0	006	016
60	0.0026270	0.545.04		4.40	4.44	14	2	0	_	1,00E-	
68	0.0026379	9,51E-01		140	141	0	2	0	0		016
60	0.002722	0.515.01		1.12	1.12	14	2	0	^	1.3e-	5,00E-
69	0.002733	9,51E-01		142	143	2	2	0	U	005	16
70	0.0028281	9,51E-01		144	145	14 4	2	0	^	1,00E- 05	4,00E- 16
70	0.0028281	9,516-01		144	145	14	2	U	U	9.3e-	4.1e-
71	0.0029233	9,51E-01		146	147	6	2	0	Ω	006	016
, _	0.003	-	out	110	,,	Ū	_	Ü	Ū	000	010
	0.003		out			14				7.3e-	3.4e-
72	0.0030184	9,51E-01		148	149	8	2	0	0	006	016
, _	0.0030101	3,312 01		110	113	15	_	Ü	Ū		6,00E-
73	0.0031135	9,51E-01		150	151	0	2	0	0	06	16
		-,-				15				5.8e-	6.3e-
74	0.0032086	9,51E-01		152	153	2	2	0	0	006	016
						15				5.7e-	1.8e-
75	0.0033037	9,51E-01		154	155	4	2	0	0	006	016
						15				6.5e-	5.7e-
76	0.0033988	9,51E-01		156	157	6	2	0	0	006	016
						15				1.3e-	4,00E-
77	0.0034939	9,51E-01		158	159	8	2	0	0	005	16
	0.0035	-	out								
						16				2.2e-	4.1e-
78	0.003589	9,51E-01		160	161	0	2	0	0	005	016
						16				5.2e-	6,00E-
79	0.0036841	9,51E-01		162	163	2	2	0	0	006	16
						16				7.5e-	6,00E-
80	0.0037792	9,51E-01		164	165	4	2	0	0	006	16

ETSIIT

ı											
01	0.0028742	0 515 01		160	167	16	2	0	^	7.8e-	6.4e-
81	0.0038743	9,51E-01		166	167	6 16	2	0	U	006 7.3e-	016 4,00E-
82	0.0039694	9,51E-01		168	169	8	2	0	0	006	16
	0.004 -	•	out								
						17				1.5e-	5.6e-
83	0.0040645	9,51E-01		170	171	0	2	0	0	005	016
0.4	0.0041506	9,51E-01		172	172	17 2	2	0	^	8.5e- 006	5.2e- 016
04	0.0041596	9,51E-U1		1/2	173	2 17	Z	U	U	5.9e-	9.2e-
85	0.0042547	9,51E-01		174	175	4	2	0	0	006	016
						17				7.5e-	4.1e-
86	0.0043498	9,51E-01		176	177	6	2	0	0	006	016
07	0.0044449	9,51E-01		178	179	17 8	2	0	^	7,00E- 06	3.6e- 016
87	0.0044449	9,516-01	out	1/0	1/9	0	2	U	U	06	016
	0.0043		out			18				7.4e-	9.7e-
88	0.00454	9,51E-01		180	181	0	2	0	0	006	016
						18				7.3e-	4.2e-
89	0.0046351	9,51E-01		182	183	2	2	0	0	006	016
90	0.0047302	9,51E-01		184	185	18 4	2	0	Λ	4.8e- 006	8,00E- 16
	0.0047302	J,J1L 01		104	103	18	2	U	Ü	1,00E-	
91	0.0048253	9,51E-01		186	187	6	2	0	0		016
						18				1,00E-	
92	0.0049204	9,51E-01		188	189	8	2	0	0	05	016
	0.005 -		out			19				1,00E-	5,00E-
93	0.0050155	9,51E-01		190	191	0	2	0	0		16
		-,				19	_	-		1.5e-	3.3e-
94	0.0051106	9,51E-01		192	193	2	2	0	0	005	016
0.5	0.0050057	0.545.04		404	405	19	•	•	_	5.8e-	6,00E-
95	0.0052057	9,51E-01		194	195	4 19	2	0	U	006 6.4e-	16 4.5e-
96	0.0053008	9,51E-01		196	197	6	2	0	0	0.46	016
		•				19				7.1e-	4,00E-
97	0.0053959	9,51E-01		198	199	8	2	0	0	006	16
00	0.005.404	0.545.04		200	204	20	2	•	_	4.9e-	3.7e-
98	0.005491	9,51E-01	out.	200	201	0	2	0	U	006	016
	0.0055 -		out			20				7.1e-	3.3e-
99	0.0055861	9,51E-01		202	203	2	2	0	0	006	016
						20				5.3e-	3.3e-
100	0.0056812	9,51E-01		204	205	4	2	0	0	006	016
101	0.0057762	0 515 01		200	207	20	2	0	^	1,00E-	
101	0.0057763	9,51E-01		206	207	6 20	2	0	U	05 5.1e-	016 5.1e-
102	0.0058715	9,51E-01		208	209	8	2	0	0	006	016
1		•									ı

ETSIIT

						21				5.4e-	3.5e-
103	0.0059666	9,51E-01		210	211	0	2	0	0	006	016
	0.006	-	out								
						21				4.4e-	2.5e-
104	0.0060617	9,51E-01		212	213	2	2	0	0	005	016
						21				6.9e-	6,00E-
105	0.0061568	9,51E-01		214	215	4	2	0	0	006	16
						21				6.6e-	4.5e-
106	0.0062519	9,51E-01		216	217	6	2	0	0	006	016
						21				5.1e-	3.1e-
107	0.006347	9,51E-01		218	219	8	2	0	0	006	016
						22				1.1e-	2.5e-
108	0.0064421	9,51E-01		220	221	0	2	0	0	005	016
	0.0065	-	out								
						22				6.1e-	5.6e-
109	0.0065372	9,51E-01		222	223	2	2	0	0	006	016
						22				5.9e-	2.6e-
110	0.0066323	9,51E-01		224	225	4	2	0	0	006	016
						22				9.8e-	3.3e-
111	0.0067274	9,51E-01		226	227	6	2	0	0	006	016
		0 = 1 = 01				22		_	_	1.3e-	3.4e-
112	0.0068225	9,51E-01		228	229	8	2	0	0	005	016
440	0.0000476	0.545.04		222	224	23	-	•	•	7.8e-	2.8e-
113	0.0069176	9,51E-01		230	231	0	2	0	0	006	016
	0.007	-	out								
	0.0070407	0.545.04		222	222	23	-	•	•	6,00E-	
114	0.0070127	9,51E-01		232	233	2	2	0	0		016
115	0.0071070	0 515 01		224	235	23	2	^	0	7.3e-	3.2e-
115	0.0071078	9,51E-01		234	233	4 23	2	0	U	006 1.1e-	016 4.2e-
116	0.0072029	9,51E-01		236	237	23 6	2	0	0	005	4.ze- 016
110	0.0072029	9,511-01		230	237	23	2	U	U	9.2e-	3.2e-
117	0.007298	9,51E-01		238	239		2	0	0	006	016
117	0.007230	3,312 01		250	233	24	_	Ü	Ü	8,00E-	
118	0.0073931	9,51E-01		240	241	0	2	0	0	-	016
		3,522.52				24	_		_	8.1e-	3.9e-
119	0.0074882	9,51E-01		242	243	2	2	0	0	006	016
	0.0075	-	out								
						24				6.3e-	2.4e-
120	0.0075833	9,51E-01		244	245	4	2	0	0	006	016
		,				24				5.8e-	3.6e-
121	0.0076784	9,51E-01		246	247	6	2	0	0	006	016
						24				6.4e-	3.4e-
122	0.0077735	9,51E-01		248	249	8	2	0	0	006	016
						25				5.3e-	3.9e-
123	0.0079637	0.00019021		250	251	0	2	0	0	006	016
	0.008	-	out								

ETSIIT

José Ramón Pue	ente Botín
----------------	------------

Ì											[
						25		_	_	3.8e-	2.8e-
124	0.0081349	0.00017119		252	253	2	2	0	0	006	016
						25	_	_		8.8e-	3.3e-
125	0.0083061	0.00017119		254	255	4	2	0	0	006	016
						25				6.7e-	3.8e-
126	0.0084773	0.00017119		256	257	6	2	0	0	006	016
	0.0085	-	out								
						25				5.2e-	3.6e-
127	0.0086485	0.00017119		258	259	8	2	0	0	006	016
						26				3.7e-	2.9e-
128	0.0088197	0.00017119		260	261	0	2	0	0	006	016
						26				4.1e-	3.5e-
129	0.0089908	0.00017119		262	263	2	2	0	0	006	016
	0.009	-	out								
						26				3.8e-	3.1e-
130	0.009162	0.00017119		264	265	4	2	0	0	006	016
						26				4.9e-	2.8e-
131	0.0093332	0.00017119		266	267	6	2	0	0	006	016
	0.0095	_	out								
	0.0033		out			26				6.3e-	4.9e-
132	0.0095044	0.00017119		268	269	8	2	0	Ω	006	016
132	0.0055011	0.00017115		200	203	27	_	Ū	Ü	4.1e-	3.1e-
133	0.0096756	0.00017119		270	271	0	2	0	Ω	006	016
100	0.0030730	0.00017113		2,0	_,_	27	_	Ū	Ū	5,00E-	
134	0.0098468	0.00017119		272	273	2	2	0	0	-	016
	0.01	-	out	_,_	_, 0	_	_	Ū	Ū	00	010
	0.01		out			27				5,00E-	3 60-
135	0.010018	0.00017119		274	275	4	2	0	Λ		016
133	0.010010	0.00017113		2/4	213	27	۷	U	Ü	6,00E-	
136	0.010189	0.00017119		276	277	6	2	0	Λ		016
150	0.010103	0.00017113		270	211	27	_	U	Ü	5.8e-	3.1e-
137	0.01036	0.00017119		278	279	8	2	0	Λ	006	016
137		0.00017113	out	270	213	U	۷	U	Ü	000	010
	0.0105	-	out			28				6.9e-	5.7e-
120	0.010522	0.00017110		280	281	0	2	0	Λ	0.96-	016
136	0.010532	0.00017119		200	201	28	2	U	U	6.5e-	5.9e-
120	0.010703	0.00017119		282	283	20	2	0	Λ	0.5e-	016
139	0.010703	0.00017119		202	203	28	2	U	U	4.7e-	4,00E-
140	0.010874	0.00017119		284	285	20 4	2	0	Λ	4.7e- 006	4,006-
140		0.00017119		204	203	4	2	U	U	000	10
	0.011	-	out			20				г 0-	7.3-
444	0.011045	0.00047440		200	207	28	2	•	^	5.8e-	7.2e-
141	0.011045	0.00017119		286	287	6	2	0	U	006	016
4.42	0.011316	0.00047440		200	200	28	2	0	^	6.1e-	7.1e-
142	0.011216	0.00017119		288	289	8	2	0	U	006	016
4.42	0.011207	0.00047440		200	204	29	2	0	^	7.2e-	5.6e-
143	0.011387	0.00017119		290	291	0	2	0	U	006	016
	0.0115	-	out								

ETSIIT

						29				6.8e-	5.6e-
144	0.011559	0.00017119		292	293	2	2	0	0	006	016
						29				5.4e-	4.6e-
145	0.01173	0.00017119		294	295	4	2	0	0	006	016
						29	_				4,00E-
146	0.011901	0.00017119		296	297	6	2	0	0	006	16
	0.012	-	out								
						29	_	_		5.9e-	4.1e-
147	0.012072	0.00017119		298	299	8	2	0	0	006	016
4.40	0.043343	0.00047440		200	204	30	2	•	_	4.6e-	3.2e-
148	0.012243	0.00017119		300	301	0	2	0	U	006	016
140	0.012415	0.00017110		202	202	30	2	0	^	5.7e-	3.4e-
149	0.012415	0.00017119		302	303	2	2	0	U	006	016
	0.0125	-	out			20				4.2-	4.5.
150	0.012586	0.00017110		204	205	30	2	0	^	4.2e-	4.5e- 016
150	0.012586	0.00017119		304	305	4	2	0	U	006	6.9e-
151	0.012757	0.00017119		306	307	30 6	2	0	Λ	8.5e- 006	016
131	0.012737	0.00017119		300	307	30	2	U	U	5.6e-	4.1e-
152	0.012928	0.00017119		308	309	8	2	0	Λ	006	016
132	0.012328	0.00017113	out	300	303	O	2	U	Ü	000	010
	0.013	-	out			31				4.1e-	4.1e-
153	0.013099	0.00017119		310	311	0	2	0	Λ	006	016
133	0.013033	0.00017113		310	J11	31	_	Ü	Ü	4.8e-	4.8e-
154	0.01327	0.00017119		312	313	2	2	0	0	006	016
		0.0001/110			0_0	31	_	•	·	6.3e-	4.3e-
155	0.013442	0.00017119		314	315	4	2	0	0	006	016
	0.0135	-	out								
						31				1.1e-	3.5e-
156	0.013613	0.00017119		316	317	6	2	0	0	005	016
						31				8.2e-	6.3e-
157	0.013784	0.00017119		318	319	8	2	0	0	006	016
						32				1.2e-	1.5e-
158	0.013955	0.00017119		320	321	0	2	0	0	005	015
	0.014	-	out								
						32				1.3e-	4.1e-
159	0.014126	0.00017119		322	323	2	2	0	0	005	016
						32				1.7e-	7.8e-
160	0.014298	0.00017119		324	325	4	2	0	0	005	016
						32				9.7e-	6.7e-
161	0.014469	0.00017119		326	327	6	2	0	0	006	016
	0.0145	-	out								
						32				5.9e-	7.4e-
162	0.01464	0.00017119		328	329		2	0	0	006	016
4.55	0.04.404.5	0.00047440		222	201	33	_	•	_	8.8e-	5.9e-
163	0.014811	0.00017119		330	331	0	2	0	0	006	016

ETSIIT

						33				9.6e-	5.7e-
164	0.014982	0.00017119		332	333	2	2	0	0	006	016
	0.015	-	out								
						33	_	_	_	8.6e-	9.3e-
165	0.015154	0.00017119		334	335	4 33	2	0	0	006 1.00E	016
166	0.015325	0.00017119		336	337	55 6	2	0	0	1,00E- 05	
	0.010010	0.00017 = 20				33	_		•	8.5e-	
167	0.015496	0.00017119		338	339	8	2	0	0	006	016
	0.0155	-	out								
160	0.015667	0.00017119		340	341	34 0	2	0	^	7.1e- 006	3.9e- 016
100	0.013007	0.00017119		340	341	34	2	U	U	6.7e-	3,00E-
169	0.015838	0.00017119		342	343	2	2	0	0	006	16
	0.016	-	out								
						34	_	_	_	7.1e-	3.1e-
1/0	0.016009	0.00017119		344	345	4 34	2	0	0	006 1,00E-	016
171	0.016181	0.00017119		346	347	6	2	0	0	05	
						34				8.7e-	
172	0.016352	0.00017119		348	349	8	2	0	0	006	016
	0.0165	-	out			25				4.0	
173	0.016523	0.00017119		350	351	35 0	2	0	Λ	1.2e- 005	6.2e- 016
1/3	0.010323	0.00017113		330	331	35	۷	O	Ü		6.5e-
174	0.016694	0.00017119		352	353	2	2	0	0	006	016
						35	_	_	_	1.1e-	7.1e-
175	0.016865	0.00017119		354	355	4	2	0	0	005	016
	0.017	-	out			35				7,00E-	6 1e-
176	0.017037	0.00017119		356	357	6	2	0	0	-	016
						35				6.8e-	
177	0.017208	0.00017119		358	359		2	0	0	006	016
178	0.017379	0.00017119		360	361	36 0	2	0	O	7.7e- 006	5.6e- 016
1,0	0.0175	-	out	300	301	Ü	_	Ü	Ū	000	010
						36				7.1e-	5.3e-
179	0.01755	0.00017119		362	363		2	0	0	006	016
190	0.017721	0.00017119		364	365	36	2	0	^	7.6e- 006	4.2e- 016
100	0.017721	0.00017119		304	303	36	2	U	U	5.5e-	6.7e-
181	0.017893	0.00017119		366	367		2	0	0	006	016
	0.018	-	out								
4.00	0.04.006.4	0.00047440		262	260	36	2	0	^	7.1e-	6,00E-
182	0.018064	0.00017119		368	369	8 37	2	0	U	006 4.6e-	16 4.5e-
183	0.018235	0.00017119		370	371	0	2	0	0	006	016
1	-	-		-							1

ETSIIT

1							37				5.8e-	4.7e-
	184	0.018406	0.00017119		372	373	2	2	0	0	006	016
	_0.	0.0185	-	out	V -		_	_		·		
		0.0103	_	out			37				8.2e-	5.8e-
	105	0.010577	0.00017110		374	275		2	0	^		016
	192	0.018577	0.00017119		3/4	375	4	2	0	U	006	
							37	_	_	_	1,00E-	
	186	0.018748	0.00017119		376	377	6	2	0	0	05	
							37				5.5e-	5.9e-
	187	0.01892	0.00017119		378	379	8	2	0	0	006	016
		0.019	-	out								
							38				7.5e-	5.7e-
	188	0.019091	0.00017119		380	381	0	2	0	0	006	016
							38				6.3e-	5.1e-
	189	0.019262	0.00017119		382	383	2	2	0	0	006	016
							38				1.1e-	4.4e-
	190	0.019433	0.00017119		384	385	4	2	0	0	005	016
		0.0195	-	out			·	_		·		
		0.0193	-	out			38				8.3e-	4 Fo
	101	0.010604	0.00017110		206	387	6	2	0	^		
	191	0.019604	0.00017119		386	387		2	U		006	016
	400	0.040776	0.00047440		200	200	38	•	•		7,00E-	
	192	0.019776	0.00017119		388	389	8	2	0	0	06	
							39	_	_		8.6e-	
	193	0.019947	0.00017119		390	391	0	2	0	0	006	016
		0.02	-	out								
							39				6.9e-	7.2e-
	194	0.02009	0.00014304		392	393	2	2	0	0	006	016
							39				4.2e-	4.6e-
	195	0.020212	0.00012241		394	395	4	2	0	0	006	016
							39				9.8e-	4.1e-
	196	0.020322	0.00011017		396	397	6	2	0	0	006	016
							39				1.2e-	9.4e-
	197	0.020433	0.00011017		398	399	8	2	0	0	005	016
	13,	0.0205	0.00011017	out	000		Ū	_	Ū	Ŭ	003	010
		0.0203	-	out			40				F 00	9.20
	100	0.0205.42	0.00011017		400	401	40	2	^	^	5.9e-	8.2e-
	198	0.020543	0.00011017		400	401	0	2	0	U	006	016
							40	_	_	_	6.3e-	6.7e-
	199	0.020653	0.00011017		402	403	2	2	0	0	006	016
							40				5.6e-	6,00E-
	200	0.020763	0.00011017		404	405	4	2	0	0	006	16
							40				6.6e-	9,00E-
	201	0.020873	0.00011017		406	407	6	2	0	0	006	16
							40				6.4e-	4.8e-
	202	0.020983	0.00011017		408	409	8	2	0	0	006	016
		0.021	-	out								
- 1												
							41				5.8e-	8.6e-
	203	0.021094	0.00011017		410	411	41 0	2	0	0	5.8e- 006	8.6e- 016

ETSIIT

						41				9.9e-	4.5e-
204	0.021204	0.00011017		412	413	2	2	0	0	006	016
						41	_	_	_	7.8e-	7.6e-
205	0.021314	0.00011017		414	415	4	2	0	0	006	016
						41	_	_	_	3.9e-	9.6e-
206	0.021424	0.00011017		416	417	6	2	0	0	006	016
	0.0215	-	out								
						41				9.2e-	1.3e-
207	0.021534	0.00011017		418	419	8	2	0	0	006	015
						42	_	_	_	4,00E-	
208	0.021644	0.00011017		420	421	0	2	0	0		016
200	0.024755	0.00044047		422	422	42	_	•	_	6,00E-	
209	0.021755	0.00011017		422	423	2	2	0	U		016
210	0.021865	0.00011017		424	425	42 4	2	0	^	7.4e-	5.4e-
210	0.021805	0.00011017		424	425	-	2	U	U	006	016 3.9e-
211	0.021975	0.00011017		426	427	42 6	2	0	Λ	5.4e- 006	3.9e- 016
211		0.00011017		420	427	O	Z	U	U	006	010
	0.022	-	out			42				0.00	F 2.
212	0.022005	0.00011017		428	420	42 8	2	0	^	8.9e- 006	5.2e- 016
212	0.022085	0.00011017		428	429	6 43	2	0	U	5.7e-	4.2e-
212	0.022195	0.00011017		430	431	45	2	0	Λ	006	4.2e- 016
213	0.022133	0.00011017		430	431	43	2	U	U	4.2e-	3.9e-
214	0.022305	0.00011017		432	433	2	2	0	Λ	006	016
214	0.022303	0.00011017		432	455	43	_	Ü	Ü	6.9e-	4.3e-
215	0.022416	0.00011017		434	435	4	2	0	0	006	016
	0.0225	-	out		.00	•	_	Ū	Ŭ	000	010
	0.0223		out			43				5.3e-	5.4e-
216	0.022526	0.00011017		436	437	6	2	0	0	006	016
						43				7.1e-	5.1e-
217	0.022636	0.00011017		438	439	8	2	0	0	006	016
						44				5.4e-	4.2e-
218	0.022746	0.00011017		440	441	0	2	0	0	006	016
						44				9.8e-	5.5e-
219	0.022856	0.00011017		442	443	2	2	0	0	006	016
						44				1.7e-	1.2e-
220	0.022966	0.00011017		444	445	4	2	0	0	005	015
	0.023	-	out								
						44				1.2e-	4.2e-
221	0.023077	0.00011017		446	447	6	2	0	0	005	016
						44				8.2e-	5.7e-
222	0.023187	0.00011017		448	449	8	2	0	0	006	016
						45				7.3e-	3.8e-
223	0.023297	0.00011017		450	451	0	2	0	0	006	016
						45				6.3e-	4.2e-
224	0.023407	0.00011017		452	453	2	2	0	0	006	016
	0.0235	-	out								

ETSIIT

						45				7.1e-	5.3e-
225	0.023517	0.00011017		454	455	4	2	0	0	006	016
						45				7.7e-	3.1e-
226	0.023627	0.00011017		456	457	6	2	0	0	006	016
						45				7.2e-	3.9e-
227	0.023738	0.00011017		458	459	8	2	0	0	006	016
						46				7.7e-	5.4e-
228	0.023848	0.00011017		460	461	0	2	0	0	006	016
						46				7.5e-	2.9e-
229	0.023958	0.00011017		462	463	2	2	0	0	006	016
	0.024	-	out								
						46				1.1e-	5.9e-
230	0.024068	0.00011017		464	465	4	2	0	0	005	016
						46				1.9e-	9.1e-
231	0.024178	0.00011017		466	467	6	2	0	0	005	016
						46				1,00E-	
232	0.024288	0.00011017		468	469	8	2	0	0	05	016
						47				1.1e-	3.2e-
233	0.024399	0.00011017		470	471	0	2	0	0	005	016
	0.0245	-	out								
						47				1.7e-	4.7e-
234	0.024509	0.00011017		472	473	2	2	0	0	005	016
						47				2.3e-	5.4e-
235	0.024619	0.00011017		474	475	4	2	0	0	005	016
						47				2,00E-	
236	0.024729	0.00011017		476	477	6	2	0	0		016
						47	_	_	_	7.8e-	3.6e-
237	0.024839	0.00011017		478	479	8	2	0	0	006	016
220	0.004040	0.00044047		400	404	48	_	•	_	8.6e-	5.5e-
238	0.024949	0.00011017		480	481	0	2	0	U	006	016
	0.025	-	out								
						48	_	_	_	7.3e-	2.9e-
239	0.02506	0.00011017		482	483	2	2	0	0	006	016
240	0.03547	0.00044047		404	405	48	2	0	_	7.6e-	3.5e-
240	0.02517	0.00011017		484	485	4	2	0	U	006	016
241	0.03530	0.00011017		40C	407	48	2	0	^	6.1e- 006	4.9e-
241	0.02528	0.00011017		486	487	6	2	0	U	8.2e-	016
242	0.02539	0.00011017		488	489	48 8	2	0	Λ	8.2e- 006	4.6e- 016
242		0.00011017		400	409	٥	2	U	U	000	010
	0.0255	-	out			40				1 1 -	4.70
242	0.0355	0.00011017		490	491	49 0	2	0	Λ	1.1e- 005	4.7e- 016
243	0.0255	0.00011017		490	491	49	2	U	U	7.6e-	
244	0.02561	0.00011017		492	493	49 2	2	0	Λ	7.6e- 006	5.9e- 016
244	0.02301	0.0001101/		4 3∠	733	49	۷	U	U	5.3e-	3.9e-
2/15	0.025721	0.00011017		494	495	49	2	0	Λ	006	016
243	0.023721	0.0001101/		マンサ	700	49	_	U	J	8.7e-	3,00E-
246	0.025831	0.00011017		496	497	6	2	0	n	006	16
1 270	5.025551	5.0001101/		.55	.57	J	_	J	J		10

ETSIIT

1											1
						49	_	_	_	5.2e-	4.2e-
247	0.025941	0.00011017		498	499	8	2	0	U	006	016
	0.026	-	out			F0				7.70	4.60
2/10	0.026051	0.00011017		500	501	50 0	2	0	Λ	7.7e- 006	4.6e- 016
240	0.020031	0.00011017		300	301	50	۷	U	U	1.6e-	4.9e-
249	0.026161	0.00011017		502	503	2	2	0	n	005	016
2.13	0.020101	0.00011017		302	303	50	_	Ü	Ü	6.2e-	3.8e-
250	0.026271	0.00011017		504	505	4	2	0	0	006	016
						50					4,00E-
251	0.026492	0.00022033		506	507	6	2	0	0	006	16
	0.0265	-	out								
						50				5.9e-	4.4e-
252	0.02669	0.0001983		508	509	8	2	0	0	006	016
						51				6.1e-	4.9e-
253	0.026888	0.0001983		510	511	0	2	0	0	006	016
	0.027	-	out								
						51				6.2e-	3.2e-
254	0.027087	0.0001983		512	513	2	2	0	0	006	016
255	0.027205	0.0001003		544	- 4-	51	2	0	^	•	4,00E-
255	0.027285	0.0001983		514	515	4 51	2	0	U	06 6.7e-	16 3.1e-
256	0.027483	0.0001983		516	517		2	0	Ω	006	016
230	0.0275	-	out	310	317	Ü	_	Ü	Ü	000	010
	0.0273		out			51				5.5e-	2.6e-
257	0.027681	0.0001983		518	519	8	2	0	0	006	016
						52				7.4e-	4.1e-
258	0.02788	0.0001983		520	521	0	2	0	0	006	016
	0.028	-	out								
						52				5.8e-	3.7e-
259	0.028078	0.0001983		522	523	2	2	0	0	006	016
						52				5.3e-	3.4e-
260	0.028276	0.0001983		524	525		2	0	0	006	016
264	0.020475	0.0004.003		5 26	-27	52	2	0	_	4.5e-	,
261	0.028475	0.0001983		526	527	6	2	0	U	006	16
	0.0285	-	out			F 2				2.0-	2.40
262	0.028673	0.0001983		528	529	52 °	2	0	Λ	3.9e- 006	2.4e- 016
202	0.028073	0.0001365		320	329	53	2	U	U	5.5e-	3.2e-
263	0.028871	0.0001983		530	531		2	0	0	006	016
203	0.029	-	out	330	331	Ū	-	Ü	Ü	000	010
	0.023		Jul			53				4.7e-	4.7e-
264	0.02907	0.0001983		532	533		2	0	0	006	016
						53			-	4.2e-	3.2e-
265	0.029268	0.0001983		534	535	4	2	0	0	006	016
						53				5.2e-	2.7e-
266	0.029466	0.0001983		536	537	6	2	0	0	006	016

ETSIIT

	0.0295	_	out								
	0.0233		out			53				2.9e-	3.1e-
267	0.029664	0.0001983		538	539	8	2	0	0	006	016
207	0.023004	0.0001303		330	333	54	_	U	Ü	5.5e-	3.1e-
268	3 0.029863	0.0001983		540	541	0	2	0	Λ	006	016
200		0.0001983		340	341	U	2	U	U	000	010
	0.03	-	out			5 4				5 0	2.4
200	0.020064	0.0001003		E 42	E 42	54	2	•	_	5.8e-	3.4e-
265	0.030061	0.0001983		542	543	2	2	0	U	006	016
276	0.000050	0.0004.003		- 4 4	545	54	2	•	_	4.7e-	4.4e-
2/0	0.030259	0.0001983		544	545	4	2	0	U	006	016
274	0.020450	0.0004.000		5 4 6	- 4 - 7	54	2	•	_	5.9e-	5.6e-
2/1	0.030458	0.0001983		546	547	6	2	0	U	006	016
	0.0305	-	out								
						54	_	_		9.7e-	7.2e-
272	0.030656	0.0001983		548	549	8	2	0	0	006	016
						55				7.3e-	5.7e-
273	3 0.030854	0.0001983		550	551	0	2	0	0	006	016
	0.031	-	out								
						55				5.3e-	6,00E-
274	0.031053	0.0001983		552	553	2	2	0	0	006	16
						55				4.3e-	5.5e-
275	0.031251	0.0001983		554	555	4	2	0	0	006	016
						55				3.8e-	4.3e-
276	0.031449	0.0001983		556	557	6	2	0	0	006	016
	0.0315	-	out								
						55				5.4e-	5.2e-
277	0.031647	0.0001983		558	559	8	2	0	0	006	016
						56				4.1e-	4.6e-
278	0.031846	0.0001983		560	561	0	2	0	0	006	016
	0.032	-	out								
						56				4.4e-	3.5e-
279	0.032044	0.0001983		562	563		2	0	0	006	
						56				5,00E-	
280	0.032242	0.0001983		564	565	4	2	0	0		016
						56				5,00E-	
281	0.032441	0.0001983		566	567		2	0	0	•	016
	0.0325	-	out				_	-	_		
	0.0323		out			56				6.2e-	4.8e-
282	2 0.032639	0.0001983		568	569		2	0	Ω	006	016
202	0.032033	0.0001703		500	309	57	_	U	J	5.4e-	
283	3 0.032837	0.0001983		570	571		2	0	Λ	006	016
203		0.0001703	Ou+	370	J/1	J	_	U	J	500	310
	0.033	-	out			E 7				2 1 0	170
204	1 0 022026	0.0001092		E72	E 7 2	57 2	2	0	0	3.1e-	4.7e-
284	0.033036	0.0001983		572	573		2	0	U	006	016
205	: 0.022224	0.0001092		E74	-7 -	57 4	2	0	0	4.1e-	5.3e-
285	5 0.033234	0.0001983		574	575	4	2	0	U	006	016

ETSIIT

1											1
206	0.022422	0.0001983		576	577	57 6	2	0	0	4.8e- 006	6.7e- 016
280	0.033432 0.0335	0.0001983	out	5/6	5//	О	2	U	U	006	016
	0.0333		out			57				1.7e-	1,00E-
287	0.03363	0.0001983		578	579	8	2	0	0	005	15
						58				6.7e-	4.9e-
288	0.033829	0.0001983		580	581	0	2	0	0	006	016
	0.034	-	out			Ε0				7.00	2.70
289	0.034027	0.0001983		582	583	58 2	2	0	Ω	7.6e- 006	3.7e- 016
203	0.034027	0.0001303		302	303	58	_	Ü	Ü		6.5e-
290	0.034225	0.0001983		584	585	4	2	0	0	006	016
						58				7,00E-	
291	0.034424	0.0001983		586	587	6	2	0	0	06	016
	0.0345	-	out			58				5.6e-	5.3e-
292	0.034622	0.0001983		588	589	8	2	0	0	006	016
	0.03 .022	0.0001300		300	303	59	_	Ū	Ū	8.1e-	8.6e-
293	0.03482	0.0001983		590	591	0	2	0	0	006	016
	0.035	-	out								
204	0.035040	0.0001003		F02	F02	59	2	0	_	1.1e-	8.7e-
294	0.035019	0.0001983		592	593	2 59	2	0	U	005 1.1e-	016 1.1e-
295	0.035217	0.0001983		594	595	4	2	0	0	005	015
						59				6.6e-	5.5e-
296	0.035415	0.0001983		596	597	6	2	0	0	006	016
	0.0355	-	out								
207	0.035613	0.0001983		598	599	59 8	2	0	Λ	6.4e- 006	3.3e- 016
297	0.033013	0.0001985		330	333	60	2	U	U	6.2e-	5.5e-
298	0.035812	0.0001983		600	601	0	2	0	0	006	016
	0.036	-	out								
						60	_			9.4e-	5.2e-
299	0.03601	0.0001983		602	603		2	0	0	006	016
300	0.036208	0.0001983		604	605	60 4	2	0	n	8.4e- 006	16
	0.030200	0.0001303		004	003	60	_	Ü	Ü	8.1e-	4.9e-
301	0.036407	0.0001983		606	607		2	0	0	006	016
	0.0365	-	out								
200	0.026605	0.0004003		600	600	60	2	0	_	7.2e-	
302	0.036605	0.0001983		608	609	8 61	2	0	U	006 7,00E-	016
303	0.036783	0.00017801		610	611		2	0	0	06	
						61	_	-	-	1.1e-	
304	0.036961	0.00017801		612	613	2	2	0	0	005	016
	0.037	-	out								

ETSIIT

ı						C 4				7.5	5 005 l
205	0.037139	0.00017901		614	615	61 4	2	0	^	7.5e- 006	5,00E- 16
303	0.057159	0.00017801		014	013	61	2	U	U	7.1e-	6.1e-
306	0.037317	0.00017801		616	617	6	2	0	0	006	0.16
	0.037317	0.00017001		010	017	61	_	Ū	Ü	9.5e-	3.9e-
307	0.037495	0.00017801		618	619	8	2	0	0	006	016
	0.0375	_	out								
						62				6.9e-	5.6e-
308	0.037673	0.00017801		620	621	0	2	0	0	006	016
						62				8.6e-	6.3e-
309	0.037851	0.00017801		622	623	2	2	0	0	006	016
	0.038	-	out								
						62	_	_		4.9e-	6.8e-
310	0.038029	0.00017801		624	625	4	2	0	0	006	016
211	0.020207	0.00017801		626	627	62	2	0	^	5.2e-	6,00E-
311	0.038207	0.00017801		626	627	6 62	2	0	U	006 5.9e-	16 8.3e-
312	0.038385	0.00017801		628	629	8	2	0	Ω	006	016
312	0.0385	-	out	020	023	O	2	U	Ü	000	010
	0.0383		out			63				6.4e-	5.9e-
313	0.038563	0.00017801		630	631	0	2	0	0	006	016
						63			-	4.1e-	4.3e-
314	0.038741	0.00017801		632	633	2	2	0	0	006	016
						63				4.5e-	4.8e-
315	0.038919	0.00017801		634	635	4	2	0	0	006	016
	0.039	-	out								
						63				7.4e-	5.5e-
316	0.039097	0.00017801		636	637	6	2	0	0	006	016
217	0.020275	0.00017001		C20	C20	63	2	0	^	4.8e-	5.8e-
31/	0.039275	0.00017801		638	639	8 64	2	0	U	006 4.9e-	016 4,00E-
318	0.039453	0.00017801		640	641	0	2	0	Ω	006	16
310	0.0395	-	out	0.10	011	Ū	_		Ū	000	10
	0.0333		out			64				9.8e-	3.1e-
319	0.039631	0.00017801		642	643		2	0	0	006	016
						64				4.6e-	3,00E-
320	0.039809	0.00017801		644	645	4	2	0	0	006	16
						64				8.8e-	8.6e-
321	0.039987	0.00017801		646	647	6	2	0	0	006	016
	0.04	-	out								
	0.0404					64	_		_	7.3e-	8.3e-
322	0.040134	0.00014718		648	649		2	0	0	006	016
222	0.040257	0.00012223		650	651	65 0	2	0	0	4.3e- 006	
323	0.040237	0.00012223		030	031	65	۷	U	U	8,00E-	
324	0.040379	0.00012223		652	653	2	2	0	0		016
	0.0405	-	out	- 		-	-	=	-		
I											

ETSIIT

						65				7.6e-	9.1e-
325	0.040501	0.00012223		654	655	4	2	0	0	006	016
						65				5,00E-	
326	0.040623	0.00012223		656	657	6	2	0	0		016
						65	_	_	_	5.5e-	5.4e-
327	0.040746	0.00012223		658	659	8	2	0	0	006	016
						66	_	_	_	4.7e-	8.8e-
328	0.040868	0.00012223		660	661	0	2	0	0	006	016
220	0.04000	0.00043333		663	CC2	66	2	^	^	6.4e-	5.8e-
329	0.04099	0.00012223		662	663	2	2	0	U	006	016
	0.041	-	out								
220	0.044442	0.0004.2222		664	665	66	2	•	_	8.4e-	4.6e-
330	0.041112	0.00012223		664	665	4	2	0	U	006	016
221	0.041234	0.00013333		ccc	667	66 6	2	0	^	5.1e-	4.8e-
331	0.041234	0.00012223		666	007		2	U	U	006 3.8e-	016 3.7e-
222	0.041357	0.00012223		668	669	66 8	2	0	Λ	3.8e- 006	016
332	0.041557	0.00012223		000	009	67	2	U	U	4.9e-	9.1e-
222	0.041479	0.00012223		670	671	0	2	0	Λ	006	016
333	0.041479	0.00012223	out	070	0/1	U	۷	U	U	000	010
	0.0415	-	out			67				4.1e-	8.4e-
33/	0.041601	0.00012223		672	673	2	2	0	Λ	4.1e- 006	016
334	0.041001	0.00012223		072	0/3	67	2	U	U	7.4e-	7.5e-
335	0.041723	0.00012223		674	675	4	2	0	Ω	006	016
	0.041725	0.00012223		074	073	67	_	Ü	Ü	6,00E-	
336	0.041846	0.00012223		676	677	6	2	0	0	-	016
	0.0 .10 .0	0.00012223		0,0	0,,	67	_	Ū	Ŭ	8,00E-	
337	0.041968	0.00012223		678	679	8	2	0	0	-	016
	0.042	-	out								
						68				5.6e-	1.2e-
338	0.04209	0.00012223		680	681	0	2	0	0	006	015
						68				6.5e-	9,00E-
339	0.042212	0.00012223		682	683	2	2	0	0	006	16
						68				6.9e-	1.1e-
340	0.042335	0.00012223		684	685	4	2	0	0	006	015
						68				3.8e-	4.3e-
341	0.042457	0.00012223		686	687	6	2	0	0	006	016
	0.0425	-	out								
						68				8.2e-	7,00E-
342	0.042579	0.00012223		688	689	8	2	0	0	006	16
						69				6.5e-	4.5e-
343	0.042701	0.00012223		690	691	0	2	0	0	006	016
						69				8.3e-	7.4e-
344	0.042824	0.00012223		692	693	2	2	0	0	006	016
						69				1,00E-	
345	0.042946	0.00012223		694	695	4	2	0	0	05	016
	0.043	-	out								

ETSIIT

							69				1.4e-	9.9e-
34	16	0.043068	0.00012223		696	697	6	2	0	0	005	016
	_						69	_	_	_	-	4,00E-
34	17	0.04319	0.00012223		698	699	8	2	0	0	05	16
		0.040040	0.00040000		700	704	70	_	•	_	5.9e-	2.5e-
34	18	0.043312	0.00012223		700	701	0	2	0	U	006	016
1 2	10	0.042425	0.00012222		702	702	70	2	0	^	6.8e-	3.7e-
34		0.043435	0.00012223		702	703	2	2	0	U	006	016
		0.0435	-	out			70				1.4e-	1,00E-
20		0.043545	0.00011001		704	705	70 4	2	0	Λ	005	1,002-
3.	00	0.045545	0.00011001		704	703	70	2	U	U	7.6e-	3.9e-
31	51	0.043655	0.00011001		706	707	6	2	0	Λ	006	016
	, _	0.043033	0.00011001		700	, , ,	70	_	U	Ü	6.7e-	3.7e-
35	52	0.043765	0.00011001		708	709	8	2	0	0	006	016
							71				1.4e-	5.6e-
35	53	0.043875	0.00011001		710	711	0	2	0	0	005	016
							71				8.9e-	6,00E-
35	54	0.043985	0.00011001		712	713	2	2	0	0	006	16
		0.044	-	out								
							71				6.8e-	5.6e-
35	55	0.044095	0.00011001		714	715	4	2	0	0	006	016
							71				2.4e-	4,00E-
35	56	0.044205	0.00011001		716	717	6	2	0	0	005	16
							71				9.1e-	4.2e-
35	57	0.044315	0.00011001		718	719	8	2	0	0	006	016
							72		_	_	6.5e-	3.1e-
35	8	0.044425	0.00011001		720	721	0	2	0	0	006	016
		0.0445	-	out								
		0.044505	0.00044004		700	700	72	•	•	_	2.4e-	5.9e-
35	9	0.044535	0.00011001		722	723	2	2	0	U	005	016
20	-0	0.044645	0.00011001		724	725	72 4	2	0	^	1.3e-	6.4e-
30	OU	0.044645	0.00011001		724	725	4 72	2	0	U	005 1.4e-	016 4.9e-
3,6	51	0.044755	0.00011001		726	727	6	2	0	Λ	005	016
"	,_	0.044733	0.00011001		720	121	72	۷	U	Ü	1.2e-	7.4e-
36	52	0.044865	0.00011001		728	729	8	2	0	0	005	016
	_		0.000==00=		0		73	_		·	1.7e-	5.8e-
36	53	0.044975	0.00011001		730	731	0	2	0	0	005	016
		0.045	-	out								
							73				1,00E-	3.9e-
36	54	0.045085	0.00011001		732	733	2	2	0	0	-	016
							73				1.1e-	5.9e-
36	55	0.045195	0.00011001		734	735	4	2	0	0	005	016
							73					4,00E-
36	66	0.045305	0.00011001		736	737	6	2	0	0	006	16
							73				6.7e-	8.4e-
36	57	0.045415	0.00011001		738	739	8	2	0	0	006	016

ETSIIT

ĺ	0.0455	_	out								
	0.0433		out			74				8.3e-	4.6e-
368	0.045525	0.00011001		740	741	0	2	0	0	006	016
	0.0 .00 _0	0.000=00=			–	74	_		·	2.1e-	2.5e-
369	0.045635	0.00011001		742	743	2	2	0	0	005	016
						74				7.2e-	4.2e-
370	0.045745	0.00011001		744	745	4	2	0	0	006	016
						74				5.6e-	3.9e-
371	0.045855	0.00011001		746	747	6	2	0	0	006	016
						74				6.5e-	6.7e-
372	0.045965	0.00011001		748	749	8	2	0	0	006	016
	0.046	-	out								
						75				9.5e-	4.2e-
373	0.046075	0.00011001		750	751	0	2	0	0	006	016
						75				6.8e-	5.9e-
374	0.046185	0.00011001		752	753	2	2	0	0	006	016
						75				1,00E-	
375	0.046295	0.00011001		754	755	4	2	0	0		016
						75				6,00E-	
376	0.046405	0.00011001		756	757	6	2	0	0	06	016
	0.0465	-	out								
						75		_		7.4e-	4.6e-
377	0.046515	0.00011001		758	759	8	2	0	0	006	016
270	0.046705	0.0000000		760	764	76	_	•	_	6.1e-	5.5e-
3/8	0.046735	0.00022002		760	761	0	2	0	U	006	016
270	0.046022	0.00010003		762	762	76	2	0	^	7.9e-	3.1e-
3/9	0.046933	0.00019802		762	763	2	2	0	U	006	016
	0.047	-	out			7.0				C 00F	2.60
200	0.047131	0.00019802		764	765	76 4	2	0	0	6,00E-	016
360	0.04/131	0.00019802		704	705	76	2	U	U	7.7e-	4.9e-
381	0.047329	0.00019802		766	767	6	2	0	Λ	006	016
301	0.0475		out	700	707	O	_	U	Ü	000	010
	0.0473	-	out			76				7,00E-	3 /10-
382	0.047527	0.00019802		768	769		2	0	Ω	-	016
302	0.0 17 327	0.00013002		, 00	703	77	_	Ū	Ü	6.3e-	3.1e-
383	0.047725	0.00019802		770	771		2	0	0	006	016
						77				6.8e-	4.6e-
384	0.047923	0.00019802		772	773	2	2	0	0	006	016
	0.048	-	out								
						77				4.8e-	3.9e-
385	0.048121	0.00019802		774	775	4	2	0	0	006	016
						77				5.5e-	3.7e-
386	0.048319	0.00019802		776	777	6	2	0	0	006	016
	0.0485	-	out								
						77				6.1e-	4.9e-
387	0.048517	0.00019802		778	779	8	2	0	0	006	016

ETSIIT

Virtual memory: 11.76 GB

1							78				4.8e-	2.7e-
	388	0.048715	0.00019802		780	781	0	2	0	0	006	016
	300	0.0 107 13	0.00013002		700	701	78	_	Ü	Ü	5.9e-	4.2e-
	389	0.048913	0.00019802		782	783	2	2	0	0	006	016
		0.049	-	out			_	_		·		0_0
		0.015		out			78				5.6e-	3.4e-
	390	0.049111	0.00019802		784	785	4	2	0	0	006	016
	330	0.0 .5111	0.00013002		,	, 00	78	_	Ū	Ū	7.9e-	3.5e-
	391	0.049309	0.00019802		786	787	6	2	0	0	006	016
		0.0495	-	out					•	-		
		0.0 155		out			78				4.4e-	3.2e-
	392	0.049507	0.00019802		788	789	8	2	0	0	006	016
							79				5.4e-	3.6e-
	393	0.049705	0.00019802		790	791	0	2	0	0	006	016
							79				5.1e-	3.4e-
	394	0.049903	0.00019802		792	793	2	2	0	0	006	016
		0.05	-	out								
							79				5.2e-	3.5e-
	395	0.050101	0.00019802		794	795	4	2	0	0	006	016
			Time-s	tepping	g comp	leted.	i					
	Res	olvedor temporal :	1 in Solution 1: Sol					ours. 4	19 min	ute	s. 9 seco	onds)
					sical m		-				,	,
				y.	J. 541 111		, . ±0.5	. 55				

